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Abstract
Coalescent theory provides an elegant and powerful method for understanding the shape of gene genealogies and resulting
patterns of genetic diversity. However, the coalescent does not naturally accommodate the effects of heritable variation in
fitness. Although somemethods are available for studying the effects of strong selection (Ns � 1), few tools beyond forward
simulationare available for quantifying the impact ofweak selectionatmany sites. Here, we introduce a continuous-statecoa-
lescent capable of accurately describing the distortions to genealogies caused bymoderate to weak natural selection affecting
many linked sites. We calculate approximately the full distribution of pairwise coalescent times, the lengths of coalescent
intervals, and the time to the most recent common ancestor of a sample. Weak selection (Ns ≈ 1) is found to substan-
tially decrease the tree depth, primarily through a shortening of the lengths of the basal coalescent intervals. Additionally, we
demonstrate that only two parameters, population size and the variance of the distribution describing fitness heritability, are
sufficient to describe most changes.
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Introduction
Understanding the manner in which natural selection
affects patterns of genetic variation is of fundamental
importance in population genetics. Coalescent theory, first
described by Kingman (1982a,b,c), provides an elegant
framework for this endeavor by describing the shapes of
gene genealogies and resulting patterns of variation. How-
ever, because the coalescent relies on the assumption that
individuals in the population do not differ in their expected
reproductive success, the theory does not easily accom-
modate natural selection. Although many authors have
extended coalescent theory to include various forms of se-
lection,most have focused on selective schemes with only a
small number of segregating alleles, often two (Krone and
Neuhauser 1997; Neuhauser and Krone 1997; Barton and
Etheridge 2004; Coop and Griffiths 2004; Wakeley 2008).
Although two-allele models aid our understanding in situ-
ations such as the selective sweep of an advantageous allele,
many populations, particularly those with large sizes or high
mutation rates, contain loci that simultaneously segregate
many alleles. The coalescent process is less well understood
in these situations. In this paper, we demonstrate that rela-
tively weak natural selection affecting multiple linked sites
can significantlydistort the shapes of gene genealogies from
the predictions of neutral and two-allelemodels, andwe de-
velop methods that accurately predict these distortions.

Previous work on the coalescent with selection has fo-
cused on the limiting cases of strong and weak selection.
If selection is strong, then allele frequencies either remain
constant or change deterministically over time. The pop-
ulation may be thought of as several subpopulations, each
corresponding to an allele (ormore accurately, a fitness vari-
ant).Within subpopulations, expected reproductive success

is equal, and thus, coalescent theory requires only mod-
est modification to accurately describe these cases (Kaplan
et al. 1988; Wakeley 2008). This approach may be applied
to a variety of selective schemes (such as overdominance
and balancing selection). However, natural selection must
be fairly strong for this approximation to hold, particularly
if many alleles or loci are considered (Barton and Navarro
2002; Navarro and Barton 2002).

If natural selection is weaker, then allele frequencies fluc-
tuate over time, and it is necessary to incorporate these
fluctuations to accurately model genealogies. Barton and
Etheridge (2004) and Barton et al. (2004), extending a
model first put forth by Kaplan et al. (1988), used a dif-
fusion approximation to describe the probability that an
allelic class had a particular frequency at some time in
the past and then described relationships between genes
conditional on the allelic frequencies. The method worked
well for the one-locus, two-allele case but was numerically
difficult to extend to cases involving more loci or alleles.
Hudson and Kaplan (1994, 1995) analyzed a model that
tracked a larger number of mutational classes that could be
applied to weak selection. Selection was presumed to act
in a multiplicative manner based on the number of mu-
tations experienced by a particular sequence, and fre-
quencies of these mutational classes were assumed to be
Poisson distributed and constant. However, for weaker se-
lection coefficients, the distribution of allelic classes will not
remain constant, and the Poisson approximation becomes
inaccurate.

At loci that harbor more than a few alleles, the combined
effect of many mutations may distort genealogical struc-
ture even if each mutation has only a small fitness effect
(Przeworski et al. 1999; McVean and Charlesworth 2000;

c© The Author 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please
e-mail: journals.permissions@oxfordjournals.org

1162 Mol. Biol. Evol. 27(5):1162–1172. 2010 doi:10.1093/molbev/msq006 Advance Access publication January 22, 2010

 at E
ccles H

ealth Sci L
ib-Serials on A

ugust 15, 2013
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


Continuous Coalescent and Selection · doi:10.1093/molbev/msq006 MBE

Williamson and Orive 2002; Maia et al. 2004; Comeron
et al. 2008). Quantitative analysis is difficult in this regime
because both selection and drift are important and fitness
variants may arise and be lost frequently. Results have pri-
marily been obtained through simulation studies, both for-
ward simulation (Golding 1997; McVean and Charlesworth
2000; Williamson andOrive 2002; Maia et al. 2004) and sim-
ulated reconstruction of the genealogy itself, using the an-
cestral selection graph (ASG; Krone and Neuhauser 1997;
Neuhauser and Krone 1997; Przeworski et al. 1999). These
studies have primarily concluded that weak selection has
only a modest effect on genealogical structure and one that
is maximized for intermediate levels of selection. However,
forward simulation techniques cannot handle realistic pop-
ulation sizes, particularlywhen the entire genealogymust be
tracked. Additionally, the ASG becomes inaccurate if multi-
ple sites combine to yield large selection coefficients, thus
limiting the total strength of selection that can be modeled
(see Przeworski et al. 1999; some recentmodifications to the
ASG allow for stronger selection, e.g., Slade 2000).

