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Abstract During an acute viral infection, virus levels rise, reach a peak and then
decline. Data and numerical solutions suggest the growth and decay phases are linear
on a log scale. While viral dynamic models are typically nonlinear with analytical
solutions difficult to obtain, the exponential nature of the solutions suggests approxi-
mations can be found. We derive a two-phase approximate solution to the target cell
limited influenza model and illustrate its accuracy using data and previously estab-
lished parameter values of six patients infected with influenza A. For one patient, the
fall in virus concentration from its peak was not consistent with our predictions during
the decay phase and an alternate approximation is derived. We find expressions for
the rate and length of initial viral growth in terms of model parameters, the extent
each parameter is involved in viral peaks, and the single parameter responsible for
virus decay. We discuss applications of this analysis in antiviral treatments and in
investigating host and virus heterogeneities.
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1 Introduction

Mathematical models have been used to study the infection kinetics of viruses, such as
HIV, hepatitis B and C, and influenza, and have resulted in estimation of such quantities
as in vivo viral replication rates, virus half-lives and infected cell life-spans (Baccam
et al. 2006; Ho et al. 1995; Lewin et al. 2001; Neumann et al. 1998; Nowak et al.
1996; Perelson et al. 1997, 1996). These models are frequently nonlinear and analy-
sis is usually limited to parameter estimation and numerical simulation. Approximate
analytically tractable solutions could provide easier interpretation of virus dynamics
and identify the extent to which each parameter influences infection kinetics including
viral rise, peak and decay and the associated time scales.

The basic model structure (Eqs. (1)–(3)), summarized in Nowak and May (2001)
and Perelson (2002), describes a viral infection using three state variables: target cells
(T ), infected cells (I ), and free virus (V ).

dT

dt
= s − dT − βT V (1)

d I

dt
= βT V − δ I (2)

dV

dt
= pI − cV (3)

In Eqs. (1)–(3), uninfected cells are supplied at constant rate s, die at rate d and become
infected at rate βV . Infected cells are lost, either to apoptosis or removal by immune
cells, at rate δ. Virion production occurs at rate p per cell and virions are cleared at
rate c per day.

Virus initially grows exponentially while the target cell population remains rel-
atively constant (Fig. 1). Nowak et al. (1997) found if T is constant, then viral
growth occurs according to er0t , where r0 is the leading eigenvalue which solves
r2

0 + (c + δ)r0 − cδ(R0 − 1) = 0. Here, R0 = βps/(cδd) is the basic reproductive
number, which describes how many infected cells are produced per infected cell at the
initiation of infection.

Following the initial exponential growth phase, virus levels reach a peak and then
virus begins to slowly decrease. Target cells decline sharply, and the infected cell pop-
ulation peaks (Fig. 1). If target cell regeneration (s) is not considered, then following
the peak virus asymptotically decays as e−δt and the infection is cleared. On the other
hand, if s is large, then following the peak a short period of viral decay takes place
before a steady state is reached (Bonhoeffer et al. 1997; Stafford et al. 2000).

Viral dynamics models have largely been applied to persistent infections; however,
the basic model has also been used to study an influenza A virus (IAV) infection.
Baccam et al. (2006) and Handel et al. (2007) applied simple target cell limited mod-
els to human nasal wash data collected daily from six individuals infected with IAV.
Influenza is an acute infection usually lasting 7–10 days; therefore, some modifications
of the basic model were made in their analyses. They first generalized the basic model
to a model that included an eclipse phase to describe the time it takes for an infected
cell to produce virions after it is initially infected. As previously done in HIV models
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Fig. 1 Numerical solution of Eqs. (4)–(7) using Patient 4’s parameters (Table 1) and data (boxes).
a Free virus (V ), given in log10 TCID50/mL of nasal wash. b Cell populations: target cells (T ,
dotted line), infected cells not yet producing virus (I1, dash-dotted line), productively infected cells
(I2, solid line), and total cells (Z = T + I1 + I2, dashed line)

