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Some biological regulatory systems must &&remember'' a state for long periods of time. A simple
type of system that can accomplish this task is one in which two regulatory elements negatively
regulate one another. For example, two repressor proteins might control one another's
synthesis. Qualitative reasoning suggests that such a system will have two stable states, one in
which the "rst element is &&on'' and the second &&o! '', and another in which these states are
reversed. Quantitative analysis shows that the existence of two stable steady states depends on
the details of the system. Among other things, the shapes of functions describing the e!ect of
one regulatory element on the other must meet certain criteria in order for two steady states to
exist. Many biologically reasonable functions do not meet these criteria. In particular,
repression that is well described by a Michaelis}Menten-type equation cannot lead to
a working switch. However, functions describing positive cooperativity of binding, non-
additive e!ects of multiple operator sites, or depletion of free repressor can lead to working
switches.
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Introduction

During some biological processes, such as di!er-
entiation of cells during development, gene
regulatory systems must &&remember'' a state that
is set by transient signals. While this memory is
achieved in some cases by mechanisms such as
heritable DNA methylation (reviewed by Razin
& Cedar, 1993), it might also be accomplished by
a network of genes that regulate one another
through repressor and activator proteins that
they encode.

Among the simplest such &&genetic switches'' is
a system in which each of two repressor proteins
regulates the synthesis of the other (Monod
& Jacob, 1961). In an environment in which both
uthor to whom correspondence should be addressed.
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repressors can act (e.g. no inducers are present),
the system might have two stable steady states. In
one state, the gene for the "rst repressor is turned
on, and the synthesis of the second repressor is
therefore turned o!. The absence of the second
repressor, maintained by the presence of the "rst,
allows the "rst to be synthesized (in e!ect, the
protein acts as an indirect activator of its own
synthesis, since it represses the synthesis of its
own repressor). In the other steady state, the
second repressor is present and the "rst is absent.

If represssion can be modulated by some ex-
ternal &&inputs'', such as inducer molecules, the
system can be forced into one or another of the
steady states. The presence of an inducer which
binds to the "rst repressor, and thereby inhibits
its repressor activity, will lead to the production
of the second repressor and repression of the "rst
repressor's synthesis. When inducer is removed,
( 2000 Academic Press



FIG. 1. The SR #ip-#op is analogous to a repressor}
repressor switch. The circuit, implemented with two NOR
gates, has two inputs and two outputs. When neither input is
high, the circuit is bistable: output 1 can be high and output
2 low, or output 2 can be high and output 1 low. Assertion of
either input forces the system into a particular state and is
analogous to addition of an inducer to the biological system.
Assertion of input 1, for example, forces output 1 low and
allows output 2 to be high. This state will be maintained
even after the input is made low.
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the second repressor will continue to hold the
level of the "rst repressor low. The transient
presence of the inducer will have forced the sys-
tem into a particular steady state which persists
after the inducer is removed. Conversely, the tem-
porary presence of an inducer that inhibits the
action of the second repressor will force the sys-
tem into the state where the "rst repressor is high
and the second is low. The system &&remembers''
which inducer it was last exposed to.

The &&inputs'' to the switch need not be small
molecule inducers that come from the external
environment. They might instead be the products
of other regulatory genes within the cell, or sig-
nals that ultimately come from di!usible mor-
phogens in a developing organism. In this way,
a cell and its descendants can &&remember'' posi-
tional information that was present early on but
has disappeared, such as morphogen gradients
that are present only in early embryogenesis.
Thus, the switch may be just a simple component
of a complex regulatory network.