At their core, many of the studies above involve the
“structured coalescent” (Nordborg 1997) in which the pop-
ulation is divided into a number of discrete groups, usually
representing allelic or fitness states. Within a given allelic,
class individuals are identical, and thus, the neutral coa-
lescent accurately describes the history of samples within
groups, whereas the mutational regime describes move-
ment between groups. In the case of weak selection, the
number of potential states grows rapidly, and tracking the
size of groups and movement of lineages among groups ap-
proaches intractability. To address these concerns, we have
developed a model that assumes an infinite number of fit-
ness states. In this case, the matrix describing transitionsbe-
tween groups becomes a continuous function (similar to
a dispersal kernel), and the probability that a lineage is in
a certain state some number of generationsago is given by a
continuous probability density function. Despite this differ-
ence, the basic approach remains unchanged. We track the
probability that a lineage is in a certain state some number
of generations ago and then calculate the probability that
two individuals share a parent in the previous generationby
integrating over the distribution of potential states. If the
population size ismuch larger than the sample size, then this
pairwise coalescent rate is sufficient to describe the ancestry
of the entire sample.

In this paper, we utilize the continuous approximation to
examine the impact of weak selection operating at multi-
ple sites on the structure of a genealogy. Our model tracks
only the expected reproductive success of individuals, thus
fitness is a quantitative trait and individuals are endowed
not with genotypes or allelic states but with a single (non-
negative) real number describing expected reproductive
success. We investigate how the distribution of ancestral
fitnesses changes as one looks deeper into the past, and
how this influences the probability that two randomly
selected individuals first shared a common ancestor at a
certain time. These calculations are used to find the dis-
tribution of pairwise coalescence times, the distribution of

lengths of coalescent intervals, and the time to the most re-
cent common ancestor (TMRCA) of a sample of genes. The
results are also compared with simulations using a more re-
alistic finite-sites model of fitness variation. In addition, we
demonstrate that a single parameter describing the variance
in fitness heritability in a single generation is sufficient to de-
scribe most distortions to the genealogies brought about by
selection.

Methods

Model Description
We begin by describing a simple population genetic model
where individuals are endowedwith a genome consistingof
a finite number of sites.We then demonstrate how amodel
that tracks only the relative fitness of individuals can beused
to approximate the discrete-sites model. Using the simpler
relative fitness model, we address genealogical structure in
three steps. First, we calculate the probability that a ran-
domly chosen lineage (the series of ancestors of an individ-
ual chosen from the “present” generation) has fitnessw at a
given generation in thepast. Second,we calculate theproba-
bility that two lineages,with fitnesses drawn from the prob-
ability distribution calculated in the first step, first shared a
common parent t generations ago. Finally, we use the cal-
culations to derive the expected lengths of coalescent inter-
vals and TMRCA for a sample of arbitrary size.We verify our
assumptions through comparison to forward simulations,
both of our continuous model and a more realistic model
with discrete number of sites. Unless otherwise noted, we
use “fitness” to mean relative fitness or, equivalently, an in-
dividual’s expected number of offspring.

Consider an asexual population of constant size N with
nonoverlapping generations. Each individual contains a
nonrecombining genome of L sites where each site may
exist in one of two possible states. Each site is mutated in-
dependently with probability µ each generation. An indi-
vidual’s absolute fitness is determined by the total number
of sites that differ from a predeterminedmost-fit genotype.
Specifically, if the genome differs at n sites, absolute fitness
is given by e−sn . Each new generation is populatedby select-
ing individuals in proportion to their absolute fitness, and if
selected, a parent produces a single offspring. The parental
generation is sampled repeatedly andwith replacement un-
til exactly N offspring exist. Because sites may mutate to
both more- and less fit states, the model encompasses both
beneficial and deleterious mutations. Similar models have
been analyzed by a number of authors, including McVean
and Charlesworth (2000), Comeron and Kreitman (2002)
Rouzine et al. (2003), and Seger et al. (2010).

The primary approximation we use in this work is to
track only the evolution of the relative fitnesses of indi-
viduals. Specifically, we assume that there is some function
f (wo;wp, τ

2) that describes the probability that an individ-
ual has relative fitness wo conditional on its parent having
fitness wp. The parameter τ 2 describes the variance of this
distribution; if τ 2 = 0, then offspring have fitness identical
to their parents and the model collapses to neutrality. If f is
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FIG. 1. (a , b ) Distributions of the difference of offspring and parent relative fitness (the function f ) simulated in the discrete-sitesmodel (black bars)
and theGaussian approximation used in theGaussianmodel. (c , d ) Simulated stationary distribution of relative fitness values for the discrete-sites
and Gaussian models and the function p (w) used to approximate it in the numerical methods. N = 1, 000, s = 10−3 in all cases.

known, then offspring fitnesses may easily be generated by
drawing a single random variable from f instead of simulat-
ing mutation at many independent sites. In the Appendix,
we derive the mean and the variance of f for the discrete-
sitesmodel. To first order in s andµ, τ 2 = Lµs 2 and is inde-
pendent of parental fitness. Although we have been unable
to derive a closed form for f , it is approximatelyGaussian if
somewhat leptokurtic for Lµ < 1 (fig. 1a and b ). In the cal-
culations and simulations below,we use aGaussian function
for f , andwe refer to thismodel as the “Gaussianmodel.” Al-
though the true f for the discrete-sites model is not exactly
Gaussian (only a finite number of fitnesses are possible), we
demonstrate below that many of the results are surprisingly
insensitive to the shape of f , depending only on the standard
deviation τ .

