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Abstract

Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response
analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health
intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and
non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in
light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing
mechanistic competing-risks model to create a novel Exposure–Infection–Symptomatic illness–Death (EISD) model and use
experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these
data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence
interval 7,200–17,000), ID10 of 1,700 (1,100–2,600), and ID1 of 160 (100–250). These estimates suggest that use of a threshold
to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an
existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time
from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7–13.1) for exposure to
ID50, 11.8 days (9.5–15.0) for ID10, and 12.1 days (9.9–15.3) for ID1. Our model is the first to provide incubation period
estimates that are independently consistent with data from the largest known human outbreak. This model refines previous
estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course
of prophylactic antibiotic treatment for individuals exposed to low doses.
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Introduction

The causative microorganism of anthrax, Bacillus anthracis (B.

anthracis), is classified by the US Centers for Disease Control and

Prevention (CDC) as a Category A (highest priority) bioterrorism

pathogen, with the potential for causing a large number of

infections and deaths after an effective aerosol release in a

community [1,2]. Reports of natural infections [3–6] and large

scale accidental or intentional releases causing infections [7,8]

provide limited insight into the risk. To evaluate the threat posed

by potential release scenarios, risk assessors, public health analysts,

biodefense modelers, and other researchers require robust

quantitative dose-response analyses to estimate the magnitude

and timeline of potential consequences and the effect of public

health intervention strategies [9–11], such as the administration of

prophylactic antibiotic regimens to potentially exposed cases [12],

and to interpret the significance of sampling results for detecting B.

anthracis spores in indoor environments [13,14]. For these analyses,

it is particularly important to estimate the probability of infection

after low dose exposures, which could cause the majority of cases

after a large-scale release [15,16].

Due to the deadly nature of the disease, there are no

experimental data on exposure and response of humans to

aerosolized B. anthracis. Analyses of quantitative information from

natural and accidental exposures and infections of humans [15,17]

and experimental infections of non-human primates [18,19] are
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scattered in the literature, poorly understood, and often contra-

dictory. Mathematical dose-response modeling is useful when

experimental data on the effects of low dose inhalational exposures

are scarce or non-existent. These models utilize information about

the height and shape of a dose-response curve at higher doses

where data or estimates are available and use an assumed

functional form to extend the curve to lower doses where data are

not available, but where risk estimates are required. Different

model forms can lead to very different extrapolated estimates from

the same set of data. This creates substantial uncertainty regarding

the minimum dose required to cause infection in humans [20] and

the dose-dependent time from exposure to appearance of illness

(incubation period), key parameters required for sound risk

assessment by public health and emergency preparedness author-

ities [12,21].

In this study, we critically evaluate the available published

literature and identify candidate raw data sets to develop refined

quantitative dose-response models for B. anthracis infection in

humans with an emphasis on the low-dose effect. We use the

resulting models to estimate the incubation period as a function of

the exposure and the relationships between duration of antimi-

crobial treatment after exposure and the probability of infection.

Results

Focused review of studies on inhalational anthrax dose-
response

Three outbreaks of inhalational anthrax in humans having

information to estimate dose-response are the 2001 letter attacks

through the U.S. Postal Service, industrial workers handling

contaminated animal products in the early-mid 1900’s, and an

accidental airborne release of spores from a facility in Sverdlovsk,

Russia in 1979.

The doses to which victims of the 2001 letters were exposed are

not known, and it is a challenge to estimate exposure amounts

without knowing the means by which spores were released from

the envelopes, aerosolized, and inhaled. Therefore, despite

modeling efforts [16,22], these incidents shed limited information

on quantitative dose-response.

Some quantitative data exist for exposure of non-vaccinated

industrial workers handling animal products contaminated with B.

anthracis. This evidence suggests that the infection rate for humans

exposed in this setting is very low, especially for inhalational

anthrax, as most of the infections that did occur were cutaneous

[3]. Workers in one mill were thought to have been inhaling

hundreds of spores on a daily basis with not a single infection

documented [23]. A recent analysis of this case concluded that 600

spores or fewer would not be expected to cause disease in healthy

humans and advocated the use of 600 spores as a threshold to use

in risk assessments [17]. However, it is possible that the industrial

workers were immune to clinical infection from repeated low-level

exposure, that there were undiagnosed cases, or that infections

would result from low-dose exposures of individuals with unusual

susceptibility [24].

B. anthracis spores were accidentally released from a facility in

Sverdlovsk (Russia) in the former Soviet Union in 1979, causing

infections in both humans and animals downwind of the facility

[7]. Doses inhaled by the infected individuals are not known, nor is

it known how many spores were released from the facility.

However, human dose-response information has been inferred

using atmospheric data on the day the release likely occurred, the

likely locations of the infected individuals when they were exposed,

and the epidemiology of the tabulated cases. Meselson et al. [7]

calculated that the attack rate at a ceramics factory 2.8 km

downwind of the Sverdlovsk release was approximately 1–2% (18

out of about 1500 employees were infected, including 10 out of

450 employees working in a single unpartitioned building).

Wilkening [15] analyzed the Sverdlovsk case data and applied a

series of theoretical dose-response models, finding that both the

spatial (distance from release) and temporal (incubation period,

assumed to vary with dose) distribution of cases are consistent with

dose-response curves that predict a slow decrease in the

probability of infection as the dose decreases. They conclude that

these data do not support a distinct exposure threshold below

which no one is infected and above which everyone is infected.

In the absence of other human data, experimental studies

involving non-human primates provide the best available data

from which to gain insights into potentially appropriate dose-

response relationships for humans. We summarize three candidate

data sets and dose-response models that have been applied to

them. Note that, while these studies generally use death as an

endpoint and express their results in terms of lethal dose (LD), we

make the assumption that LD and ID are equivalent, i.e., that

infection with inhalational anthrax invariably leads to death in the

absence of treatment. Two of the following three studies do not

make note of infected animals that survived. The third study found

evidence of infection in two surviving animals sacrificed at the

termination of an experiment, but noted that ‘‘these animals were

undoubtedly in the early stage of disease and presumably would

have developed systemic disease and died, had the experiment not

been terminated’’ [24]. There is also evidence that humans with

inhalational anthrax infection have a fatality rate approaching

100% in the absence of treatment. Holty et al., in reviewing 82 of

the best-documented human inhalational anthrax cases [25],

found only one instance of an infected and untreated person (an

at-risk veterinarian thought to have some prior immunity) who did

not progress to the fulminant stage of disease. They found only two

cases (3%) of humans surviving the fulminant stage of disease

under any circumstance, and both of those cases received

treatment.

Glassman [26] reports on data from unpublished work

performed by Jemski in which 1,236 cynomolgus monkeys (Macaca

fascicularis) were exposed to aerosols of B. anthracis. While the raw

data are not published, the paper reports that a log-probit model

was fit to the data, resulting in a dose that is lethal to 50% of

animals exposed (LD50) of 4,130 spores (95% confidence interval

Author Summary

Anthrax poses a potential community health risk due to
accidental or intentional aerosol release. We address the
need for a transparent and defensible quantitative dose-
response model for inhalational anthrax that is useful for
risk assessors in estimating the magnitude and timeline of
potential public health consequences should a release
occur. Our synthesis of relevant data and previous
modeling efforts identifies areas of improvement among
many commonly cited dose-response models and esti-
mates. To address those deficiencies, we provide a new
model that is based on clear, transparent assumptions and
published data from human and non-human primate
exposures. Our resulting estimates provide important
insight into the infectivity to humans of low inhaled doses
of anthrax spores and the timeline of infections after an
exposure event. These insights are critical to assessment of
the impacts of delays in responding to a large scale aerosol
release, as well as the recommended course of antibiotic
administration to those potentially exposed.

Models of Human Inhalational Anthrax Dose-Response
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1,980 to 8,630) and a probit slope of 0.669 probits per base-ten log

dose (95% confidence interval 0.520 to 0.818). Under our

definition of the log-probit model (see Materials and Methods), the

best fit parameters are ID50 = 4,130 and m = 0.291 (Table 1, model

J). Extrapolation using these values results in ID10 of 50 spores and

ID1 of 1 spore. Without raw data, it cannot be determined

whether any of the monkeys in the Jemski experiments were

exposed to low doses and, if so, whether any of those doses proved

fatal. Furthermore, without the full data set it is not possible to

evaluate whether alternative dose-response models would have fit

the data better than the log-probit model, which has been

outperformed by other models in fitting other data sets [18]. Two

studies [11,15] applied a log-probit model based on the Jemski

data to analyses of human exposure scenarios, although they

applied ID50 = 8,600 (the upper limit of the 95% confidence

interval reported by Glassman).

Two studies contain raw data from a substantial number of

monkeys exposed to a range of dose amounts. Druett et al. [27]

exposed rhesus monkeys (Macaca mulatta) to aerosols of B. anthracis

spores resulting in a range of inhaled doses estimated between about

35,000 to 200,000 spores. We summarize the data from these

experiments in Table S1. The authors also fit a log-probit model to

their data (Table 1, model D1) resulting in optimal parameters

equivalent to ID50 = 53,000 spores (95% confidence interval 30,000

to 52,000) and m = 1.39. Haas [18] reported a fit of the exponential

model (model D2) to this data set and also stated that the best fit log-

probit and beta Poisson models did not provide a statistically

significantly improved fit compared to the exponential model.