The repressor}repressor system described
above is analogous to the SR #ip-#op of digital
electronics. This type of circuit is composed of
elements that themselves have no memory, but
merely produce an output that is a function of
their current inputs. A #ip-#op can be made with
two NAND or two NOR gates; the version with
NOR gates is shown in Fig. 1. Each of the two
outputs of the #ip-#op is analogous to the pres-
ence or absence of repression by one of the rep-
ressor proteins. Each NOR gate performs a logi-
cal NOR on its two inputs: its output is &&true'' or
&&high'' when and only when both of its inputs are
low, i.e. assertion of either input forces the output
to be low. This logical operation corresponds to
the fact that repression by a protein may be
prevented in two ways. First, the protein's syn-
thesis may itself be repressed by the other protein.
Second, inducer, if present, will bind to the pro-
tein and inhibit its activity. Repression by the
protein will occur when neither the "rst nor the
second of these conditions hold.

In order for a system to function as a switch, it
must possess two (or more) stable steady states
when inducer is absent. In the qualitative descrip-
tion of a switch given above, a gene was con-
sidered to have only two states of transcriptional
activation, &&on'' and &&o! ''. In reality, the degree
to which a gene is transcribed can take on a range
of values. The question of the existence of mul-
tiple steady states must therefore be approached
with a quantitative model.

Several previous studies have analysed mo-
lecular systems with potential switching behav-
ior. Keller (1995) analysed several types of genetic
networks, including some involving mutual
repression by two proteins. Thomas (1978),
Thomas and D'Ari (1990), and Thomas et al.
(1995) also discussed several types of regulatory
networks, including the two-repressor type. Col-
lier et al. (1996) modeled the Delta-Notch system
of intercellular signaling, which involves mutual
inhibition between adjacent cells, and found con-
ditions that yield bistability. Wolf & Eeckman
(1998) modeled both one- and two-gene systems,
though their two-gene model lacks bistability.
Edelstein-Keshet (1988, pp. 294}295) pointed out
the analogy of a bimolecular switch to a pair of
species in competition, and applied a competition
model to switches. A similar analogy would ap-
ply to two predators that prey upon one another
(Levin et al., 1977). Several authors have modeled
aspects of the regulation of bacteriophage
j (Ackers et al., 1982; Shea & Ackers, 1985;
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McAdams & Shapiro, 1995; Thie!ry & Thomas,
1995), part of whose regulatory circuitry consti-
tutes a biomolecular switch. Bistability has also
been investigated in systems involving only posit-
ive regulation (Tyson & Othmer, 1978; Thron,
1995).

We present here criteria for making a working
repressor}repressor switch, including conditions
on the shapes of the functions that describe re-
pression. Because the shapes of these functions
are determined by the underlying mechanisms,
some mechanisms can be shown to be insu$cient
for making a bistable switch. We show that the
simplest form of repression is not su$cient for
a switch. We also identify several biologically
plausible mechanistic features that can make
a switch possible.

The Models

A general model for a two-gene network is
given by the system

dx
dt

"f (y)!k
1
x,

dy
dt

"g(x)!k
2
y, (1)

where x and y are the concentrations of the two
repressor proteins, f and g are &&repression func-
tions'' that describe the e!ect of one protein on
the synthesis of the other, and k

1
and k

2
are

positive constants describing decay. The rate of
synthesis of each protein is determined by the
level of the other, and each protein decays with
"rst-order kinetics. The "rst-order &&decay'' of the
proteins might actually be dominated by dilution
due to exponential cell growth. Because our main
interest is the repressor}repressor case, f and
g will be decreasing positive functions, although
some of our results apply more generally.

This model relates the rate of protein produc-
tion directly to the concentration of repressor
protein, and thus ignores the dynamics of mes-
senger RNA (mRNA) levels. The model might be
taken as an approximation for the case where the
half-life of mRNA is short compared to that of
protein. We show in Appendix A that our major
conclusions hold in a full four-dimensional
system that explicitly considers mRNA con-
centrations.