In addition to the Gaussian assumption regarding f , we
also assume that the stochastic process describing the evo-
lution of relative fitnesses has reached a stationary state,
whichwe label p(w). We are unaware of analytic theory suf-
ficient to describe p(w) given a heritability function f and
population sizeN . In the absence of such theory, we assume
that p(w) is the skew-Gaussian distribution (Azzalini 1985),
with probability density function given by

p(x) =
1

ωπ
e−

(x−ε)2
2ω2

∫ α(x−ε)
ω

−∞
e−

t 2
2 dt , (1)

with mean ε + ωδ
√

2/π, variance σ2 = ω2
(
1 − 2δ2

π

)
,

and skewness 4−π
2

(δ
√

2/π)3

(1−2δ2/π)3/2 , where δ =
α√
1+α2 . In our

constant population size model, each individual has one

offspring on average, and thus, we set the mean of p(w) at
unity. The two remaining parameters, describing the vari-
ance (denoted σ2) and skewness of the distribution of fit-
nesses, dependonN , τ , and potentially the highermoments
of f . Figure 1c and d compare the skew-Gaussian assump-
tion for p(w) with the steady-state distributions attained
in both the discrete-sites model and the Gaussian approxi-
mation described above.

Performing the calculations below requires choosing ex-
act values for both population variance, σ2, and skewness
parameter α for p(w). In lieu of analytic results, we resort
to simulation data to find the appropriateσ2. In the results
that follow, the σ2 corresponding to a particular N and τ
has been interpolated from simulation runs conducted for
each combination ofN and τ (the length of each run varied
with N , but at minimum 1 million generations were simu-
lated, with the first 5N generations discarded as burn-in).
The distribution of population fitnesses exhibited leftward
(negative) skew. Our results in general are not strongly de-
pendent on the choice of α. Except when indicated, we use
α = −2. The resulting function closely, but not exactly,
matches the actual distribution of fitnessesobserved in sim-
ulation results (fig. 1c and d ). Nonetheless, this choice of
α yields results that are broadly consistent with those ob-
tained in simulations over a range of parameter values.

Distribution of Ancestral Fitnesses
Henceforth, we assume that f (wo;wp, τ

2) is Gaussian with
τ 2 = Lµs 2. We first seek to calculate the probability that
an ancestor of a randomly selected individual t generations

1164

 at E
ccles H

ealth Sci L
ib-Serials on A

ugust 15, 2013
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


Continuous Coalescent and Selection · doi:10.1093/molbev/msq006 MBE

in the past had fitness w . Assuming that the fitness, Wo,
of some individual in question is described by probabil-
ity density φ(wo), we seek a function describing the prob-
ability that the parent of the individual had fitness wp.
Symbolically,

Pr{Wp = wp} =
∫

Pr{wp |wo}φ(wo)dwo . (2)

We can reverse the conditioning on the right-hand side
via Bayes’ theorem to obtain the following:

Pr{Wp = wp |wo} = Pr{wo |wp}Pr{wp}
Pr{wo} . (3)

Pr{wo|wp} is the probability that an offspring has fitness
wo conditional on parent fitness and may be expressed as
the product of two quantities. First, f (wo;wp, τ 2) is the prob-
ability that any parent with fitnesswp could have given rise
to an offspringwithwo. Because our model tracks only rela-
tive fitness, wemust account for the fact that each offspring
fitness is divided by the mean fitness of all offspring each
generation. The expected value of this normalization fac-
tor (the mean fitness of offspring prior to normalization)
may be expressed as the mean fitness of the parental gen-
eration plus the expected increase in fitness of the offspring.
In our model, the mean fitness of the parents is exactly one,
whereas Fisher’s fundamental theorem states that the ex-
pected increase in fitness of the offspring is equal to the vari-
ance in fitness in the parental generation (Fisher 1931). At
stationarity, the variance of fitnesses in the parental gener-
ation is σ2, and therefore, the expected normalization fac-
tor is 1+σ2. Although sampling error may cause the actual
value in a given generation to differ from the expected value,
in the calculations below we ignore these fluctuations and
assume that the factor is exactly 1 + σ2. Second, the fac-
tor wp/N accounts for the fact that fitter individuals are
more likely to be a randomly chosen individual’s parent.
The product wpf (wo;wp, τ 2)/N then describes the proba-
bility that an offspring with fitness wo had a parent with
fitnesswp.

Pr{wp} is the probability that a member of the previ-
ous generation with unknown reproductive success had fit-
ness wp and thus is given by the stationary distribution of
fitnesses p(w). The denominator in equation (3) is a nor-
malizing factor that can be computed by integrating the
expression in the numerator over all possible values of wp.
Thus, the full probability that a randomly chosen individual
with fitnesswo had a parent with fitnesswp is

Pr{Wp = wp |wo} =
wp f
(
wo ;

wp

1+σ2 , τ
2
)
p(wp )∫

zf
(
wo ;

z
1+σ2 , τ

2
)
p(z)dz

. (4)

In the current generation, we have no information re-
garding individual’s reproductive success, thus a randomly
chosen individual has fitness described by p(w) and we
set φ(wo) = p(wo) in equation (4). Performing the inte-
grations in equation (4) results in a distribution describing
the parental fitness of a randomly selected individual. Let
the distribution obtained in the above procedure be φ1(w),

FIG. 2. Distributions of ancestral fitnesses (φt (w)), from simulation
(dashed lines) and numerical analysis (solid lines), at several time
points in the past (indicated by text above each set of curves). N =
1, 000, τ = 5× 10−4 , and α = −1.25.

with the 1 indicating ancestral fitnesses one generation in
the past. Additional ancestral distributionsmay be obtained
through the recurrence relation

φt+1(w) =

∫ ∞
0

wf
(
wo ;

w
1+σ2 , τ

2
)
p(w)∫

zf
(
wo ;

z
1+σ2 , τ

2
)
p(z)dz

φt (wo)dwo .