(Perelson et al. 1993), infected cells were split into two class: I1, representing infected
cells that have not yet begun producing virions and I2, representing infected cells that
are producing virus. Transition from I1 to I2 is assumed to occur at rate k with no
death occurring before virus production begins. Productively infected cells are lost at
rate δ. Lastly, the models did not consider processes which have longer time scales,
such as natural cell death (d = 0). The source of new target cells, s, was also set to
zero as little epithelial cell regeneration occurs before virus is cleared, and estimates
of s based on data fitting were indistinguishable from zero (Baccam et al. 2006). This
target cell limited model (with s = 0, d = 0) is described by Eqs. (4)–(7) and is the
focus of our work.

dT

dt
= −βT V (4)

d I1

dt
= βT V − k I1 (5)

d I2

dt
= k I1 − δ I2 (6)

dV

dt
= pI2 − cV . (7)

Baccam et al. (2006) fit Eqs. (4)–(7) to estimate parameter values for all six patients.
The dynamics are shown in Fig. 1, which plots free virus (panel (a)) and each cell
population (panel (b)) against time. Values for parameters β, p, k, c, δ, the initial viral
titer, V0, and the basic reproductive ratio, R0, estimated by Baccam et al. (2006) are
provided in Table 1. For this model,

R0 = βpT0

cδ
, (8)
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Table 1 Estimates of parameter values for the target cell limited model with an eclipse phase, Eqs. (4)–(7),
using nasal wash data of six patients infected with IAV taken from Baccam et al. (2006)

Patient V0 β p k c δ R0

1 4.3 × 10−2 4.9 × 10−5 2.8 × 10−2 3.9 4.3 4.2 30.4

2 3.1 × 10−7 1.1 × 10−3 2.1 × 10−2 2.0 11.0 10.9 75.0

3 7.0 × 10−1 1.7 × 10−4 3.0 × 10−3 4.9 2.2 2.3 39.6

4 4.9 5.3 × 10−6 1.3 × 10−1 4.0 3.8 3.8 19.1

5 1.7 2.7 × 10−6 5.9 × 10−1 6.0 13.5 13.5 3.5

6 2.4 8.4 × 10−6 7.1 × 10−2 4.4 3.7 3.8 16.6

The best-fit initial viral titer (V0, TCID50/mL), infection rate constant (β, (TCID50/mL)−1d−1), transition
rate for infected cells to produce virus (k, d−1), death rate of infected cells (δ, d−1), viral release rate per
infected cell (p, (TCID50/mL)d−1), viral clearance rate (c, d−1), and basic reproductive number (R0)
are given for each patient. Initial condition of target cells (T ) was kept fixed at 4 × 108 cells (I1, I2 = 0
initially). TCID50 (50% tissue culture infectious dose) is the dose required to have cytopathic effects in
50% of cell cultures
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Fig. 2 Log-linear fits to data (Patient 4 from Baccam et al. (2006)) separating the initial virus rise (days
1–3) and subsequent virus decay (days 4–7). The number of data points included in each phase was found
by finding which two lines produced the maximum likelihood fit

where T (0) = T0 is the initial number of target cells, which was fixed at T0 = 4×108

based on an estimate of the number of epithelial cells in the upper respiratory tract.
For each patient, the viral dynamics break into two distinct phases that are linear

on a log scale. As illustrated by Fig. 2, an initial period of exponential growth is fol-
lowed by a phase of exponential decay, a behavior shown by the data and numerical
solutions of the model. Understanding this characteristic behavior through analytical
approximations is the central goal of this paper.

While Eqs. (4)–(7) are nonlinear and cannot be solved analytically, approximate
solutions in each of the log-linear phases can be obtained. In this paper, we derive
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these approximations for the initial viral growth phase and the subsequent viral decay
phase. Using the data and parameters (Table 1) presented in Baccam et al. (2006), we
verify the accuracy of the approximations. Finally, we use the approximate solutions
to compare slopes and durations of growth and decay among the six patients in order
to develop hypotheses about the host heterogeneity causing differences in dynamics.