The second study containing raw data, Brachman et al. [24],

exposed cynomolgus monkeys to B. anthracis-contaminated air

from a goat hair mill. The data consist of estimated dosage and the

number of deaths from anthrax, sacrifice, or other cause on each

day across three model runs and are shown graphically in [24]. We

visually estimated the daily exposure data from their figures and

manually adjusted those estimates until they were consistent with

the cumulative dose numbers reported in the source text. Our

estimates of these numerical data are shown in Tables S2, S3, S4.

The authors did not fit a dose response model to their data, but

two more recent studies have done so. Haas [18] used an

averaging technique [28] to fit a time-independent exponential

model (Table 1, model B1) to the data, and Mayer et al. fit a time-

dependent exponential model and an extended exponential model

(Table 1, models B2 and B3).

The published literature also includes quantitative human

inhalational anthrax dose-response estimates based on the opinion

or judgment of experts. For example, biodefense experts from the

US Army Institute of Infectious Diseases (USAMRIID, Fort

Detrick, MD) state the infective dose (presumably ID50) of

inhalational anthrax for humans is 8,000–50,000 spores [29,30].

An expert elicitation of seven anthrax subject matter experts [31]

indicated an ID10 of 1,000–2,000 spores, an ID50 of 8,000–10,000

spores, and an ID90 of 50,000–100,000 spores. Webb and Blaser

[16] extended those expert-derived estimates to age-specific values

for the ID10 and ID50, but without providing quantitative evidence

or reasoning used to derive these estimates. Several dose response

models have been proposed and applied based entirely or in part

Table 1. Summary of anthrax dose-response models.

Criteria satisfied

Model Form Parameter values ID50 ID10 ID1 ID0.1 1 2 3 4

With parameter values based on Jemski (J) non-human primate data:

J [26]a Log-probit ID50 = 4,130; m = 0.291 4,130 50 1 0.1 3 3

With parameter values based on Druett (D) et al. non-human primate data:

D1 [27] Log-probit ID50 = 53,000; m = 1.39 53,000 21,000 9,900 5,700 3

D2 [18] Exponential r = 7.1661026 96,800 14,700 1,400 140 3 3 3

D3: our result Exponential r = 1.4361025 48,000 7,400 700 70 3 3 3

With parameter values based on Brachman (B) et al. non-human primate data:

B1 [18] Exponential r = 2.661025 27,000 4,100 390 38 3 3 3

B2 [35]b Exponential (time-dep) r = 4.061025 18,000 2,700 250 25 3 3 3

B3 [35]b Exponential (extended) r = 1.8761025; a = 0.9 16,000 2,800 330 41 3 3 3

B4: our result Exponential (time-dep) r = 6.461025 11,000 1,700 160 16 3 3 3 3

With parameter values based on expert (E) opinion:

E1 [31]c Log-probit ID50 = 8,940; m = 0.621 8,940 1,135 211 62

E2 [9] Age-dependent log-probit see Materials and Methods 8,400 1,500 280 86

E3 [10] Age-dependent linear see Materials and Methods 8,700 1,300 130 13 3

E4 [16] Age-dependent logit see Materials and Methods 8,300 1,500 210 22 3

E5 [32]d Exponential (time-dep) r = 8.161025 8,600 1,300 120 12 3 3 3

Model formulas and parameter value definitions are described in detail in the Materials and Methods section. ID estimates for age-dependent models rely on estimates
of the age distribution of the United States population from the 2010 census. Criteria used to evaluate the models are 1) the parameter values are derived from dose-
response data; 2) the shape of the dose-response curve is consistent with Sverdlovsk data; 3) the model is derived from mechanistic assumptions; and 4) the model
estimates the incubation period.
aPapers [11,15] citing model J instead used ID50 = 8,600, which is just within the 95% confidence limits reported in [26].
bModels B2 and B3 estimate the time from exposure to infection take-off and death, but not the incubation period (time from exposure to onset of symptoms).
cPapers [11,15] citing model E1 instead used ID50 = 8,600, which is within the range reported in the original paper.
dFor model E5, the original paper [32] estimated the time-dependent parameter h from data and did not specify an estimate for r, but papers applying this model
[11,15] used the r value given above under an assumption of ID50 = 8,600, comparable to other models based on expert opinion.
doi:10.1371/journal.ppat.1003555.t001

Models of Human Inhalational Anthrax Dose-Response
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on the values from these expert elicitations (Table 1, models E1–

E5).

Evaluation of published dose-response models for
human exposure to B. anthracis

We evaluate the previously published models against the criteria

listed in Materials and Methods in Table 1. Versions of six of the

models in Table 1 (J and E1–E5) have been applied in recent

mathematical modeling or simulation studies of human exposure

to anthrax [9–11,15,16,32]. Models J, D1, D2 and B1–B3 were

fit to one of three non-human primate dose-response data sets and,

therefore, satisfy criterion 1 (although model J is based on a data

set by Jemski for which the raw data are not published, which

limits transparency). Models E1–E5 do not have a clear basis in

quantitative dose-response data, but are instead based entirely or

partly on assumptions, recommendations, or expert opinions for

which the reasoning has not been made clear in published

accounts. All models except for three of the log-probit models with

steeper slopes (E1, E2, and D1) produce dose-response curves

with shapes that either were shown to be consistent with the

Sverdlovsk data in Wilkening [15] or produce similar estimates to

the models tested in that study and, therefore, satisfy criterion 2.

The models taking the exponential form (E5, D2, and B1–B3) are

based on simple assumptions about the fate of individual spores

inhaled in the lung, satisfying criterion 3, while the other models

make use of statistical distributions with no clear basis in assumed

mechanisms of infection. Model E5 produces incubation period

estimates as an extension of the assumptions that form the basis of

the model and, therefore, satisfy criterion 4. Models B2 and B3
produce estimates for the time course of infection but not for the

incubation period. I.e., they specify time to infection take-off

(initial germination of inhaled spores) and to death, but not to

onset of symptoms. The other previously existing models do not

contain time components for disease progression among those

infected. Although an incubation period distribution can be added

to any dose-response model exogenously (as was done by

Wilkening [15] to a version of model J and model E2), our

preference under criterion 4 is for models in which the incubation

period estimates are derived ab initio in conjunction with a dose-

response model.

Of the five models with a quantitative basis in expert opinion,

model E5 has the most (three) of the desired characteristics of an

anthrax dose-response model. However, while some of the time-

based parameters of this model have been estimated from non-

human primate data and human data from Sverdlovsk [32], the

full dose-response model is incomplete without assuming a fixed

point on the dose-response curve (e.g., the ID50) which does not

have a firm basis in those data. Non-human primate data sets can

be used to fill that need. Model J based on the Jemski data does

not satisfy criteria 3 and 4, and the raw data are not available to

attempt further modeling with improved characteristics. There-

fore, we focus on models fit the Druett et al. and Brachman et al.

data sets in the following sections.

Model fitting to the Druett et al. data set
We checked the results for the optimal parameters of the log-

probit model D1 and the exponential model D2 when fit to the

Druett et al. data. Our best fit parameters for the log-probit model

confirm the results of model D1. For the exponential model, our

best fit parameter is r = 1.4361025 (95% confidence interval

0.9261025 to 2.1961025), which is twice the estimate of model

D2. We have listed our novel result as model D3, and we explain

the source of the difference from model D2 below. We also fit the

beta Poisson model to the data set, and the result produced a

nearly identical curve to model D3, so we did not list it in Table 1.

The exponential model contains one fewer parameter than the

beta Poisson model and is, therefore, more parsimonious, so the

beta Poisson model need not be considered further, as it does not

improve the fit to the data.

Models D1 and D3 have a statistical deviance (defined in

Materials and Methods) of and 10.3 and 11.3, respectively, which are

less than the corresponding 95th percentile chi-squared statistics

(14.1 and 15.5) with degrees of freedom equal to the number of

dose points (9) minus the number of parameters in each model (2

and 1). Under this criterion, both models provide an adequate fit

to the data [33]. The deviance under model D1 is lower than

under D3, which suggests a better fit, but the difference is less than

the difference in the chi-squared statistics, so that the exponential

model would be chosen as the best combination of fit and

parsimony [33].

The ID estimates shown for models D1 and D3 in Table 1

illustrate the sensitivity of extrapolated estimates to model choice.

The ID50 estimates, which are within the range of the doses

actually supplied to the animals, agree closely, whereas the

estimates for doses farther below the lowest dose from the data set

(<35,000 spores) differ substantially. While the extrapolations

from the exponential model are better supported according to the

statistical criteria described above, even a small amount of

additional data at lower doses could have shifted support to the

estimates of the log-probit model.

Dose-response models fit to the Druett et al. data have not been

applied to mathematical models or simulations of human anthrax

exposure, to our knowledge. While both the exponential and log-

probit models provide adequate fits to the data and, therefore,

satisfy our first criterion, the exponential model better satisfies our

other criteria: it is derived from testable, mechanistic assumptions,

while the log-probit model is not [18], and it produces a less steep

dose-response curve that is more consistent with the Sverdlovsk

data [15]. However, neither model can satisfy our criterion of

providing a time-to-infection component without making addi-

tional unsupported assumptions, as the time of death was not

reported in the Druett et al. data. Therefore, we turn to the

Brachman et al. data, which have the ability to support a model

that satisfies all four of our criteria.