(5)
Repeated application of equation (5) results in a series of

distributions describing ancestral fitnesses at each genera-
tion in the past. Note that the distributions describe the fit-
ness of the ancestors of a single individual, not the group of
individuals ancestral to the current generation. Henceforth,
we use φt (w) to describe the distribution resulting from t
iterations, yielding the distribution of ancestral fitnesses t
generations ago.

Several distributions for different time points are shown
in figure 2 in which two primary phenomena are evident.
First, the expectation of ancestral fitness increases with t .
Intuitively, this makes sense because individuals that leave
more offspring are more likely to be represented in the cur-
rent generation. Similar findings have been noted by Barton
and Etheridge (2004) andWakeley (2001), who both found
a tendency for lineages to migrate toward more fit states.
Second, the variance in ancestral fitnesses decreases, which
also follows from lineages tending toward a narrow range
of states. The change in both the mean and the variance
of ancestral fitness decreases with time and approaches an
equilibrium. The position and scale of the distribution at
equilibrium depends on both N and τ , with large popu-
lations support more variability in fitnesses for a given τ ,
which leads to higher ancestral fitnesses. Larger τ also yields
higher ancestral fitnesses as well as a more rapid approach
to this level (results not shown).

Coalescent Rate and the Distribution of Pairwise
Coalescence Times
Using the distributions of ancestral fitnesses described by
φt (w), it is possible to compute the probability that any
two individuals randomly sampled from the current gener-
ation first had the same ancestor t generations ago. Some
approximation is involved. In particular, we assume that the
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fitnesses of the ancestors of the two individuals, say wA and
wB , from t generations ago, are described by independent
draws from φt (w). This may not be the case in reality, for
instance, if significant correlations exist in the distribution
of fitnesses within generations, then knowingwA may influ-
ence the distribution of wB . This concern may be relevant
to small populations with large amounts of fitness variabil-
ity, such that only a few individuals found the entire next
generation. Additionally, because we assume that the two
lineages have not yet coalesced, their true fitnesses are likely
to bemoredifferent than expectedunder the independence
assumption (see Wilkins and Wakeley 2002). Nonetheless,
the approximations are accurate for the parameter combi-
nations examined here.

Assume two individuals A and B in the same generation
have fitnesswA andwB . The probability that a randomly se-
lected member of the previous generation is the parent of
A is given by

1

N

∫
wf
(
wA ;

w
1+σ2 , τ

2
)

∫
zf
(
wA ;

z
1+σ2 , τ

2
)p(z)dzp(w)dw = 1

N
. (6)

The probability that any two individuals had the same
parent in theprevious generation is the product of the prob-
ability that a particular individual is the parent of both A
and B , summed over all possible parents.ConditionalonwA

andwB , this is

γ(wA ,wB ) =
1

N

∫
wf
(
wA ;

w
1+σ2 , τ

2
)

∫
zf
(
wA ;

z
1+σ2 , τ

2
)
p(z)dz

× wf
(
wB ;

w
1+σ2 , τ

2
)

∫
zf
(
wB ;

z
1+σ2 , τ

2
)p(z)dzp(w)dw . (7)

If the exact valueswA andwB are not known, but instead are

drawn from a known distribution, then the marginal prob-
ability of coalescence in the previous generation may be
obtained by integrating equation (7) over the distributions
describing wA and wB . If A and B are randomly selected
from the same generation, then each has fitness w with
probabilitydescribed by p(w), and integratingover this dis-
tribution for bothwA andwB yields the probability that two
random individuals had the same parent,which is the recip-
rocal of the inbreeding effective population size. If there is no
variance in fitness, then p(w) is a delta function at w = 1,
and the probability of shared parentage is 1/N , as predicted
by neutrality.

If individuals A and B are ancestors from t generations
ago of two individuals sampled at the current generation,
then eachhas fitnessw withprobabilityφt(w). Double inte-
gration of equation (7) overφt(w) for bothwA andwB then
yields an expression for the probability that any two individ-
uals in the present generation shared a common ancestor t
generations ago, conditional on the two lineages not coa-
lescingby generation t −1. Denoting this probabilityλt , we
have

λt =

∫ ∫
γ(wA ,wB )φt (wA )φt (wB )dwA dwB . (8)

FIG. 3. Pairwise coalescent rate λt (eq. (8)) for several combinations of
N and τ , both simulated (gray lines) and numerically calculated using
the Gaussian model (black lines).