2 Phase I approximate solution: initial viral growth

Phase I of acute viral infection kinetics is characterized by an initial dip in virus levels
followed by exponential growth, as shown in Fig. 1. The dip occurs because virus is
assumed to be continually lost, but there is a delay before virus production occurs. The
exponential growth of virus is expected as long as the target cell level remains rela-
tively constant because the system is linear when T (t) is constant. The total number
of cells, Z(t) = T (t) + I1(t) + I2(t), during Phase I is also approximately constant
(say, Z ≈ T0) as infected cells are at low levels during this phase, Z >> I1 + I2.
Throughout Phase I, target cells decline as they become infected eventually rendering
this approximation inaccurate. A reduced system (Eqs. (9)–(11)) is obtained by using
this approximation in Eqs. (4)–(7).

d I1

dt
= βT0V − k I1 (9)

d I2

dt
= k I1 − δ I2 (10)

dV

dt
= pI2 − cV . (11)

Equations (9)–(11) are linear and can be solved. The characteristic equation is given
by λ3 + Bλ2 + Cλ + D = 0 which has a discriminant, � = B2C2 − 4B3 D − 4C3 +
18BC D − 27D2, that is less than zero since B > 0, C > 0 and D < 0. Therefore, we
find one real (λ1) and two complex (λ2,3) eigenvalues with associated eigenvectors,
ξ1,2,3. Values of λ1,2,3 for each patient are provided in Table 2.

Table 2 Values for all six patients of the eigenvalues, λ1,2,3 (day−1), in the Phase I solution, the final time
(t1, days) the Phase I solution is valid, and the start time (t2 or ˜t2, days) of the Phase II solution

Patient Phase I Phase II

λ1(d−1) λ2,3(d−1) t1(d) t2(d) ˜t2(d)

1 8.76 −10.58 ± 11.16i 1.62 2.00

2 18.83 −21.37 ± 22.63i 1.26 1.44

3 6.94 −8.17 ± 8.59i 1.41 1.89

4 6.46 −9.04 ± 8.95i 1.76 2.28

5 5.08 −19.04 ± 13.23i 2.64 3.86

6 6.20 −9.05 ± 8.80i 1.87 2.41
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√

√

√

√−q

2
+

√

q2

4
+ u3

27
+ 3

√

√

√

√−q

2
−

√

q2

4
+ u3

27
− B

3
, (12)

λ2,3 =
(

−1

2
± i

√
3

2

)

3

√

√

√

√−q

2
+

√

q2

4
+ u3

27
+

(

−1

2
∓ i

√
3

2

)

3

√

√

√

√−q

2
−

√

q2

4
+ u3

27
− B

3
,

(13)

where

u = C − B2

3

q = D + 2B3 − 9BC

27
B = k + δ + c,

C = kδ + kc + cδ, and

D = −kcδ(R0 − 1).

ξ1,2,3 =
⎛

⎝

ξ11
ξ12
ξ13

⎞

⎠ ,

⎛

⎝

ξ21
ξ22
ξ23

⎞

⎠ ,

⎛

⎝

ξ31
ξ32
ξ33

⎞

⎠ (14)

with

ξ j1 = 1,

ξ j2 =
(

λ j + k
) (

λ j + c
)

βT0 p
, and

ξ j3 = λ j + k

βT0
.

Using initial conditions I1(0) = I2(0) = 0 and V (0) = V0, we obtain the Phase I
solution,

T (t) = T0 − I1(t) − I2(t) (15)

I1(t) = κ1eλ1t + κ2eλ2t + κ3eλ3t (16)

I2(t) = κ1ξ12eλ1t + κ2ξ22eλ2t + κ3ξ32eλ3t (17)

V (t) = κ1ξ13eλ1t + κ2ξ23eλ2t + κ3ξ33eλ3t , (18)

with constants

κ1 = V0 (k + λ2) (k + λ1)

(λ3 − λ1)(λ3 − λ2)