Whether the system has multiple stable steady
states depends on the functions f and g and on the
parameters k

1
and k

2
. The nullclines for system

(1) are

x"
f (y)
k
1

O fM (y),

y"
g (x)
k
2

O gN (x). (2)

The new functions fM and g6 de"ne the nullclines.
These nullclines must have at least one intersec-
tion because the x-nullcline starts above and ends
below the y-nullcline [Fig. 2(a)]. With only
one equilibrium, the system cannot function as
a switch because any perturbation that moves the
system away from the equilibrium is forgotten
as the system returns to equilibrium. With three
equilibria [Fig. 2(b)], the central equilibrium
becomes unstable. A system resting at one of the
stable equilibria will switch to the other only if
a perturbation moves the system into the other
basin of attraction.

Our goal is to "nd the conditions under which
the nullclines cross more than once. We will "rst
examine two special cases, repressor binding de-
scribed by Michaelis}Menten and Hill functions,
and then derive conditions that identify which
repression functions f and g can potentially
support a switch for some values of the decay
parameters k

1
and k

2
.

FAILURE OF THE MICHAELIS}MENTEN

FUNCTION TO MAKE A SWITCH

In the simplest model for repression, each rep-
ressor binds to its target operator by mass action
and the rate of transcription is proportional to
the amount of unbound operator. When the mo-
lar quantity of repressor is much higher than that
of operator, the fraction of bound operator is
well approximated by a Michaelis}Menten-type
equation. The rate of production of protein x is
given by

f (y)"k
1

K
d

K
d
#y

,



FIG. 2. The phase-plane in cases where (a) the repres-
sor}repressor system does not work as a switch, and
(b) where it does work.

where x has been measured in units of its K
d
.

With these functional forms, the repressor}rep-
resssor system becomes

dx
dt

"

k
1

1#y
!k

1
x,

dy
dt

"

k
2

1#x
!k

2
y. (5)

The nullclines are de"ned by

x"fM (y)"
k
1

k
1
A

1
1#yB ,

y"gN (x)"
k
2

k
2
A

1
1#xB . (6)

A requirement for equilibrium can be written in
terms of the composition of the nullcline func-
tions:

x"fM (gN (x))

"

k
1

k
1
A

1
1#gN (x)B

"

k
1

k
1
A

1
1#(k

2
/k

2
) (1/(1#x))B

"

k
1

k
1
A

1#x
1#(k

2
/k

2
)#xB.
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where K
d
is the equilibrium constant for dissocia-

tion of repressor from its operator site and k
1

is
the maximum rate of protein production.

By measuring the concentration of repressor
y in units of K

d
, we can eliminate the parameter

and write the rate of production of protein x as

f (y)"
k
1

1#y
. (3)

Similarly, the rate of production of protein y is
given by

g(x)"
k
2

1#x
, (4)
In this case, fM (gN (x)) is a linear fractional trans-
formation (a ratio of linear functions) that has
negative second derivative everywhere and can-
not have multiple intersections with the diagonal
for any value of the parameters. Repression de-
scribed by a Michaelis}Menten function there-
fore cannot support a switch.

The Michaelis}Menten form is conventionally
based on the approximation that the depletion of
free repressor due to binding is insigni"cant. In
the case of a single operator site per cell, the
Michaelis}Menten form is exact and no switch
can be made through mass action. We show
below, however, that inclusion of the depletion



FIG 3. Values of the parameter kI
1
"i

1
/k

1
and

kI
1
"k

2
/k

2
(the ratio of the maximum rate of protein pro-

duction to the rate of decay) needed for a working switch for
particular values of the exponent n in the Hill function. The
region inside each cusp works for that particular value of n.
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term can make a switch possible when there is
more than one operator site per cell.

SUCCESS OF THE HILL FUNCTION

Suppose that the level of repression is
described by a Hill function, which models
cooperativity of binding. The repression function
takes the form

f (y)"
k
1

1#yn
. (7)

We will consider cooperativity in more detail
below, but here show that values of n'1 can
support a switch for appropriate values of the
parameters.