For small t , λt is close to the reciprocal of the inbreed-
ing effective population size. However, λt increases with t
in roughly linear fashion at first and then approaches an
asymptote (fig. 3). Because λt reflects the probability of co-
alescence, it can be thought of as the reciprocal of a time-
dependent inbreeding effective size, which decreases as one
looks into the past, before eventually reaching an equilib-
rium size. In Seger et al. (2010), this effective size is plotted
as a function of t and selection strength. If τ is very large,
indicating either strong selection or high mutation rate, the
approach to this equilibriummay be very fast. In this regime,
simply assuming that the population has a constant effec-
tive size somewhat smaller than the census size may ac-
curately describe the effects of selection; this is similar to
the “background selection” limit proposed by Charlesworth
et al. (1993). However, for smaller τ , the approach to the
equilibrium is more gradual and must be taken into ac-
count to describe genealogies accurately. For a given τ ,
relatively large populations experience a greater increase
in coalescent rate than do smaller populations (cf. N =
2, 500, τ = 1.6 × 10−4 and N = 1, 000, τ = 1.6 × 10−4;
fig. 3), such that two populations of very different sizesmay
have similar final, “asymptotic” coalescent rates. For this rea-
son, population size may have a less pronounced effect on
the genealogies of genes under selection than on neutral
genealogies.

The probability that a coalescent event between two lin-
eages first happened on generation t is given by

ψ(t) =
t−1∏
i=1

(1− λi )λt . (9)

This distribution of pairwise coalescent times is similar to
the geometric distribution that describes the neutral pair-
wise coalescent times in discrete timemodels, but here, the
rate λ (1/N under neutrality) increases with time. As ex-
pected from the results above, increasing τ results in a sub-
stantial reduction in both the mean and the variance of the
pairwise coalescent time distribution (fig. 4). Even relatively
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FIG. 4. Distribution of pairwise coalescence times, for N = 1, 000 and
three different values of τ , comparing numericalmethods (black lines)
with simulations using the Gaussian model (gray lines).

small values create a noticeable distortion when compared
with the neutral expectation.For instance, at τ = 10−4, the
mean time to coalescence is reduced from1,000 to near 700,
and the standard deviation is reduced from1,000 to roughly
600. Greater values of τ result in considerable reductions in
mean time to coalescence, for instance, at τ = 0.00025, the
mean time is reduced to approximately 540, with a standard
deviation of 416.

Timing and Length of Coalescent Intervals
The calculation of the distribution of pairwise coalescence
times says little about the structure of genealogies with
more than two tips. One way to gather additional infor-
mation about tree shape is to examine the distribution of
lengths of different coalescent intervals. Under neutrality,
these are straightforward to calculate; the expected length
for an interval with j lineages is 2N/j (j − 1). Under selec-
tion, the times are more complex because they must take
into account how long ago the interval occurred because fit-
nesses and thus probability of coalescence change as a func-
tion of time.

Assuming a sample of size n , andpopulation sizeN � n ,
let Tn be the time to the first coalescent event in the ge-
nealogy. In a manner similar to the pairwise case, we assume
that the fitness of each lineage is an independentdraw from
φt (w), whereas noting that the true distribution of fitnesses
is likely to have a greater variance (see Coalescent Rate and
theDistribution of PairwiseCoalescenceTimes section). Un-
der the assumption of both independentfitnesses and pop-
ulation size much larger than the sample size, a coalescence
among the n lineages in the sample occurs on generation t
with approximate probability(

n

2

)
λt . (10)

This time-dependent probability may then be converted
into a distribution using the same reasoning as for equation
(9), yielding an expression for the probability distribution

of Tn . The distribution for Tn−1 may be found similarly but
must be conditioned on the distribution Tn .

Pr{Tn−1 = t} ≈
t−1∑
x=1

Pr{Tn−1 = t |Tn = x}Pr{Tn = x},
(11)

≈
t−1∑
x=1

t∏
i=x+1

(
1−
(
n − 1

2

)
λi

)

×
(
n − 1

2

)
λt Pr{Tn = x}. (12)

This procedure yields the total time until the second in-
terval ends; the length of the interval may be found by sub-
traction. Distributions for other intervals may be found in
the same manner but require iterative calculation of more
recent intervals in order to obtain the distribution of start-
ing times for the interval in question. This computation re-
lies on the assumption that the pairwise coalescence rateλt

is unaffected by coalescent events. In reality, the expected
fitness of a lineage immediately after a coalescence (in back-
wards time) is higher than predicted by φt (w) because
the ancestor had at least two offspring in one generation.
Changes in fitness cause the rate of coalescence to deviate
fromλt . This deviation is likely to be transient, however, and
as t increases the expected fitness distribution will approach
φt (w) and the rate will return to λt . Equation (11) assumes
that the return to φt (w) is instantaneous. Inclusion of the
transient deviations in coalescence rate due to prior coales-
cences leads to skewed trees, a property investigated in the
Seger et al. (2010).

These calculationswere performed for several parameter
combinations and the expectations of the resulting length
distributions compared with simulation results in figure 5.
Several features are evident. First, increasingpopulation size
while holding τ constant results in an ever greater distor-
tion of the genealogy from neutral expectation, particularly
near the root, where coalescence times are much reduced.
Along intermediate intervals, the length of coalescent in-
tervals are similar to those predicted under neutrality. The
numerical approximationconsistentlypredicts a somewhat
smaller deviation from neutrality near the basal nodes than
does the simulation. This inaccuracy seems to result from a
somewhat lower equilibrium fitness resulting from the cal-
culations than actually found in simulations; an error that
decreases the coalescence rate deep in the genealogy and
may result either from inaccuracy in the prior p(w) or the
assumption that the fitnesses are independent draws from
φt (w). Second, the relative lengths of the one or two inter-
vals closest to the tips are actually larger than the neutral
expectation in the simulations. This reason for this remains
unclear, although it may be related to the ambiguity in
measuring interval lengths when more than one coales-
cent event occurs in a single generation. This explanation is
consistent with the observation that the phenomenon de-
creases with population size. The distortion appears quite
transient and is not likely to strongly influence patterns of
nucleotide diversity.
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FIG. 5. Lengths of coalescent intervals relative to neutrality for a sam-
ple of size 25, τ = 0.0005, and several choices of N . Black bars are
simulation runs using the Gaussian model and white bars are numer-
ical results.