κ2 = V0βT0 p

(λ3 − λ1)(λ3 − λ2)

κ3 = − V0βT0(λ1 + k + c + λ2)

(λ3 − λ1)(λ3 − λ2)
.
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Fig. 3 The Phase I leading eigenvalue, λ1, over a range of values of the eclipse phase parameter, k. Also
shown is the leading eigenvalue, r0, of the basic model with s = 0 and d = 0 (dashed line). As k → ∞,
λ1 converges to r0 (inset). Parameter values used were those of Patient 4 (Table 1)

The initial dip in virus levels can be attributed to λ2 and λ3 having negative real
parts with magnitudes greater than λ1 (Table 2). Following this, however, eλ2t and eλ3t

decay leaving eλ1t , which has positive real part, driving the exponential growth.
Ideally, we could identify a small number of parameters or parameter combinations

that determine the slope of viral growth. However, the expression for λ1 is compli-
cated, and we cannot find any single parameter that has the most influence on this
early phase. Using linear regressions, as in Fig. 2, can provide a rough estimate of λ1.
Although specific parameters cannot be estimated by either the approximate solution
or linear analysis, numerical exploration of each parameter indicates that all play large
roles except for the initial virus concentration, V0.

We specifically looked at the sensitivity of λ1 to the eclipse phase parameter, k.
Baccam et al. (2006) found that including an eclipse phase gave more realistic param-
eter estimates than the simpler system without k, though the added complexity may
not be statistically justifiable. The target cell limited model without k is equivalent
to the basic model with s = 0 and d = 0, and the leading eigenvalue, r0, satisfies
r2

0 + (c + δ)r0 − cδ(R0 − 1) = 0, as discussed by Nowak et al. (1997) in the context
of an HIV infection and Lee et al. (2009) in the context of an influenza infection. The
resulting solution is r0 = −(c+δ)/2±√

(δ − c)2 + 4βpT0/2. To compare the model
with and without an eclipse phase, we plot λ1 and r0 versus k using the parameters
of Patient 4 (Fig. 3). As expected, the calculated λ1 from our analysis converges to r0
as k → ∞ (Fig. 3 inset). We also find that for k in biologically feasible ranges, e.g.
k ∈ [2, 6], small variations lead to significant changes in the slope of viral growth.

The Phase I solution is valid from t = 0 until some time t = t1, which is defined
to be the time for which T0 is no longer a good approximation for Z(t). We set this to
occur when T (t) has been depleted by ∼ 10% of its initial value. This value is some-
what arbitrary; however, smaller values (5%) were not sufficient and larger values
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(15%) began to result in large deviations of the approximations from the numerical
solution. Therefore, t1 solves T (t1) = 0.9T0. Terms involving exponentials of λ2 and
λ3 can be ignored in the calculation of t1 since eλ1t is the dominating term. Solving
0.9T0 = T0 − κ1(1 + ξ12)eλ1t1 , we obtain the expression,

t1 = ln(0.1T0) − ln(κ1) − ln(1 + ξ12)

λ1
. (19)

Using the parameters in Table 1, we calculated the value of t1 for each patient (Table 2).
Figure 4 illustrates the Phase I solution, numerical simulation of the target cell limited
model, and t1 for each of the six patients.

3 Phase II approximate solution: virus decay

Following the initial exponential rise in Phase I, viral growth begins to slow as tar-
get cells sharply decline. At this point, most remaining cells are infected since target
cells are nearly depleted. This behavior characterizes Phase II of the infection kinet-
ics; therefore, during this phase, Z >> T implying that I1 ≈ Z − I2. Using this
approximation in Eqs. (4)–(7) results in the reduced system

d I1

dt
= −k I1 (20)

d I2

dt
= k I1 − δ I2 (21)

d Z

dt
= −δ I2 (22)

dV

dt
= pI2 − cV . (23)

We define t2 to be the time at which the Phase II solution begins. Solving Eqs. (20)–(23)
yields the expressions,

I1(t) = I1(t2)e
−k(t−t2) (24)