Estimates of infectious doses and time course of
infection using Brachman et al. data

We fit a novel Exposure–Infection–Symptomatic illness–Death

(EISD) model to the Brachman et al. data set [24], resulting in

Model B4 (Table 1). The overall model, summarized here and

described in detail in Materials and Methods, contains five

parameters. The exponential dose-response model parameter r,

the probability of one spore germinating before being cleared,

governs the probability that infection will eventually occur after

exposure to a given dose. Among those infected, the time from

exposure to infection, defined as the time of the first successful

spore germination leading to a sustained population of vegetative

cells in the host, is governed by the parameters r and h, the rate of

clearance of spores from the lung. The time from infection to the

onset of symptomatic illness is represented by the fixed parameter

T, and the time from the onset of symptoms to death is governed

by the parameters a and b, which are shape and scale parameters

of a gamma distribution.

Estimates for three of these five model parameters are available

from independent data of B. anthracis infections in humans and in

non-human primates. Brookmeyer et al. [32] calculated the

probability-per-time for clearance of spores from the lung, h, to

be 0.07 per day, based on data from examination of the lungs of

Models of Human Inhalational Anthrax Dose-Response
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non-human primates at varying times after inhalation [34]. Data

are also available for the time between the onset of symptoms and

death in humans. Holty et al. [25] assembled data from 82 human

inhalational anthrax cases, occurring between 1900 and 2001, that

met their inclusion criteria concerning sufficient documentation of

anthrax infection, symptoms, and treatment. Their data set

includes, for 75 of the cases, the time from the onset of symptoms

to death, if it occurred, and/or to appropriate antibiotic therapy, if

it occurred, which may have prevented or delayed death. We used

a maximum likelihood procedure, designed to account for time

censoring (see Materials and Methods), to fit a gamma distribution for

the time between onset of symptoms and death to their compiled

data set. We determined the shape parameter a = 5.43 and scale

parameter b = 0.864, which results in an average time of 4.7 days,

with a standard deviation of 2.0 days.

By fixing those values of the three parameters h (rate of

clearance of spores from the lung), a (shape parameter), and b

(scale parameter), we estimated the values for the remaining

parameters r (probability of one spore germinating before being

cleared) and T (delay between initial spore germination and onset

of symptoms) from the Brachman data. The best fit model

estimates r = 6.461025 (95% confidence interval of 4.061025–

9.561025) and T = 2.3 days (0–5.4). The optimal deviance of 129

is less than the corresponding 95th percentile chi-squared statistic

(170) with 142 degrees of freedom (the number of daily dose points

minus the number of optimized parameters in the model),

suggesting that the model provides an adequate fit to the data.

The optimal value of r leads to an ID50 of 11,000 spores (7,200–

17,000), ID10 of 1,700 spores (1,100–2,600) and ID1 of 160 spores

(100–250). The optimal value of T, when combined with the dose-

dependent delay from exposure to infection, produces dose-

dependent incubation periods (exposure to symptom onset). For an

ID50 dose, the median incubation period is estimated to be 9.9

days (7.7–13.1). For ID10, the estimate is 11.8 days (9.5–15.0) and

for a low dose of ID1, the estimate is 12.1 days (9.9–15.3).

Our best fit model to the Brachman data satisfies all four criteria

that we propose for a defensible anthrax dose-response model that

is useful for quantitative risk assessment. All parameter values are

transparently derived from human and non-human primate data,

the model is derived from biological assumptions about the

establishment of infection and progression of disease, the model

provides estimates for dose-dependent infection probability and

distribution of incubation period, and the shape of the dose-

response curve is consistent with what was observed in the

Sverdlovsk data. We compare the results from this model to others

in the literature in the following sections.

Comparison of best fit models to previous studies
We compare the uncertainty range of the dose-response curve

(probability of infection at any time after exposure to a given dose)

produced by model B4 to the curves from selected models shown

in Table 1, focusing on low doses (Figure 1). Models E3, E4, and

E5 from Table 1 are in agreement with model B4, as those curves

fall entirely within the shaded region representing the 95% range.

Models E1 and E2 are in agreement for doses above 200 and 400

spores, respectively, but they produce a significantly lower

probability of infection for lower doses. Model J produces a

significantly higher infection probability at doses less than 5,000

spores. Models D1 and D3 produce lower infection probabilities

at all doses.

Our optimal estimate for the exponential model parameter r fit

to the Druett data set (model D3) is two times higher than the

value calculated by Haas [18] (model D2) for the same model fit to

the same data set. The lower infectivity produced by model D2

results from an estimated respiration rate of 2.4 L/min rather than

the value of 1.2 L/min reported and used for calculations in the

original paper [27]. See Table S1 for our calculation of the doses

inhaled by each group of non-human primates in the original

study.

For the Brachman data, our model B4 produces an estimated

range for the exponential model parameter r, and thus for

infectivity at a given dose, that is somewhat higher than the values

calculated by Haas [18] (model B1) and Mayer et al. [35] (model

B2) for exponential model fits to the same data set (Figure 2).

There were several assumptions made by the three studies that

contributed to the differing infectivity results among these three

models.

In theory, the averaging technique used by model B1 should

have produced the same value as the other two models for the

exponential parameter r [28]. An important reason why the model

B1 result is lower is that its calculation resulted from an incorrect

assumption of a higher total cumulative dose for runs three and

four of the Brachman experiments than was reported in the

original paper (see Table S5). We recalculated r using the

technique of model B1 with the correct dose values and found

r = 3.861025, which is very close to the result of model B2. Also,

model B1 included animals that died of non-anthrax causes during

the Brachman experiments in the group of survivors; if those cases

had been excluded entirely, their estimate for r would have

increased slightly.

The main reason why our novel result for the parameter r

(model B4) is less than both model B2 and corrected model B1, is

that models B1 and B2 both assumed that all animals sacrificed

and not found to be infected at the end of each run would not have

become infected had the experiment continued. Our modeling

process allows for the possibility that animals dying of other causes

or sacrificed could have become infected with B. anthracis at later

dates had they lived. Model B4 estimates that there was

approximately a 7%, 4%, and 4% chance of infection after the

day the animals were sacrificed in Brachman runs 3, 4, and 5,

respectively, assuming no further exposure. If those probabilities

are accurate, then there likely would have been a few more deaths

from anthrax across the three runs had the animals lived longer.

Our model B4 also differs from model B2 in its assumptions

and results for the time course from exposure to death in anthrax

cases. In their procedure for model B2, Mayer et al. [35]

independently assumed that the delay between infection take-off

and death was 1, 2, 3, or 4 days with equal probability (an

assumption not based clearly on data). They then optimized their

equivalent to our parameter h to account for the remaining

portion (exposure to infection take-off) of the overall delay between

exposure and death, finding an optimal value of h = 0.11. We

chose different assumptions that rely more directly on quantitative

data, fixing h = 0.07 based on data of spore clearance rates in non-

human primates and expressing the symptoms onset to death delay

with a gamma distribution fit to rigorously reviewed human

anthrax case data, leaving the infection to symptoms onset delay T

to be optimized (resulting in T = 2.3 days).

Model B2 does not provide estimates of the incubation period

that can be compared to our estimates from model B4, because

model B2 does not specify the time of symptoms onset in its

formulation. However, both models do provide estimates for the

time from exposure to death (the endpoint of the Brachman

experiments). We find that our model B4 produces significantly

longer estimates than model B2 for this time interval. For

example, after a single ID10 exposure, our model B4 estimates a

median time from exposure to death, among those infected and

untreated, to be 16.6 days (95% confidence range, 14.4 to 19.8
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days), while model B2 estimates 8.6 days. It is unclear why these

time progression estimates differed so widely, given that the two

models were fit to the same data set. We evaluated model B2
against our optimization criterion (the minimized deviance Y,

defined in Materials and Methods) and found that it provided a

poorer fit to the Brachman data by our measure (Y = 158

compared to Y = 129 for our model B4). Our model B4 also

outperforms model B2 in describing the distribution of human

exposure-to-death time estimates from the Sverdlovsk release

reported by Abramova et al. [36] (Figure 3).

To further explore the implications of our assumptions in

constructing model B4 compared to model B2, we tested the

sensitivity of our results to our choice of h (Figure S1). We reran

our optimization procedure fixing h = 0.11, which results in

optimized values of r = 5.661025 and T = 3.4 days. The new r

value is a small decrease in the infectivity estimate compared to

our model B4 result, causing an increase in the ID50 estimate from

11,000 to 12,000 spores. The new value of h caused the optimized

time from initial germination to symptom onset to increase by

about 1.1 days; however, the new value of h causes the median

time from exposure to initial germination to decrease by about 3.6

days at low doses. Therefore, applying h = 0.11 instead of 0.07

would have decreased our median incubation time and time-to-

death estimates at low doses by about 2.5 days, not enough to fully

account for the 8-day difference described above between models

B4 and B2.

A final difference between model B2 and B4 is that the model

B2 parameters were only fit to runs 3 and 4 of the Brachman

experiments, whereas we made use of runs 3, 4, and 5 (see Tables

S2, S3, S4) in producing model B4. We found that deleting the

data from Brachman run 5 had a negligible effect on our

infectivity results (the optimal r value was unchanged to two

significant digits), so the additional data we incorporated did not

contribute to the differing infectivity results of the two models.