The generation at which final coalescent event occurs
is the TMRCA of the sample. This timing of this event de-
scribes the depth of the tree and thus affects the total tree
length and the total number of mutations that have arisen
in the genealogy. The distribution of this event is particu-
larly strongly influenced by heritable variation (fig. 6), with
increasing τ reducing both the mean TMRCA and its vari-
ance. A modification of the procedure described in this sec-
tion may also be used to find the total length of the tree,
which is given by the sum over all intervals of the number
of lineages in the interval multiplied by the length of the
interval.

FIG. 6. The distribution of TMRCA for a sample of size 25, for N =
1, 000, and τ as shown in figure legend, for both simulated under the
Gaussian model (gray lines) and numerically calculated (black lines)
results.

Results

Comparison with Discrete-Sites Models
To validate our methods, we return to the discrete-sites
model introduced at the beginning of the Methods sec-
tion and compare the mathematical results from the con-
tinuous model to forward simulation of the discrete-sites
case. We stress that the discrete-sites model makes no as-
sumptions regarding the form of f or the continuous nature
of relative fitnesses; it is nearly identical to the model pre-
sented in Rouzine et al. (2003) (without compensatorymu-
tations) and Seger et al. (2010). For all results shown, sim-
ulations were allowed to burn in for 10N generations be-
fore data recording began. After burn-in data were sampled
every 1,000 generations for at least 5 million generations.
We set τ 2 = Lµs 2 in all cases. For a variety of selection
coefficients and population sizes, the predicted distribu-
tions of both pairwise coalescent times and the TMRCA
closely match those obtained from simulation of the more
complex discrete-sites model (fig. 7). For larger selection
coefficients, however, such that Ns > 10, the continu-
ous approximation becomes inaccurate, and the mathe-
matical analysis predicts a greater distortion than observed
in simulations (results not shown). One potential cause of
this disagreement is that when selection is relatively strong,
few sites are segregating, and the stationary state distribu-
tion p(w) is no longer accurately represented by a contin-
uous function. The effects of strong background selection
have been investigatedbyother authors (Charlesworthet al.
1993; Wakeley 2008).

To more closely examine the relationship between the
number of segregating sites and the accuracy of the approx-
imation, we conducted additional simulations with N =
1, 000, Ns = 1.0, and varying levels of L and µ, while main-
taining the genomicmutation rate Lµ = 0.01 or Lµ = 0.1.
The results in table 1 demonstrate that increasing the num-
ber of selected sites beyond 1 reduces both the pairwise
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FIG. 7. Distributions of TMRCA (left column) and pairwise coalescence (right column) for simulations using the discrete-sites model of fitness
heritability (thin gray lines), with numerical results (black lines). Sample size for TMRCA calculation was 25. For the discrete-sites model, N =
1, 000,µ = 10−5 for N = 2, 000, and N = 2, 500, µ = 5× 10−6 for N = 5, 000.

coalescent time and the TMRCA substantially and there-
fore that one-locus, two-allelemodels (equivalent to L = 1)
should not be used to infer the effects of selection at many
sites, even when the expected mutation probability Lµ is
held constant. As L increases, the population harbors more
fitness variability, as measured byσ, withσ eventually ceas-
ing to increase for L > 1000.

Robustness of Results to Other Fitness Heritability
Functions
Although the results in figure 7 indicate that models with
different assumptions regarding the heritability of fitness
may have similar effects on genealogies provided they share
the same τ , we further pursue this topic by examining dif-
ferent forms of the fitness heritability function f via forward
simulation (fig. 8). Despite the considerable differences in
the form of f , the distributions of pairwise coalescent times
are indistinguishable, and the means and variances differ
by only a few percent. Identical results were obtained with
other population sizes and values of τ (results not shown).
The similarity suggests that the higher moments of f do not
greatly, or even moderately, affect genealogical structure
and that the process is influenced primarily by the variance

of the fitness heritability function,τ 2. One possible explana-
tion for this result is the central limit theorem-like property
of adding many small deviations, such that offspring fitness
distributions are approximately Gaussian when compared
with ancestors frommany generations ago, regardless of the
form of the deviation produced in each generation. These
results suggest that analytic calculations using a Gaussian f
may accurately describe genealogical relationships for a sub-
stantially larger class of models, including more traditional
finite- or infinite-sitesmodels.

Discussion
This work demonstrates that a model of coalescence involv-
ing continuously variable fitnesses can capture some of the
ways in which weak selection acting at many sites distorts
genealogies from their neutral expectation. We find that
weak selection, on the order of Ns ≈ 1, can significantly
shorten the time taken for two lineages to reach a common
ancestor and that the variance of this time is reduced by
an even greater factor (fig. 4). Weak selection also distorts
the shapes of larger trees by shortening the lengths of coa-
lescent intervals near the root of the tree while leaving the
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FIG. 8.Distributions of pairwise coalescence times for different choices
of f and τ . N = 1, 000 in all cases.

other intervals similar in length to the neutral expectation
(fig. 5). The TMRCA of a sample may also be significantly
reduced, in some cases by nearly 50% compared with the
neutral expectation (fig. 6). Although our numerical meth-
ods assume an infinite number of possible fitness states, our
calculations appear accurate when compared with simula-
tions with more than a few hundred sites.