I2(t) = Z(t2)k − I2(t2)δ

k − δ
e−δ(t−t2) + I2(t2) − Z(t2)

k − δ
ke−k(t−t2) (25)

Z(t) = Z(t2)k − I2(t2)δ

k − δ
e−δ(t−t2) + I2(t2) − Z(t2)

k − δ
δe−k(t−t2) (26)

V (t) = p

k − δ

(

Z(t2)k − I2(t2)δ

c − δ
e−δ(t−t2) + I2(t2) − Z(t2)

c − k
ke−k(t−t2)

)

+ Vse−c(t−t2) (27)
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Fig. 4 Phase I and II virus (V) approximate solutions (solid lines) plotted against experimental data
(squares) and fits (circles) of Eqs. (4)–(7) for all six patients. Virus titers are given in TCID50/mL of nasal
wash. The final time, t1, of the Phase I solution and the start time, t2, of the Phase II solution are given by
vertical lines

where

Vs = V (t2) − p

k − δ

(

Z(t2)k − I2(t2)δ

c − δ
+ I2(t2) − Z(t2)

c − k
k

)

.

This approximation is a combination of exponentials involving the parameters k, c
and δ. This solution takes on a different form if k = c, k = δ and/or c = δ, which can
be obtained by appropriate use of l’Hôpital’s rule.
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During Phase II, growth of free virus has slowed significantly and a peak is reached.
From here, virus decline begins and becomes exponential. In the region around the
peak, all three exponential terms are involved; however, the rate of asymptotic decay
depends on the values of k, c and δ. If all three are similar in value, each contributes
throughout much of the infection resolution with the smallest dominating towards
the end. On the other hand, if one is much smaller than the other two, it will dictate
the slope of viral decay. If we have an a priori hypothesis about which is small-
est, the slope obtained from doing a linear fit (Fig. 2) provides an estimate of this
parameter.

The Phase II solution is valid from t = t2, the time at which T (t) becomes suf-
ficiently small, until infection resolution. We assumed that T (t) ≈ 0 to find the
approximate solution given by Eqs. (24)–(27). However, T (t) is not identically equal
to zero in the initial portion of this phase and is necessary to define t2. To derive an
approximate solution for T (t), we expand each state variable as a power series in ε and
write, for example, V (t) = V (0) +εV (1) + O(ε2). Because T (t) is small in this phase,
we assume T (t) = εT (1) + O(ε2), i.e., T (0) = 0. The solution in Eqs. (24)–(27) is
equivalent to substituting these expansions into Eqs. (4)–(7) and solving the zeroth
order (O(ε0)) subsystem. In the order ε (O(ε1)) subsystem, we find that a solution for
T (1) can be obtained by substituting Eq. (27) into dT/dt = −βT V and integrating,
yielding

T (t) = T (t2)e
−β

{

p
k−δ

[

Z(t2)k−I2(t2)δ

(c−δ)δ

(

1−e−δ(t−t2)
)+ I2(t2)−Z(t2)

(c−k)k k
(

1−e−k(t−t2)
)

]

+ Vs
c

(

1−e−c(t−t2)
)

}

.

(28)

The remaining order ε differential equations are a set of linear, non-autonomous
equations that cannot be directly solved. However, numerically solving this subsystem,
we find that the zeroth order approximation (Eqs. (24)–(27)) is nearly indistinguishable
from the order ε solution for the other state variables, particularly V (t).

We then set the time the Phase II solution begins to be when T (t) is at 10% of its
initial value (T0 = 4×108 cells). Again, we found that smaller values are not sufficient
while larger values produced inaccuracy. We are not able to derive an expression for t2
as we did for t1 because initial values of the state variables (e.g. Z(t2)) are unknown.
There is a short time period where neither the Phase I nor the Phase II approximation
is valid; therefore, we cannot use the values of state variables at the conclusion of
Phase I for the initial value of Phase II. Because of this, a numerical method was used
to find the value of t2 that satisfies T (t2) = 0.1T0 = 4 × 107 cells and the values of
state variables at this time. Table 2 contains the calculated t2 for each patient. These
times are plotted in Fig. 4 along with the Phase II solution for all six patients.