Next, we compare the incubation period distribution produced

by our model B4 to three other estimates of the incubation period

for human inhalational anthrax found in the literature [12,32,37]

(Figure 4). Our model is unique in that, while the shape of the

dose-response curve being consistent with the Sverdlovsk data was

a criterion for model choice, we did not actually use incubation

period data or time-to-death data from Sverdlovsk to determine

parameter values. Therefore, we also check our model’s estimates

against the Sverdlovsk data (Figure 4) as a validation for the utility

of applying model B4 to a human outbreak.

The Institute of Medicine (IOM) performed a detailed review

[12] of data from analyses of Sverdlovsk patients: Abramova et al.

Figure 1. Comparison of dose-response models. Our best fit exponential model B4 based on Brachman data (shaded region = 95% confidence
range) is compared to selected other models from Table 1. Models E3, E4, and E5 fall entirely within the shaded region. Model B2 falls just below the
lower boundary of the shaded region and is visually indistinguishable from it. We omit the curve for model D2 in this figure, as our fit of the
exponential model to the Druett et al. data set (D3) replaces the fit done by Haas (D2).
doi:10.1371/journal.ppat.1003555.g001
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[36] reported on 41 autopsy-confirmed cases, among which 30

cases had known dates of symptom onset; Meselson et al. [7]

compiled data from 77 cases, 60 with known symptoms timing,

but no additional confirmed cases beyond those that were

reported by Abramova et al.; Brookmeyer et al. [38] analyzed 70

cases with known symptoms onset dates, but again, no additional

cases beyond the Abramova data that were confirmed by

autopsy or microbiological testing. The IOM committee

reviewing these data wrote ‘‘in its analysis of previous anthrax

incidents, the committee required either microbiologic or

histopathologic confirmation of infection with B. anthracis when

determining the minimum incubation period of patients with

inhalational anthrax’’ [36]. We chose to follow the lead of this

committee and used only the autopsy-confirmed Abramova et al.

data in Figure 4 to test the performance of our model. These

data, when choosing April 2, 1979 as the assumed date of release

and exposure (an assumption supported by compelling evidence

[12]), consist of 30 estimated incubation periods ranging from 5

to 40 days, with median 13 days and mean of 16.0 days. Of the

data from the other two studies excluded from this set, the IOM

cast doubt in particular on unconfirmed reports of shorter

incubation periods, as low as 2 days, which are not well

supported [12].

We compared the incubation period distribution provided by

our model B4 under the assumption of exposure to the ID1

(consistent with an approximate 1% attack rate observed at given

locations downwind of the Sverdlovsk release [7]) to the

distribution of the estimated incubation periods of confirmed

Sverdlovsk cases (Figure 4). Our model appears to provide a good

match to these data, as most points fall within our 95% confidence

range, despite the fact that these data were not used in fitting

parameter values for our model. We find that model B4’s

consistency with these Sverdlovsk incubation time data is robust to

assuming that infected cases were exposed to a much higher dose

(ID50) and to the alternate assumption of h = 0.11, discussed above

(Figure S1).

We also compare our model to dose-dependent incubation

period distributions provided by Brookmeyer et al. [32] and by

Wilkening [37] (Figure 4) and to a dose-independent incubation

period model provided by the IOM for use by risk assessors in

comparing intervention strategies over the first 8 days after

exposure (Figure 4 inset). Descriptions of the three models can be

found in Materials and Methods. These models fall within the 95%

confidence bounds of model B4 during the first 7 days after

exposure, but they estimate that cases after the first week would

appear more rapidly than does our model. We note that the IOM

Figure 2. Comparison of dose-response models fit to the Brachman data. Our best fit exponential model B4 based on the Brachman data
(shaded region = 95% confidence range) is compared to other models fit to the same data set. Dashed line = Mayer et al. [35] extended exponential
model B3 (a = 0.90, r = 1.8761025); solid line = Mayer et al. [35] exponential model B2 (r = 3.9561025); dotted line = Haas [18] exponential model B1
(r = 2.661025). The Haas curve would shift very close to the Mayer exponential curve if the correct cumulative dose is applied (see Table S5).
doi:10.1371/journal.ppat.1003555.g002

Models of Human Inhalational Anthrax Dose-Response

PLOS Pathogens | www.plospathogens.org 7 August 2013 | Volume 9 | Issue 8 | e1003555



model was not designed to be accurate after the first eight days.

The other two models made use of the larger Sverdlovsk data sets,

including incubation time estimate of cases not confirmed to the

standards of the IOM review, which shows that those unconfirmed

data were skewed towards earlier dates of onset.

Estimation of the effect of antibiotic course duration on
reducing the probability of infection

Our incubation period estimates assume that prophylactic

treatment is not administered to the population. In the case that

prophylaxis is made available, the model also can estimate the

effects of various durations of antibiotic use on reducing the

probability of infections. Brookmeyer et al. [39] provided an

equation for the probability that an individual exposed at a given

level and adhering to an effective prophylactic regimen would

becomes infected after ending use of antibiotics a given number of

days after exposure. We have reproduced their equation using our

parameter definitions in Materials and Methods. Given that the

Brookmeyer paper applied the same spore clearance rate (h = 0.07)

as our model B4, their results are applicable to our model. For

example, they calculated that, to reduce the risk of infection below

0.01% (one in ten thousand chance), someone exposed to the

ID0.5, ID1, ID10, and ID50 would have to remain on antibiotic

prophylaxis for at least 56, 66, 99, and 126 days after exposure,

respectively [39]. Our contribution to this result is that, using the

Model B4 result, we can express the exposures in terms of the

number of spores in the dose in addition to the ID level (see, e.g.,

ID1, ID10, and ID50 shown in Table 1 for model B4). In Figure 5,

we show the relationship between duration of prophylaxis (days,

post-exposure) and the estimated chance under model B4 of

infection in humans after antibiotics are no longer taken, at

exposures of 100, 1,000, and 10,000 anthrax spores.

A 60-day course of antibiotics for those potentially exposed has

been recommended by the CDC [40]. Brookmeyer et al. suggested

that this course should be adequate at doses lower than the ID1.

Using model B4, we estimate that ending a course of antibiotics 60

days after exposure would reduce the probability of infection below

0.1% for those exposed to doses of 1,000 spores (ID6) or less, and

below 0.01% for those exposed to doses of 100 spores (ID0.7) or less.

Discussion

As with most biothreat pathogens, the dose-response relation-

ship of aerosolized B. anthracis in humans, especially in the low-

dose range, remains highly uncertain. In the absence of human

experimental data, risk assessments have relied on dose-response

models that extrapolate from information on higher doses in

Figure 3. Cumulative distribution function for time from exposure to death. Assuming exposure to ID1, solid curve is the distribution
produced by our model B4 (shaded area is the 95% confidence region). Dashed curve is produced by model B2. Points are from autopsy-confirmed
anthrax deaths after the Sverdlovsk release.
doi:10.1371/journal.ppat.1003555.g003
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animals. Despite an impressive body of published literature on this

topic, these models have produced contradictory results and are

based on assumptions that are poorly understood. In order to

make informed decisions regarding preparations for and response

to accidental or malevolent release of B. anthracis spores, the

scientific and public health community need to have access to

plausible and defensible models. These models ideally should be

based on available measured dose-response data from non-human

primates, be derived from mechanistic assumptions, provide

estimates of incubation periods, and produce plausible results

when applied to human exposure scenarios.

Using our focused evaluation of the published literature on

significant accidental and intentional exposures to humans and on

non-human primate studies, we identify candidate dose-response

models that satisfy our objective criteria and fit them to non-

human primate dose-response data. We use these refined models

to estimate incubation periods and evaluate the duration of

antimicrobial treatment required to achieve a low probability of

infection after exposure to aerosolized anthrax spores.

We propose Model B4 (Table 1) for use in quantitative analyses

that require dose-response assessment for human inhalational

anthrax, because it satisfies all four of our proposed criteria and

improves on existing models fit to the same data set. The ID50

(7,200–17,000) and ID10 (1,100–2,600) confidence ranges pro-

duced by model B4 are remarkably consistent with the

corresponding ranges produced by an expert panel surveyed in

1998 [31], (8,000–10,000) and (1,000–2,000), respectively. While

four of the seven subject-matter experts questioned in that study

reported having experience with animal testing, it is not known if

or how their ID estimates were based on nonhuman primate data.

Models E3, E4, and E5 (Table 1), which were fit to these expert

estimates, produce low-dose extrapolations that are consistent with

those produced by our model B4.