Substituting the Hill equation into the repres-
sor}repressor system gives

dx
dt

"

k
1

1#yn
!k

1
x,

dy
dt

"

k
2

1#xn
!k

2
y. (8)

Using the new parameters

kI
1
"

k
1

k
1

,

kI
2
"

k
2

k
2

,

the nullclines can be written

x"fM (y)"
kI
1

1#yn
,

y"gN (x)"
kI
2

1#xn
. (9)

The number of equilibria changes when the
nullclines are tangent at an equilibrium, or when

fM @ (y)gN @ (x)"1 (10)

at an equilibrium. By taking derivatives,
simplyfying, and solving eqns (9) and (10)
simultaneously for kI
1
, kI

2
, and y in terms of x, we

can "nd parametric curves for the critical values
of kI

1
and kI

2
as

kI
1
"

n2xn`1

n2xn!1!xn
, (11)

kI
2
"A

1#xn

n2xn!1!xnB
1@n

(1#xn). (12)

These equations take positive values for positive
x only when the denominator n2xn!1!xn is
positive, or when n'1 and xn'1/(n2!1).
Graphs for various values of n are shown in
Fig. 3, with multiple equilibria existing when
kI
1

and kI
2

lie inside the cusp for that particular
value of n. Large values of kM

1
and kM

2
are required

for a functional switch when n is near 1, corre-
sponding to large values of the rate constants k

1
and k

2
, small values of the decay constants k

1
and k

2
, or, less obviously, high values of repres-

sor a$nities that we have scaled out (low values
of the dissociation constant K

d
). Any of these

conditions lead to high steady-state repressor
activity.

The phase plane diagram shown in Fig. 2(b)
describes the case where n"2 and kI

1
"kI

2
"4.



122 J. L. CHERRY AND F. R. ADLER
The existence of multiple equilibria might seem
to be a consequence of the sigmoidal shape of the
nullclines, which generate a sigmoidal composi-
tion fM (gN (x)) (Fig. 4). Perhaps surprisingly, we will
show that a sigmoidal repression curve is neither
necessary nor su$cient for existence of a switch.
In particular, we will construct switches with
repression curves that are everywhere concave
up, and exhibit whole families of sigmoidal re-
pression curves that cannot support a switch for
any choice of parameter values.

THE GENERAL THEORY: COMPUTATION OF P ( f )

The Michaelis}Menten form of repression
[eqn (5)] does not support multiple equilibria,
and Hill functions [eqn (7)] with power n'1 can
support multiple equilibria for appropriate para-
meter values. In this subsection, we derive a gen-
eral condition for whether a pair of repression
functions f and g are able to act as a switch for
some parameter values.

For each stable equilibrium of the system, the
function fM (gN (x)) crosses the diagonal from above.
In order for a continuous function to do this
more than once, it must somewhere cross the
diagonal from below. Therefore, a crossing from
below, which corresponds to an unstable equilib-
rium is a necessary condition for the existence of
multiple stable equilibria (a special case of the
FIG. 4. The composition of two Hill functions is sig-
moidal and the system can have multiple equilibria.
analysis in Appendix B). In conjuction with
reasonable assumptions about the composition,
namely that it is bounded and is non-negative for
positive arguments, a crossing from below is also
a su$cient condition for multiple stable equilib-
ria. An (x, y) pair can correspond to a crossing
from below only if fM @(y)gN @ (x)*1.

An unstable equilibrium (a crossing from be-
low) must satisfy the following three conditions:

1. fM (y*)"x*.
2. gN (x*)"y*.
3. fM @ (y*)gN @ (c*)*1.

Conditions 1 and 2 readily yield expressions that
are equal to one. Multiplication of the left-hand
side (l.h.s.) of condition 3 by these expressions
gives

A
y* fM @(y*)

fM (y*) B A
x*gN @ (x*)

gN (x*) B*1. (13)

Note that this is equivalent to

A
y* f @ (y*)

f (y*) B A
x*g@ (x*)

g(x*) B*1 (14)

because fM and g6 are related to f and g by multipli-
cation by a constant. Equation (13) is really
a condition on the shapes of the functions, so for
some purposes it is unimportant to distinguish
between f and fM or g and g6 . We can express
this condition more brie#y using the following
notation.