3.1 An alternate Phase II approximate solution

The Phase II solution (Eqs. (24)–(28)) is accurate only if the number of target cells
is small at some arbitrary time t2 and continues to approach zero as t → ∞. In the
initial stages of this phase, free virus peaks and infected cells make up the majority
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Fig. 5 Target cell final size, T∞, with the corresponding value of the basic reproductive number, R0, for
various parameter combinations

of the total cell population (i.e. T << I1 + I2 ≈ Z ). This approximation continues
throughout infection resolution so long as target cells continue to become infected.
However, should free virus and/or infected cells be cleared too quickly for further
infection of target cells to take place, then the total cell population will eventually
consist mostly of susceptible cells (i.e. Z ≈ T >> I1 + I2).

Using the numerical solution, we found the final number of target cells as t → ∞,
denoted by T∞. With the estimated parameters, the value of T∞ is zero cells for
Patient’s 1, 2 and 3, two cells for Patient 4, and 17 cells for Patient 6. However,
Patient 5 retains a significant number of cells, 1.37 × 107 cells, and therefore, the
approximation of Phase II is initially valid but eventually fails (Fig. 4).

A dependence of the final number of target cells on R0 was shown for the classic
epidemic model by Kermack and McKendrick (1927) and later by Diekmann and
Heesterbeek (2000). For the epidemic model, target cell final size was determined to
satisfy ln(T∞/T0) = R0(T∞/T0 − 1). The solution was found to be T∞ ≈ T0e−R0

for R0 >> 1. Because of the similarities between Eqs. (4)–(7) and the Kermack-
McKendrick model, we find this equation to be a good approximation of T∞ for the
target cell limited model. Estimates of the target cell final size for each patient can
then be easily calculated for a given value of R0, e.g. T∞ ≈ 4 × 108e−19.1 = 2 cells
for Patient 4 and T∞ ≈ 4 × 108e−3.5 = 1.21 × 107 cells for Patient 5.

We further examined R0 (Eq. (8)) to determine when the Phase II solution becomes
invalid. A plot of target cell final sizes, given different parameter combinations, and
associated R0 values revealed that low basic reproductive numbers result in significant
levels of susceptible cells late in the infection (Fig. 5). The number of surviving target
cells increases significantly for R0 < 7 leading to failure of the approximation. For
Patient 5, R0 = 3.5 is significantly lower than that of the other five patients; therefore,
an alternative approximation is needed.
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In Phase I, we used the fact that the total number of cells (Z ) remained relatively
constant and that Z >> I1 + I2 to derive an approximation. We find a similar behav-
ior in Phase II as Z reaches a non-zero constant state when target cells are not fully
depleted. We can then take advantage of the approximation used in Phase I to derive an
alternate approximation for Phase II. Here, we have T ≈ T∞ and define ˜t2 as the time
that the alternate Phase II solution begins. This approximation results in the alternate
solution being defined by Z(t) = T∞ + I1 + I2 and Eqs. (16)–(18) but with T∞ in
place of T0 and with constants,

κ̃1 = V (˜t2) (k+λ2) (k+λ1) (λ1−λ2) − I1(˜t2)(k+λ3)(k+λ2)(λ3−λ2) + I2(˜t2)(k+λ3)(k+λ1)(λ3−λ1)

(λ1 − λ2)(λ3 − λ2)(λ3 − λ1)eλ1˜t2

κ̃2 = βT∞ p
[

V (˜t2)(λ1 − λ2) − I1(˜t2)(λ3 − λ2) + I2(˜t2)(λ3 − λ1)
]

(λ1 − λ2)(λ3 − λ2)(λ3 − λ1)eλ2˜t2

κ̃3 = −βT∞
[

V (˜t2)(λ1−λ2)(λ1+k+c+λ2)− I1(˜t2)(λ3−λ2)(λ2+k+c+λ3)+ I2(˜t2)(λ3−λ1)(λ3+k+c+λ1)
]

(λ1−λ2)(λ3−λ2)(λ3−λ1)eλ3˜t2
.