At a dose of 600 spores, our model B4 estimates that infection

would occur sometime after exposure in about 2–6% of untreated

cases, with the incubation time distribution of those cases being

close to what is shown in Figure 4. This estimate would appear to

run counter to the conclusion by Cohen et al. [17] that 600 spores

can be used as threshold in risk analyses. For example, a risk

analysis estimating a 2–6% infection rate for visitors to a

contaminated building likely would not conclude that building is

safe for the general public. However, these authors recommend

Figure 4. Cumulative distribution functions for the incubation period among those infected by a low dose. The curves show the
probability that a given incubation period (time from exposure to symptoms) among those infected by the ID1 would be less than the given number
of days post-exposure. Solid line represents the estimate produced by model B4 and the shaded area spans the 95% confidence bounds; dashed line
is the curve produced by the model of Brookmeyer et al. [32]; dotted line is the curve produced by the model of Wilkening [37]; points are data from
30 autopsy-confirmed anthrax cases after the Sverdlovsk release [36]. Inset: comparison of our model B4 with the model proposed for use by the IOM
[12] for the anthrax incubation period distribution over the first 8 days after exposure (dash-dotted line).
doi:10.1371/journal.ppat.1003555.g004
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the 600 spore threshold only for healthy individuals. A widespread

release likely would include individuals who are unusually

predisposed or immune-compromised, for whom exposure to

600 spores or less could result in infection. Although the

exponential model we develop here does not explicitly include

heterogeneous susceptibility in the host population, the estimated

average susceptibility should be conservative enough to apply the

model to an exposed population that includes a larger proportion

of susceptible individuals. Furthermore, the bacterial strains

present at the factories on which the Cohen et al. estimate is

based may have been less virulent to humans than other strains

that could be released.

It has not been proven that a single dose less than the 600 spore

threshold recommended by Cohen et al. has ever infected a human

or a non-human primate. To our knowledge, the lowest dose

shown to cause infection in non-human primates occurred in the

first part of run 5 in the Brachman experiments, in which two

animals (8.3%) died of anthrax after inhaling an estimated

cumulative dose of approximately 950 spores over three days. If

it is true that infections never occur in humans at doses in the

hundreds of spores, the log-probit model fit to the Druett et al. data

set (Model D1, Table 1) might be a viable alternative. With this

model, the estimated probability of infection at 600 spores is less

than one in one billion. However, a dose-response curve with a

slope as steep as Model D1 is not consistent with the spatial

distribution of human cases observed at Sverdlovsk [15]. Also,

given that the exponential model D3 provides an equally good fit

to the Druett data, we find the choice of the log-probit model D1
to be unjustified in the absence of a coherent biological theory that

can explain steepness of the dose-response curve.

A model applying one such biological theory is provided by

Mayer et al. [35], who extended the exponential model to

investigate potential effects of immune system dynamics [41–43],

using an assumption that the immune system is more likely to be

overwhelmed when receiving a large dose all at once as compared

to receiving the same total exposure in a series of smaller doses

over an extended period. I.e., the per-spore infection probability

would be higher after a higher single dose, thus producing a dose-

response curve that is steeper than the exponential model, which

assumes that the size of a single dose does not affect the per-spore

infection probability. However, when they fit their model to the

Brachman data (model B3), the resulting dose-response curve was

only slightly different from the best fit curve under the more

parsimonious exponential model (model B2). We also tested their

Figure 5. Estimated relationship between duration of prophylaxis and subsequent chance of infection. Relationship between duration
of prophylaxis (days, post-exposure) and the estimated chance of infection after antibiotics are no longer taken, at doses of 100, 1,000, and 10,000
spores. We assume the probability-per-day for clearance of spores from the lung, h, is 0.07, and shaded areas are the confidence regions based on the
95% confidence interval for model B4’s fitted parameter r (probability of one spore germinating before being cleared).
doi:10.1371/journal.ppat.1003555.g005
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model against the Druett data and found that, similar to the log-

probit model D1, the improvement in fit over the exponential

model did not justify the decrease in parsimony under the criterion

we used for model comparison [33]. These results provide some

justification for recommending the simpler exponential model for

use in modeling and simulation studies until the role of the

immune system in preventing infection at various levels and time

courses of exposure is better understood at a quantitative level.

While the log-probit model D1 discussed above produces a

steep dose-response curve, the log-probit model based on the

Jemski data set, model J, has the most gradual slope of all models

found in the literature. It produces very high infectivity estimates

at low doses, significantly higher than those produced by our

recommended model B4. Wilkening [15] was unable to rule out

the possibility that the shape of the model J dose-response curve

was consistent with the spatial distribution of Sverdlovsk cases.

Heterogeneity in host susceptibility could provide a biological

explanation for a dose-response curve with a more gradual slope

than the exponential model. That is, some individuals in a

population might be significantly more susceptible to lower doses,

while others may be able to tolerate high doses with unusually high

probability. The beta Poisson dose-response model (see Materials

and Methods) can quantify this kind of heterogeneity in a

transparent manner that encompasses the mechanistic assump-

tions of the exponential model. However, because the raw Jemski

data are not published, it is not possible to test whether alternate

models would have provided a good fit, and it is possible that the

low dose estimates of model J are highly extrapolated from the

data points. Given this possibility, the fact that the goodness of fit

for the log-probit model was not reported, and that the log-probit

model does not have a defensible theoretical derivation, we feel

that model B4 is better supported for use in quantitative analyses.

Our models D3 and B4 also differ in key ways from previously

published models fit to the same data sets. Our optimal estimate

for the exponential model parameter r fit to the Druett data set

(model D3) is two times higher than the value calculated by Haas

[18] for the same model fit to the same data set. The lower

infectivity estimated in that paper results from an estimated

respiration rate of 2.4 L/min rather than the value of 1.2 L/min

reported and used for calculations in the original paper [27]. Our

value of r for model B4 is also higher than published estimates by

both Haas [18] and Mayer et al. [35] for models to the same data

set (Figure 2). Our refinement demonstrates that it can be

important to consider the possibility that apparently healthy

animals sacrificed after being exposed might have become infected

had they lived, especially if they were exposed to a pathogen like B.

anthracis for which substantial incubation periods can occur.

Our model B4 provides estimates for the distribution of the

incubation period, that is, the time between exposure and the

onset of symptoms. The estimate of 12 days (95% range 10–15

days) for the median incubation period for those infected by low

doses (ID10 or less) is consistent with the 13-day median observed

among autopsy-confirmed cases after the Sverdlovsk release, for

which a less than 2% attack rate was estimated. The full

distribution of incubation periods is important for risk planning

under a large scale release scenario, as it indicates how soon after a

release cases would begin appearing, the period during which the

bulk of cases would appear, and how long new cases might

continue to appear toward the end of the outbreak. For example,

model B4 estimates a minimum incubation period of 2.3 days

(95% range 0 to 5.4 days), suggesting that no symptomatic cases

would appear until at least that amount of time after an exposure

event. While this estimate is primarily derived from non-human

primate data, it appears to be consistent with observations of

human cases. The IOM found no examples of well-documented

human incubation periods less than 4 days, but there are

unconfirmed reports of incubation periods as low as 2 days

among Sverdlovsk cases [12]. Under a scenario similar to

Sverdlovsk in which a large population is exposed to the ID1,

model B4 estimates that, in the absence of prophylactic treatment,

the first 10% of cases would appear between 2 and 4 days after

exposure, the middle half (interquartile range) of cases would

appear between 6 and 22 days after exposure, and the last 10% of

cases would appear over 35 days after the minimum incubation

period. These estimates and their associated confidence intervals

are largely consistent with the distribution of autopsy-confirmed

cases after Sverdlovsk (Figure 4).

The incubation period distribution produced by our model B4
is unique among others in the literature [12,32,37] in that

Sverdlovsk data were not used to derive its parameter values.

Nevertheless, its estimates compare quite favorably with those of

the other models in capturing the distribution of autopsy-

confirmed Sverdlovsk cases (Figure 4) under the assumption of

ID1 exposure. The other models generally predict shorter

incubation periods than our model, although the curves fall within

our 95% confidence region over approximately the first week after

exposure. The difference might be explained by the fact that the

other models optimized parameter values using larger Sverdlovsk

data sets that include unconfirmed cases of unusually short

incubation periods, which were questioned in a recent IOM

review [12].

Our analyses also provide a framework for modeling the effects

of inhaling multiple doses at different times as a natural extension

to the mechanistically based competing risks model [32]. This

allowed us to make use of the Brachman data consisting of

irregular exposures over several weeks (similar to Mayer et al. [35]),

which had previously been modeled only using averaging

techniques [18] in which the temporal information in the data

were lost. The model is potentially useful for any pathogen in

which chronic low-dose exposure is important.

In model B4, we have provided a framework for modeling the

time between four key moments of disease progression: exposure,

infection (initial spore germination), onset of symptoms, and death

(Figure 6). We designed the mathematical representation of this

process both to make use of the best available data in a transparent

manner and to create a parsimonious model that relies on as few

free parameters as possible for adequate fitting to data.

Our choice of the spore clearance rate parameter h = 0.07,

which characterizes the exposure-to-infection portion of the

disease progression timeline, was based on calculations from

direct observation of the lungs of exposed non-human primates.

Other estimates of this parameter [32,35] were derived from

model fitting procedures that relied in part on ad-hoc assumptions

of other portions of disease stage timing process.

The gamma distribution we applied to quantify the time from

symptom onset to death was fit to data from the best documented

human cases [25]; shorter estimates derived from Sverdlovsk data

may suffer from inaccurate or incomplete information from those

cases [37]. Our choice of a two-parameter gamma distribution is,

for our purposes, more parsimonious than the four-parameter

model used by Holty et al. [25]. Their more complicated model has

the benefit of separating the symptomatic period into distributions

for prodromal and fulminant stages, although the individual-level

data for the timing of transitions between these sub-stages are not

provided, which limits reproducibility.