Although a number of authors have constructed mod-
els of the coalescent with selection, most have focused
on the action of selection at a single locus (Golding 1997;
Neuhauser and Krone 1997; Barton and Etheridge 2004;
Wakeley 2008) and have largely concluded that weak selec-
tion does not significantly impact the shape of genealogical
trees. Simulation studies of selection at multiple sites have
reinforced this view (Przeworski et al. 1999; Williamson and
Orive 2002). The analysis here offers a contrasting view and
demonstrates several ways in which tree shape is distorted
as a result of selection. In particular, table 1 demonstrates
that as the number of selected sites increases, populations
harbor a greater variance in fitnesses (σ), and this increase
is commensurate with increased genealogical distortion.
Among authors who have examined multiple-sites simula-
tions, some examined only selection coefficients too small
to have an impact (Przeworski et al. 1999; Ns = 0.1). Oth-
ers found deviations similar to those here but concluded
that “selection only had a moderate effect on tree statis-
tics. . . consistent with single locus results” (Williamson and
Orive, 2002, p. 1379). Given that selection is likely to act
at many sites simultaneously in natural populations and
thatmanymutations are likely to impact reproduction only
modestly, thiswork suggests thatmany real genealogiesmay
experience considerable distortions due to selection.

One intriguing finding of this analysis is the fundamental
importance of the variance τ 2 to the exclusion of the other
properties of the distribution f (fig. 8). The parameter τ re-
flects the extent to which offspring fitness may differ from
parental fitness and thus incorporates both mutation and
selection. If mutation never occurs, or if mutations have no
impact on fitness, then offspring will always have the same

Table 1. Effect of L on genealogical distortion.

Pairwise Coalescent
La τττb σσσc Time d TMRCAe

Lµµµ = 0.01
1 0.0001 0.0005 973 (961) 1,875 (1,029)
10 0.0001 0.0014 958 (1,045) 1,857 (1,241)
100 0.00011 0.0021 746 (636) 1,400 (642)
1,000 0.00012 0.0022 714 (594) 1,320 (567)
2,500 0.00012 0.0022 711 (582) 1,286 (567)

Calc.f 0.0001 0.0021 681 (562) 1,212 (555)

Lµµµ = 0.1
1 0.0003 0.0005 996 (1,072) 1,924 (1,230)
10 0.00032 0.0016 1,022 (1,084) 1,976 (1,196)
100 0.00032 0.0041 657 (560) 1,213 (573)
1,000 0.00032 0.0053 488 (381) 889 (396)
2,500 0.00032 0.0055 482 (360) 880 (363)

Calc.f 0.0003 0.0050 499 (378) 854 (368)

aNumber of sites under selection.
b Standard deviation of the difference parent–offspring fitness.
cStandard deviation in population fitness distribution.
dAverage pairwise coalescence time in generations, with standard deviation
in parentheses.
eTime to most recent common ancestor, with standard deviation in
parentheses.
fResults calculated using the numerical method with τττ = Lµµµ2s , numbers in
parenthesis are standard deviations of the calculated distributions.

fitness as their parents, τ = 0, and genealogies conform
to the neutral coalescent. Conversely, if mutations are fre-
quent and their impact on fitness is large, offspring fitness
may differ greatly from parental fitness, τ will be very large
and coalescences will happen much more rapidly than pre-
dicted under neutrality.

Why variance, but not, for instance, skewness, should
be the primary determining factor of coalescence time re-
mains unclear, but inmanyways, it is fortunate. For instance,
it suggests that very different mutational models may still
have similar effects on genealogies, provided that they pro-
duce similar variances in fitness heritability. This findingmay
be particularly important when comparing analytic results
with empirical data because in any real data set, the distri-
bution of mutation probabilities and selection coefficients
across a sequence are likely to beunknown.Nonetheless, the
influence of a complicatedmutational and selective regime
on genealogical structure may be similar to the Gaussian
model presented here, provided that τ 2 is the same. This re-
sult is supported by investigations of a finite-sitesmodel of
mutation and selection (fig. 7), which produces results very
similar to those predicted by the continuous coalescent (as
longas L is large enough), despite verydifferent assumptions
regarding the mutational model.

Although τ is presented here as a parameter of the
model, τ may be calculated for any model in which the
reproductive success of parents and offspringmay be com-
pared. Specifically, τ is the standard deviation of the differ-
ences between parent and offspring expected reproductive
successes. τ may be estimated by tabulating the difference
in actual reproductive success between a parent and its
offspring over many parent–offspring pairs and then cal-
culating the variance among these differences. For haploid
organismswith nonrecombining genomes, it is possible that
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τ may be calculated in laboratory studies. However, for
organisms with recombining chromosomes, empirical as-
sessment of τ is likely to be more difficult, unless a single
polymorphism can be tracked. Nonetheless, it may be pos-
sible to estimate τ froma genealogy reconstructed for a par-
ticular genomic region.

One advantage of the approach presented here is that
it allows for the likelihood of a genealogy to be calculated
given a particular population size and τ . Using a geneal-
ogy sampler such as LAMARC (Kuhner, 2006) or BEAST
(Drummond and Rambaut, 2007), it may then be possible
to estimate the true values of these parameters using se-
quence data from natural populations. Such an approach
would allow for estimation of the amount of heritable fit-
ness variation produced at unlinked loci in a single gener-
ation, facilitating a test for selection based on deviations in
genealogical structure.We consider the feasibility of such an
approach in a forthcoming publication.