The approximation is valid for a shorter time period (˜t2 > t2) than the previous
Phase II solution. This will always be the case since the previous Phase II solution only
requires target cells to be at low levels but not necessarily constant. In that instance,
target cells are still changing with respect to time before they reach a constant steady
state. On the other hand, the alternate solution does not begin until target cells have
reached this constant state.

To calculate ˜t2, we find the time at which T∞ becomes a good approximation for
T (t). As with t2, we used numerical methods to determine the time when T (˜t2)−T∞ =
25% T∞ = 1.71 × 107 cells. We tried larger values than 25% but found they were
inadequate.

Using the parameters for Patient 5 (Table 1) and values of the state variables at
˜t2, we find one real (λ1 = −4.42) and two complex (λ2,3 = −14.29 ± 3.71i) eigen-
values. Plugging T∞ in for T0 in Eq. (12) results in a negative value of λ1 in the second
phase since ˜R0 = βpT∞/cδ < 1. While this solution does not capture the viral peak,
information concerning the slope can still be obtained. As before, λ1 dominates and
defines the rate of viral decay. The alternate Phase II solution is plotted with t1, ˜t2 and
the numerical results in Fig. 6.

4 Discussion

We studied an acute virus infection model, specifically the target cell limited influ-
enza model (Eqs. (4)–(7)), to find a two-phase approximate analytical solution. We
focused on investigating the log-linear property of viral load data using human nasal
wash data from six patients and their associated parameter values (Table 1), estimated
in Baccam et al. (2006). Although the published estimates do not include confidence
intervals on the parameters for individual patients, we use the estimated values to
illustrate the accuracy of the approximations and to investigate the slopes and timing
of virus growth and decay.
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Fig. 6 Phase I and alternate Phase II virus (V) approximate solutions plotted against experimental data
(squares) and fits (circles) of Eqs. (4)–(7) for Patient 5. Virus titers are given in TCID50/mL of nasal wash.
The final time, t1, of the Phase I solution and the start time, ˜t2 of the alternate Phase II solution are given
by vertical lines

The initial phase, Phase I, is defined by target cells remaining relatively constant
and lasts until approximately 10% of the target cells have been infected. During this
phase, we found exponential viral growth to be driven by the leading eigenvalue, λ1,
for a time t1 (Table 2, Fig. 4). While we cannot extract one or two parameters con-
trolling the value of this complicated expression, we can use the equation to evaluate
differences among hosts or among virus strains.

We examined how changes in k, the eclipse phase parameter, affect the value of
λ1 because including an eclipse phase complicates the basic viral infection model but
does not appear to change its characteristic behavior and may not be justified statisti-
cally (Baccam et al. 2006). We verified that λ1 converges to the leading eigenvalue, r0,
of the basic model as k → ∞ (Fig. 3). However, for k in biologically realistic ranges,
λ1 is significantly lower than r0, given the same parameter values. This suggests that
parameters will estimate to significantly different values with each of these models,
a finding consistent with the conclusions made by Baccam et al. (2006). We also find
that λ1 is quite sensitive to k such that small changes in the eclipse phase length could
lead to large changes in the rate of viral growth and, thus, produce distinct growth
phases.

When parameter values have been estimated, we find the general trend that fast viral
growth (large λ1) results in rapid target cell depletion and an early peak (small t1).
Patient 2 had the largest λ1 and, hence, a short Phase I lasting for only about 30 hours.
In contrast, the smallest growth parameters belonged to Patient 5 whose exponential
growth phase was twice as long.

This variability highlights the challenge in effectively prescribing influenza antiv-
irals. Currently, the antiviral Tamiflu is recommended during the first 12–24 hours to
ensure maximum efficacy (Aoki et al. 2003). In our analysis, the length of Phase I
(t1) may be an indication of the available window to treat a patient effectively. The
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opportunity for antiviral administration may last longer in some patients (e.g. Patient 5)
than in others (e.g. Patient 2).