Finally, we modeled the remaining portion, the germination-to-

symptoms delay, using a single-parameter fixed delay, for

simplicity. Wilkening [37] used a more complicated model for
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this delay incorporating dose-dependency. A large dose could

cause a shorter expected delay if multiple spores germinate in a

short time period, thus contributing more initial vegetative spores

that undergo exponential growth towards the symptoms threshold.

For lower doses, the primary focus of our paper, the probability of

even one spore germinating on a given day is small, and the

probability of additional spores germinating in a time frame short

enough to contribute substantially to the expected delay is

assumed to be negligible.

As in the results of Brookmeyer et al. [39], our estimates of the

probability of infection at 60 days post-exposure based on various

inhaled doses of spores provide a defensible rationale and support

for the current recommendation of a 60 day duration of

prophylaxis using appropriate antimicrobials after low dose

exposure scenarios. For doses close to the ID1 (100–250 spores,

by our model B4), which was approximately the attack rate after

the Sverdlovsk release [7] and the 2001 incident at two postal

facilities and a media company [39], an antibiotic course

completed 60 days post exposure reduces the probability of

infection to 0.015% (about one in 7,000 chance). As illustrated in

Figure 5, applying our parameter values to the Brookmeyer

equation (stated in Materials and Methods) can shed light on the

implications of higher dose exposures for the issue of prophylactic

duration, as well as the implications of shortened courses due to

non-adherence to recommendations, which has been an important

issue historically [44] and in public health planning for potential

release events [45]. Development of extended mathematical

models that incorporate variable effectiveness of antibiotics, the

effects of irregular adherence patterns, and balancing decreased

infection probability against adverse effects of long term antibiotic

exposure [46] could be an important direction for future work.

Our analysis has some limitations. In reviewing the literature,

there are experimental studies of B. anthracis dose-response using

mice, rabbits, and guinea pigs [47–49]. We have restricted our

studies to non-human primate data. Components of our analyses

and discussions based on data from and prior analyses of the

Sverdlovsk release and other human data are subject to potential

limitation of those data and analyses. Namely, epidemiologic data

collected in retrospect may contain errors, and simplifying

assumptions regarding the airborne transport of released spores

at Sverdlovsk may have caused inaccurate representations of the

exposure profile across the affected population. Finally, our

quantitative estimates are largely based on data from non-human

primates, which may have important differences from humans

with regard to susceptibility and disease progression. However, the

consistency of our incubation time model with the Sverdlovsk data

offers compelling evidence for the plausibility of the model under

human exposure scenarios.

In conclusion, we have synthesized and improved existing

inhalational anthrax dose-response models to derive defensible

and plausible estimates with respect to infectious doses, incubation

periods, and duration of antibiotic prophylaxis needed in the event

of human exposure.

Materials and Methods

Ethics statement
This study was reviewed by the Institutional Review Board

(IRB) of the University of Utah and determined to be exempt from

IRB oversight as the project does not meet the definitions of

Human Subjects Research according to Federal regulations.

Software
We used R version 3.0.0 [50] for calculations, optimization of

parameter values for fitting models to data (standard functions

optim and optimize), and generation of figures to display results

(standard plotting functions and the gridBase package), all freely

available.

Description of dose response and incubation time
models

We use or compare the following models in this paper. In the

equations, I(d) is the probability of infection after inhaling dose d.

N Log-probit model: I(d)~W m ln d
ID50

� �� �
The parameter ID50 refers to the dose at which there is a 50%

chance of infection, and m is a second parameter called the

probit slope. The function W is the cumulative distribution

function for the standard normal distribution, and ln is the

natural logarithm. Note that some models we cite instead used

the base-10 logarithm, so their reported values of the probit

Figure 6. Schematic of the determination of infection and the infection timeline for anthrax. This depicts the assumptions made under
the time-dose-response model B4, developed for this paper. After a dose of a given size is inhaled, a competing risks process determines whether
infection occurs and the distribution of the time between exposure and infection (initial spore germination) if it does occur. We assume a fixed delay
between initial spore germination and the onset of symptoms and a gamma-distributed delay between the onset of symptoms and death among
untreated cases.
doi:10.1371/journal.ppat.1003555.g006
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slope differ from what is listed under Table 1 by a factor of ln

10. The model was first developed [51] as a convenient

method for transforming experimental data into approximately

linear form so that regression could more easily be done by

hand. The method was popularized for use in applications to

toxicology [52] and has since become the traditional model

used in toxicological risk assessment. The model is still used

despite the fact that its originally espoused advantage of ease of

hand calculation is no longer relevant with the advancement of

computer technology. Some authors (e.g., [53]) have argued

that the log-probit model is not a preferred choice because it is

not based on any clear assumptions about biological

mechanisms for the establishment of infection. However,

others have argued that the log-probit model is an appropriate

model when the host population is heterogeneous (e.g., [15]);

for example, if each potential host has a tolerance (a dose that

is just sufficient for establishing infection), and the variation in

tolerances across the population is adequately captured by the

lognormal distribution, then the log-probit model may be

justified [52].

N Exponential model: I(d)~1{e{rd

As derived in [33], the single parameter r is defined as the

probability that infection is established by a single organism. A

single organism establishing infection means that the organism

produces descendants in the host that survive to contribute to a

sustained population in the host. In this sense, the exponential

model is an example of a ‘‘single hit’’ model. The model

assumes that multiple organisms act independently in the host.

That is, the probability that any one organism in the initial

dose produces descendents in an eventual infection is

independent of the size of the dose. If the exact number of

organisms in the dose is known, then the overall probability of

infection is simply the complement to the probability that none

of the organisms establish infection, or I(d)~1{(1{r)d . The

exponential model follows after assuming that there is

uncertainty in the size of the dose. Specifically, the assumption

is that d is the expected value for the number of organisms in

the dose, and the true value varies according to a Poisson

distribution with mean d.

N Exponential model with time dependence: I(d,t)~

1{exp {
l

lzh
d 1{e{ lzhð Þt
� �� �

Here, I(d, t) is the probability that infection occurs sometime

before time t after exposure to a dose d. This version of the

exponential model was derived from a ‘‘competing risks

model’’ constructed specifically for B. anthracis [32], in which

l represents the risk per unit time that an inhaled spore

germinates, and h represents the risk per unit time that an

inhaled spore is cleared from the lung. The model also

characterizes the distribution of the time to infection (initial

spore germination) after inhaling a given dose. For large values

of t, the equation reduces to the standard exponential model

with r = l/(l+h). Furthermore, evidence from non-human

primates shows that l is on the order of 1024 or less, while h is

on the order of 1021. Therefore, the quantity l+h<h. Using

both of these simplifications, the equation for I(d, t)

approximates as I(d, t) = 12exp(2rd(12e2ht )).

N Beta Poisson model: I(d)~1{ 1z
d

b

� �{a

Here, a and b are constant parameters. Like the exponential

model, the traditional derivation of the beta Poisson model

[54] begins with the assumption of a ‘‘single-hit’’ framework

where organisms act independently. Again, under these

assumptions, if the exact dose d is known and if the probability

r of a single organism establishing infection is constant, the

probability of infection would be given as I(d)~1{(1{r)d .

The beta Poisson model, like the exponential model, assumes

that the dose d is a random Poisson-distributed variable with

mean d, and additionally assumes that the probability r varies

according to a beta distribution with parameters a and b.

These assumptions alone lead to a dose-response model with a

complicated functional form involving the Kummer confluent

hypergeometric function (see [33]). The simpler beta Poisson

formula above is an approximation to the exact formula, and

the approximation is valid when individual probabilities are

low, or b..1 and b..a. With this approximation, the beta

Poisson model is not a single-hit model [55]. The beta Poisson

model can also be derived from the assumption that the dose

varies according to a negative binomial distribution, which

allows for a more highly variable distribution of doses than

under the simpler Poisson assumption [33].

N Exponential model with Mayer et al. [35] extension:

I(d)~1{exp {
r

2{a
d2{a

� �
Mayer et al. [35] extended the exponential model described

above to account for the possibility that the per capita

probability of infection increases with increasing single dose

received, under the assumption that the immune system of the

host would be more likely to be overwhelmed by a higher

single dose. The parameter a, constrained by assumption to be

less than or equal to one, is a shaping parameter that quantifies

the effect of the size of a single dose on the per-spore clearance

rate. The parameter r is roughly equivalent to the same

parameter in the basic exponential model and is exactly

equivalent when a = 1, for which this model reduces to the

exponential model. The parameter a in itself does not have a

well defined biological meaning; however, a result showing that

dose-response data support a value of a significantly less than

one would suggest immune system effects related to dose size as

a potentially important mechanism for further investigation. A

time-dependent version of this model is presented in [35].

N Age-dependent logit model: In(d)~
bn ed=an{1
� �

1zbn ed=an{1ð Þ ,
n~1,2,3,4

This model was defined by Webb and Blaser [16], with each of

the an and bn parameters values derived from ID10 and ID50

values assumed for four different age ranges, with individuals

in younger age brackets being less susceptible to infection, as

fol lows: a1 = 6.56103; a2 = 4.46103; a3 = 2.66103;

a4 = 6.56102; and bn = 0.11 for each n. The age ranges are

,25, 25–44, 45–65, and .65 for n = 1, 2, 3, and 4,

respectively. Logit models are commonly used as generalized

linear models in a variety of scientific fields. Like the log-probit

model, the logit model does not have a known derivation based

on assumed biological mechanisms of infection.