The work presented here is similar to models of coa-
lescence in continuous habitats (Barton and Wilson 1995;
Wilkins andWakeley 2002;Wilkins 2004). Thesemodels typ-
ically assume strict population regulation, such that pop-
ulation density is distributed uniformly across the habitat
as well as Gaussian dispersal of offspring. Under these as-
sumptions andusing a diffusion approximation,Wilkins and
Wakeley (2002) found an analytic expression for the full dis-
tribution of pairwise coalescence times, conditional on the
starting location of the samples, and the variance of the dis-
persal function.The analysis in this papermay be seen as ex-
tending Wilkins and Wakeley (2002) model to include dif-
ferential reproductive success along the habitat in a linear
manner and assuming that population density is given by
the skew-Gaussian distribution. One key difference, how-
ever, is that the model here rescales “space” each generation
so that the mean “location” (fitness) is unity.

In order for the work here to be fully analytic, a function
must be found that describes the steady-state distribution
of fitnesses in a population with a particular mutation and
selection model. Deriving this expression may require solv-
ing a functional equation relating the distribution of off-
spring fitnesses to the distribution of parental fitnesses. A
potential alternative is to find an expression for the mo-
ments of the steady-state distribution by solving a system
of equations relating eachmoment of the parental distribu-
tion to the offspring distribution. Such an approach requires
a method of moment closure because each moment of the
parental distribution affects a different moment in the off-
spring distribution (for instance, the mean of the offspring
distribution is governed by the variance of the parental dis-
tribution). Additionally, as genealogical shape appears to be
fairly sensitive to changes in the population variance (σ2),
any approximationsmade must be quite accurate over the
appropriate range of parameter values.

This analysis calls into question some techniques used
to infer past population dynamics. Specifically, several re-
lated techniques have been proposed to infer population
growth rates and historical sizes based upon analysis of
the distribution of coalescent intervals (Kuhner et al. 1998;

Pybus et al. 2000; Strimmer and Pybus 2001; Minin et al.
2008). As demonstrated above, however, weak selection
may produce a systematic distortion of the intervals, such
that basal intervals are much shorter than expected. Per-
forming a skyride analysis or estimating the growth rate
of a population from loci experiencing moderate selection
at multiple-sites selection produces a strong signal of pop-
ulation expansion, when in fact population size (and the
population’s inbreeding effective size) has remained con-
stant (results not shown). Minin et al. (2008) analyzed the
Egyptian hepatitis C virus (HCV), for example, and found a
marked population expansion. However, because HCV has
a high mutation rate and a single nonsegmented genome
with high gene density, it seems unlikely that any region
will be free from the effects of selection. Combining a sky-
line or growth rate analysis with the techniques presented
here in a maximumlikelihood contextmay allow for a more
robust estimate of historical population sizes and selection
parameters.
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Appendix
Here, we derive the mean and the variance of fitness heri-
tability function f from the discrete-sites model. We begin
by considering the distribution of the number, say J , of mu-
tated sites in an individual conditional on the individual’s
parent having exactlyK mutated sites. Let X be the number
of forward mutations and Y be the number of back muta-
tions. Because each site mutates independently with prob-
ability µ, X and Y are conditionally independent binomial
random variableswith index L−K andK , respectively, each
with parameterµ. Let Z = X−Y be the change in the num-
berofmutations fromparent tooffspring, so that J = K+Z .
In the case where L and K are large and µ is small, and X
and Y are approximated well by Poisson random variables
with rate (L − K )µ and Kµ. The large K assumption is sat-
isfiedwith the selectioncoefficient s ≈ 1/N , the regime we
consider here. Z is then Skellam-distributed (Skellam1946),
withmean (L −K )µ−Kµ = µ(L −2K ) and Pr{J = j} =
Pr{Z = j − K}.

The probability density f is defined as the difference in
relative fitness between parents and offspring, conditional
on parent fitness. To find the mean and variance of f , we
first denote the relative fitness of a given individual wo. If
the individual has J mutations, then wo = e−sJ/w , where
w is the mean absolute fitness of all individuals in the same
generation as the selected individual. Similarly, the relative
fitness of the chosen individual’s parent is wp = e−sK/w . If
the population size is large and at stationary state, then w
is not likely to change considerably from one generation to
the next, and for these calculations, we assume it is constant.
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The expectationof f is then E [Wo−wp |wp ] = E [Wo |wp ]−
wp, where

E [Wo |wp ] = E

[
e−sJ

w

∣∣wp

]
=

e−sK

w
E
[
e−sZ
∣∣wp

]
. (13)

E [e−sZ |wp ] is the moment-generating function of the Skel-
lam distribution, which is e−Lµ+µ(L−K )e

−s+µK es . To first
order in s and µ, equation (13) simplifies to

E [Wo |wp ] =
e−sK

w
Lµs , (14)

which is equivalent to wpLµs .
The variance of f , τ 2, can be found using a similar

procedure

Var[Wo |K ] = E [W 2
o |K ]− E [Wo |K ]2

=
e−2sK

w 2 (E [(e
−sZ )2|K ]− E [e−sZ |K ]2). (15)

Again using the moment-generating function of the Skel-
lam distribution and dropping terms of order s2, µ2, and
sµ or higher, we find that τ 2 ≈ ( e−sK

w

)2
Lµs 2. Finally, be-

cause E [e−sK ] is equal to the expected mean fitness of all
the individuals in a given generation,

(
e−sK

w

)2 ≈ 1, leaving
τ 2 ≈ Lµs 2, a value independent of both the parental state
(K ) and the mean fitness of any generation.
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