We have not fully addressed the gap between Phases I and II. This middle phase
is truly nonlinear, and we were unable to find a simple approximation. Although this
intermediate phase is not necessary to understand the exponential nature of acute viral
infections, it does remain a focus of future work.

In the final phase, Phase II, infection resolution takes place. In this phase, target cells
have markedly declined and both infected cells and free virus have a peak followed
by exponential decay. The rate of virus decay depends on the smallest of k, c and δ

while the viral peak depends on all three of these parameters. This result is similar to
that found for the basic model where virus was determined to asymptotically decline
according to e−δt when c >> δ (Bonhoeffer et al. 1997).

We believe that δ, the infected cell death rate, will often determine the rate of virus
decay. This is not true for all infections since the eclipse phase length can vary from
4–6 hours for influenza to a day or more for human immunodeficiency virus (HIV)
(Nelson et al. 2001; Dixit et al. 2004). However, for many acute infections, infected
cells are reasonably long lived compared to both free virus and the eclipse phase
length. For several patients, the parameter values predicted by Baccam et al. (2006)
do not reflect this observation. One possible explanation is that parameter estimation
schemes find it difficult to distinguish between k, c and δ as each contributes to the
viral decay in the latter phase, leading them to estimate two or all three parameters
to similar value. To remedy this, one could fit parameters constraining k and c to be
larger than δ.

With k >> δ and c >> δ, parameter estimation is not necessary to understand viral
decay, and δ can be approximated by a linear fit such as that in Fig. 2. Additionally,
the up slope obtained from fitting data in Phase I could be used to estimate λ1 and
to compare hosts and/or virus strains. This presents an opportunity for biologists to
utilize the tools developed here in a simple manner.

There are other ways to compare virus strains without access to specific parame-
ter values as well. For example, genetically engineered influenza strains which differ
only in their hemagglutinin (the surface protein used in cell entry) may have similar
parameter values except for different infectivity rates, β. Using reasonable choices for
the other parameters, the behavior of each strain (i.e. how quickly and for how long
virus levels rise) could still be tested. We can also determine the extent of damage to
the epithelium and virus transmissibility without the need for parameter estimation.
These quantities, in terms of the parameters, can be investigated by taking the integrals
of I2(t) and V (t) in each phase.

As illustrated in Fig. 4, the Phase II solution, given by Eqs. (24)–(28), does not
agree with numerical results for Patient 5. There was not an obvious indication in
the data or linear fit that this patient was significantly different in any way. However,
plotting the change in target cells over time (not shown) revealed that a large number
of these cells remained late in infection. A reasonable estimate of this value can be
easily found by calculating T∞ ≈ T0e−R0 . The estimated parameters for this patient
indicate a much smaller value of the basic reproductive number, R0, than the other five
patients and, therefore, a larger target cell final size. When parameters fall in ranges
that produce an R0 � 7 (Fig. 5), as with Patient 5, the Phase II solution fails and an
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alternate approximation is required. We use a similar approach to that in Phase I to
derive a solution which does allow for small R0’s. This approximate solution (Fig. 6)
begins at a later time than the previous Phase II solution and does not capture the viral
peak. However, if one is only interested in this late phase of decay, this approximation
can be used for all patients where information on the rate of viral decay lies once again
in λ1.

In summary, we have derived approximate solutions to the two exponential phases
of acute virus infection dynamics. The approximations and the techniques we used are
not restricted to an influenza A virus infection and could be easily extended to other
virus models. The tools we describe are intended to complement parameter estima-
tion and numerical simulation typically used for analysis of virus dynamics; however,
several aspects are also amenable to use by experimentalists. This simplified analysis
presents an opportunity to uncover new virus properties, investigate the implications
of various drug therapies and aid in the development of therapies customized to indi-
vidual patients based on the initial course of an infection.
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