N Age-dependent linear model: I(d,a)~min 1,d= c1{c2 minðð
a,Amaxð ÞÞÞ

This model, defined by Craft et al. [10], assumes that the

probability of infection for a given individual increases linearly

with the dose inhaled, up to a dose above which infection is

certain (probability one), and that the slope of this linear

function varies with the age, a, of the individual. The

parameter values are based on the values provided by Webb

and Blaser [16], as follows: c1 = 38,000; c2 = 450; and

Amax = 80.
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N Age-dependent probit model: I(d,a)~W azb ln dzcazda2
� �

This model, defined by Wein et al. [9], is equivalent to the log-

probit model defined above, except for the dependence on the

age, a, of the exposed individual. The age variable coefficients

were derived from the values provided by Webb and Blaser

[16], as follows: a = 29.733; b = 1.025; c = 20.016; and

d = 0.0006.

N IOM model for incubation period distribution: S�(t)~1{

exp { 0:004tð Þ2
� �

Here, S*(t) is a dose-independent cumulative distribution

function for the probability that the incubation period (time

between exposure and onset of symptoms among those

infected) would be less than t hours. The equation was

suggested by the IOM [12] for use in models of the distribution

of the incubation period of anthrax over approximately the

first eight days after exposure of a population to an unspecified

dose, for purposes of comparing the effects of potential post-

exposure intervention strategies.

N Brookmeyer incubation period distribution: S�(t,p)~
1

p

ðt

0

1{ð
1{pð Þ 1{exp {h t{sð Þð Þð ÞÞg(s)ds

As defined in Brookmeyer et al. [32], the value p refers to the

probability of infection under the exponential dose-response

model at a given dose; i.e., p = 12exp(2rd), where d is the

inhaled dose and r is the exponential model parameter, defined

previously. This, therefore, defines a dose-dependent incuba-

tion period distribution. The parameter h is the spore

clearance rate from the time-dependent exponential model,

defined previously. The function g(s) is the density function of

the distribution for the time between initial spore germination

and the onset of symptoms. They applied the exponential

distribution, for which g(s) = c exp(2cs). The parameter c, often

called the rate parameter, governs the median of the

distribution. In this case, the authors’ proposed best model

assumed a median time of 2 days for this delay, so that c = (ln

2)/2<0.347 per day. Under this assumption, and also under

the assumption of a low dose of exposure (small p), they

optimized h against data from human incubation periods from

the Sverdlovsk release, finding h = 0.109. Wilkening [37]

extended this model by assuming a lognormal distribution

for the function g(s), with the median of this distribution being

dependent on the dose of exposure and other parameters.

Criteria for evaluating dose-response models for human
exposure to B. anthracis

We developed objective criteria to evaluate candidate dose-

response models for human inhalational anthrax. The criteria

were informed by a review of the literature, a critical evaluation of

existing dose-response models for strengths/weaknesses, and

discussion with members of our research team consisting of

professional risk assessors, mathematical modelers, microbiologists,

veterinarians, and infectious disease physicians and epidemiolo-

gists. Precedence for developing such criteria exist in the field of

biodefense, specifically with regard to applying mathematical and

simulation modeling to inform public health action and policy

[56]. The four criteria are:

1. The parameter values are derived from dose-re-
sponse data. The model should be fit to documented,

quantitative data, so that the strengths and limitations of those

data and their effects on the model estimates are transparent.

2. The shape of the dose-response curve is consistent
with Sverdlovsk data. Given the analysis in [15], the

temporal and spatial distribution of cases observed after the

Sverdlovsk release provide evidence for the shape of dose-

response curves that are appropriate for application to human

exposure. Thus, a plausible B. anthracis dose-response model

should be consistent with that evidence.

3. The model is derived from mechanistic assumptions.
Mathematical models derived from biological or physical

assumptions provide insight into the processes that govern

the establishment of infection. Scientific advances in the

understanding of those processes can serve to improve the

models.

4. The model estimates the incubation period. A model

that can produce both estimates of infection probability and of

the incubation period at a given dose is more useful than one

that provides only estimates of infection probability, as the time

from exposure to infection has important implications for

intervention and mitigation strategies after a release of anthrax

spores in a community.

Model fitting to Druett et al. data
For fitting to the Druett at al. [27] data, shown in Table S1, we

use three different mathematical forms for the function I(d), the

probability of infection if dose d is received: the log-probit model,

the exponential model, and the beta Poisson model. We obtain the

parameter values of these models using maximum likelihood

estimation employing the binomial distribution [33]. Under this

method, the optimal parameter values minimize the deviance, Y,

defined as

Y~{2
X9

k~1

ln
B nk,pk,I dkð Þð Þ
B nk,pk,pk=nkð Þ

� �

In this formula, k is the number of the experimental group (there

were nine different groups that each received different levels of

exposure), nk is the number of animals exposed in group k, pk is the

number of positive responses (anthrax deaths) in group k, and dk is

the dose received by the animals in group k. The function B(n, p, q)

is the probability mass function for the binomial distribution,

which represents the probability of p successes in n trials when the

probability of success in each individual trial is q. In essence, the

parameters embedded in the I(d) function are being optimized so

that the formula matches as closely as possible the infection rates,

pk/nk, observed in the exposure groups.

Model fitting to Brachman et al. data
The data derived from the three experimental runs of Brach-

man et al. [24], shown in Tables S2, S3, S4, describe the doses

received on each day, the days of death due to anthrax or other

causes, and the number of animals found to be infected upon

sacrifice. To fit these data using a time-dependent model, a

conceptual framework is required for the time course of anthrax

infection from exposure to death. We develop such a framework,

which differs from the framework developed in [35], as follows.

The model represents three main stages of the anthrax infection

timeline in humans after inhalational exposure (Figure 6), as

follows, in preparation for fitting to the Brachman et al. data set.

1. Competing risks of spore germination and

clearance. We use the exponential model with time depen-

dence [32], under mechanistic assumptions regarding competing

Models of Human Inhalational Anthrax Dose-Response
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risks of spore germination and clearance as described above.

Infection is defined as the germination of at least one of the spores

inhaled; no infection occurs if all the spores are cleared before

germination. We use the equation form

I(d,t)~1{exp {rd 1{e{ht
� �� �

,

derived above, in data fitting procedures in this paper. This

framework allows one to calculate, given the size of the initial dose,

both the probability that infection eventually will occur and the

probability distribution of the time between exposure and initial

spore germination, if it occurs.

2. Delay between initial spore germination and the

development of symptoms. While signs of infection in the

animals prior to death were not recorded in the Brachman et al.

experiments, it is conceptually important for our model, when

applied to humans, to include the delay between initial spore

germination and the onset of symptoms (incubation period) as a

subset of the overall delay between infection and death. Studies of

the B. anthracis infection process have shown that symptom onset

occurs some time after initial spore germination [37]. The delay is

due to the stages of bacterial growth, which include a lag phase, an

exponential growth stage, a stationary phase once the bacterial

population reaches a threshold, and a decline phase during which

toxins produced by B. anthracis build up in the host. Symptoms are

presumed to occur during the latter two stages, which correspond

roughly to the prodromal and fulminant phases of disease in the

host. Because no direct data on this delay exist, we incorporate the

delay as a fixed parameter T, to be optimized in light of the overall

data under the assumption of given distributions for the exposure-

to-germination and symptoms-to-death delays, for which data are

available from other sources. The parameter T can be interpreted

as the time required for an exponentially growing cell population,

starting from a single cell, to grow to a threshold size at which

symptoms would begin appearing. If the doubling time is t2 days,

and the threshold population size is N, then T = t2 ln N/ln 2.

Under this assumption, S(d, t), the expected fraction of individuals

that would exhibit symptoms in less than t days after inhaling a

dose of d spores of B. anthracis, is defined as follows.

S(d,t)~
0, tƒT

I d,t{Tð Þ, twT :

�

3. Delay between onset of symptoms and death. We use

this final delay to complete the overall model of the delay between

exposure and death, which was recorded for non-human primates

in the Brachman et al. data. Again, the times of the first signs of

infection were not reported in the Brachman data, but human

data are available for 82 historical infections [25] that can be used

to create a model for this part of the overall delay time course. To

do this, we used a simplified version of the model fitting procedure

used by Holty et al. [25], described as follows.

We are interested in a distribution for the time between the

onset of symptoms and death among untreated individuals.

Among the 82 cases in the human data set, 38 were cases in

which no appropriate treatment was received, and the time to

death was available. Fitting a model to only those 38 cases is an

option, but this approach could introduce a bias due to censoring.

Individuals with symptoms that worsened more slowly than

average probably had a better chance of receiving antibiotic

treatment before death and were therefore more likely not to be

included in those 38 cases. To include information from the cases

who received antibiotic treatment, we made the following

assumptions. For those who received appropriate treatment and

still died (26 cases), we assume those data are interval censored,

meaning that the time of death in the absence of treatment would

have occurred sometime in the interval between the time that

treatment began and the time that death occurred (i.e., the

treatment did not prevent death but may have delayed it). For

those who received appropriate antibiotic treatment and survived

(11 cases), we assume those data are right censored, meaning that

they would have died if they had not received treatment and the

time of death would have been some time after the time that

treatment began. We exclude one case of a survivor who was

thought to have been partially immune due to prior exposure as a

veterinarian, and we exclude six untreated cases who died but no

information was given on the time of death.

We fit the exponential distribution, the gamma distribution, the

Weibull distribution, and the lognormal distribution to these data

using the method of maximum likelihood, defining the log

likelihood as follows:

ln L jð Þ~
X

k[untrdth

ln f tkjjð Þð Þz
X

k[trdth

ln F tkjjð Þ{F akjjð Þð Þ

z
X

k[trsurv

ln 1{F akjjð Þð Þ

In this formula, the natural logarithm of the likelihood, L, is a

function of the parameters of the model being tested, represented

as j. The human anthrax case data are split into three categories

as described above, denoted in the equation as untreated deaths

(untrdth), those who died without receiving appropriate antibiotic

treatment, treated deaths (trdth), those who died after receiving

antibiotic treatment, and treated survivors (trsurv), those who

survived after receiving antibiotic treatment. The data consist of

tk, the time of death of case k, if applicable, and ak, the time that

antibiotic treatment began for case k, if applicable. The functions f

and F are the probability density function and the cumulative

distribution function, respectively, of the distribution being tested.

Of the four distributions tested, the gamma distribution

provided the greatest likelihood under its optimal parameter

values and was chosen for use in our overall model. The best fit

gamma distribution has probability density function

f (t)~
1

C(a)ba
ta{1e{t=b,

with shape parameter a = 5.43 and scale parameter b = 0.864. This

distribution results in an average time of 4.7 days, with a standard

deviation of 2.0 days. The mortality function M(d, t) represents the

fraction of individuals that would die in less than t days after

inhaling a dose of d spores.

M(d,t)~

ðt

0

S(d,t{t)f (t)dt:

The formulas above for I(d, t), S(d, t), and M(d, t) apply in

continuous time under a scenario in which a single dose is inhaled

at time zero, with no subsequent exposure at later times. Those

formulas require modification to model the Brachman et al. data,

which consist of multiple exposures across several days. The

modeling framework described above is naturally extended to the

multiple dose scenario, because the models provide estimates for
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the number of spores retained in the lung from previous exposures

at times when new exposures are experienced. Thus, we can

obtain formulas for the cumulative number of spores in the lung

across multiple days of exposure and the risk of infection

associated with the number of spores in the lung at a given time.

Mayer et al. [35] used this strategy to derive models that can be fit

to the Brachman data. We define our own formulation as follows.

In the following formulas, the dose input paired with time t is

given as a vector d,t = (d1, d2, … , dt21), where dt is the dose

received on day t. The initial exposure is defined as occurring on

day 1, and it is assumed that the probability of infection or death

on day t is affected by the doses inhaled from day 1 to day t21,

which means that day 2 is the first day that infection is possible

under the model. These formulas are for the probability of

infection (I), symptoms onset (S), and mortality (M) occurring

before day t of the experimental run.

I(dvt)~1{exp {r
Xt{1

i~1

Di t{i,0ð Þ
 !

,

S(dvt)~1{exp {r
Xt{1

i~1

Di t{i,Tð Þ
 !

,

M(dvt)~
Xt{1

j~1

ðj

j{1

1{exp {r
Xt{j

i~1

Di t{i{t,Tð Þ
 ! !

f (t)dt,

where

Di(x,T)~
0, xvT

di 1{e{h(x{T)
� �

, x§T

(

represents the contribution of the dose inhaled on day i to the risk

of a response occurring by time x.

This model contains five biological parameters. Based on a

result in (32), we fix h, the probability-per-time for clearance of

spores from the lung, at 0.07 per day, and we fix the parameters a

and b from the f(t) function as described above. The remaining

two parameters are r, the probability of each spore successfully

germinating before being cleared, and T, the delay between initial

spore germination and onset of symptoms. We optimize these two

parameters together in light of the Brachman et al. data using

maximum likelihood estimation, employing the binomial distribu-

tion and treating cumulative information from each day of the

Brachman experiments as separate data points, similar to the

method used in [57]. That is, we minimize the deviance, Y,

defined as follows.

Y~{2
X5

k~3

XTk{1

t~2

ln
B nkt,mkt,M dvtk

� �� �
B nkt,mkt,mkt=nktð Þ

0
@

1
A

2
4

zln
B nkTk

,pkTk
,I dvTk

� �� �
B nkTk

,pkTk
,pkTk

.
nkTk

� �
0
@

1
A
3
5:

In this formula, k is the number of the experimental run (we

used Brachman runs 3, 4, and 5, shown in Tables S2, S3, S4), Tk is

the total number of days in run k, nkt is the number of subjects

relevant for the model on day t of run k (all subjects minus those

having died of a non-anthrax cause prior to that day), mkt is the

cumulative number of deaths due to anthrax on or before day t in

run k, and pkt is the cumulative number of anthrax infections,

which is known on the last day, Tk, of each run when the

remaining animals were sacrificed and examined for infection.

The function B(n, m, q) is the probability mass function for the

binomial distribution, which represents the probability of m

successes in n trials when the probability of success in each

individual trial is q.

The functions M and I contain the dose-response parameter

values, which we optimize by minimizing the deviance Y. For each

model, we compare the deviance to the upper 5th percentile of the

x2 distribution with degrees of freedom equal to the number of

distinct dose-time pairs in the data set minus the number of

parameters being optimized. We reject a null hypothesis of fit

acceptability if the optimal deviance is greater than the

corresponding x2 statistic [33]. We calculate the confidence

intervals for these two parameters and for infectious dose estimates

by fitting the model to bootstrap resamples of the Brachman data.

Dose-response and time course estimates after exposure
to a single dose

The best fit model to the Brachman data produces an estimate

for the time-independent dose-response curve, which is simply the

regular exponential model: I(d) = 12e2rd. We use our result for the

optimized parameter r and associated confidence interval for

comparing our result to other dose-response curves used in the

literature. We also display our model’s estimates of the incubation

period (time between exposure to symptom onset among those

infected) distribution S*(d, t), which is the probability of symptoms

appearing by time t after a single dose d, S(d, t), divided by the

probability that infection occurs at any time, I(d). I.e.,

S�(d,t)~
S(d,t)

I(d)
,

or

S�(d,t)~
1{exp {rd 1{e{h t{Tð Þ� �� �

1{e{rd
, twT :

Probability of infection after prophylaxis
We apply our best fit model parameters to the equation

developed in [39] for calculating the effect of various durations of

antibiotic use on reducing the probability of infection, if

prophylactic medications were administered after exposure. If an

individual is exposed to a dose d and adheres to an effective

prophylactic regimen for t days after exposure, the probability Q(t)

that infection occurs after the prophylactic regimen ends is given

by

Q(t)~1{exp({rde{ht):

This equation assumes that i) spores cannot germinate

successfully during the antibiotic course, ii) antibiotics do not

affect the clearance rate of spores that have not germinated, and

iii) spores germinating after the antibiotic course is finished would

cause infection.
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Supporting Information

Figure S1 Sensitivity plots for model B4. In all plots, solid

line is produced by model B4 under the assumption of ID1 exposure.

Dashed lines in A and B show sensitivity of the cumulative

distribution function to changing the assumption to ID50 exposure

and to assuming h = 0.11 instead of h = 0.07. C and D show

sensitivity of the probability density function to the same changes.

Points in A and B and histogram in C and D are from autopsy-

confirmed anthrax deaths after the Sverdlovsk release (see main text).

(EPS)

Table S1 Non-human primate inhalational anthrax
dose-response data from Druett et al. [27]. We calculate

doses above as the product of the following values reported in [27]:

air concentration of exposure (spores per L), breathing rate of

1.2 L/min, and exposure of time of 1 min.

(DOC)

Table S2 Data from Brachman et al. [24] Run 3: 32
monkeys. We recorded dose data from text in [24] where

available. Otherwise, we visually estimated the daily doses from

Figure 3 therein. aTwo sacrificed animals found to be infected with

anthrax on day 50. bWe consider data from days of sacrifice to be

number of animals infected by that day.

(DOC)

Table S3 Data from Brachman et al. [24] Run 4: 31
monkeys. We recorded dose data from text in [24] where

available. Otherwise, we visually estimated the daily doses from

Figure 3 therein. aWe consider data from day of sacrifice to be

number of animals infected by that day.

(DOC)

Table S4 Data from Brachman et al. [24] Run 5: 28
monkeys. We recorded dose data from text in [24] where

available. Otherwise, we visually estimated the daily doses from

Figure 3 therein. aWe consider data from the day of sacrifice to be

number of animals infected by that day.

(DOC)

Table S5 Cumulative data from Brachman et al. [24].
Haas [18] fit the exponential dose-response model without a time

component to the Brachman data, using an averaging technique

[28] that is equivalent to applying the total cumulative dose over

each Brachman experimental run as a single data point, as if that

cumulative dose was a one-time exposure. The actual total

cumulative doses from Brachman runs 3 and 4 as reported were

lower that what was applied by Haas. The error was caused by

multiplying the reported average daily exposure by the number of

days between the first and last exposures, rather than the number

of days on which exposure actually occurred.

(DOC)
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