De5nition 1.1. For any decreasing di!erentiable
function, let

P( f )"sup
y;0
C
!y f @ (y)

f (y) D .

We refer to F(y)"(!y f @(y)/f (y)) as the auxiliary
function of f.

The auxiliary function of f is identical, except
for its sign, to the &&e!ective power function''
(Clarke, 1980) or &&reaction order'' (Thron, 1991)
of protein production with respect to repressor.
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The functional P has several useful properties.
First,

P(cf )"P( f )

for any positive constant c. Furthermore, for the
function f

c
(y)"f (cy),

P( f
c
)"sup

y;0
C
!y f @

c
(y)

f
c
(y) D

"sup
y;0
C
!cy f @(cy)

f (cy) D

"sup
y;0
C
!y f @ (y)

f (y) D"P( f ).

The value of P( f ) thus depends only on the shape
of the repression function, not on the magnitudes
of the scaling parameters.

Suppose that P( f ) )P(g)'1. We could then
"nd values of x* and y* which satis"ed inequality
(14). Furthermore, we can solve conditions 1 and
2 for values of k

1
and k

2
for which (x*, y*) is

indeed an equilibrium. Alternatively, we could
adjust f and g by multiplying them by appropri-
ate constants. This corresponds to changing
promoter strengths and other determinants of
maximal expression levels, or to changing the
a$nities of repressors for their operator sites. All
of these possibilities amount to multiplying the
functions fM and gN by constants.

We have shown the following proposition.

Proposition 1.1. For any two repression functions
f (y) and g(x), the system de,ned by di+erential
equations

dx
dt

"f (y)!k
1
x,

dy
dt

"g (x)!k
2
y

will have multiple equilibria for some values of k
1

and k
2

if P ( f ) )P(g)'1. Furthermore, if the sys-
tem has multiple equilibria for some values of k

1
and k

2
, the P( f ) )P(g)*1.
We do not consider the case P( f ) )P(g)"1
in detail. However, the proposition can be
strengthened to include this case when the auxili-
ary functions for f and g have suprema which
are not maxima. In this case, even though
P( f ) )P(g)"1, there are no values of x* and y*
for which the product of the values of the auxili-
ary functions is greater than or equal to 1.

There is a useful graphical interpretation of
P( f ). Consider the family of functions yp f (y)
with derivatives equal to

d
dy

[ypf (y)]"yp~1pf (y)#ypf @ (y)

"yp~1(pf (y)#yf @(y)).

There is a critical point at some y'0 if

p"
!y f @ (y)

f (y)
.

Thus, P( f ) is the largest value of p for which the
function ypf (y) has a critical point. In simple
cases, P( f ) can be computed by inspection using
this interpretation.

For the Michaelis}Menten form f (y)"1/
(1#y) [eqn (3)] the function yp f (y) has a max-
imum for p(1 and is increasing function for
p*1. Therefore, P( f )"1. Alternatively, the
auxiliary function is

!y f @ (y)
f (y)

"

y
1#y

with supremum of 1. If g(x) also has the
Michaelis}Menten form, then P( f ) )P(g)"1,
but neither auxiliary function actually achieves
the value 1. A pair of these functions will not
work as a switch.

In contrast, with the Hill function

f (y)"
1

1#y2
,

the function yp f (y) has a maximum for p(2 and
is increasing for p'2, implying that P( f )"2.



FIG. 5. Binding reactions for an operator site that con-
tains two subsites, each of which can be bound by a repres-
sor molecule. K

1
and K

2
are the equilibrium constants for

the binding reactions.
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Alternatively, the auxiliary function is

!yf @(y)
f (y)

"

2y2

1#y2
,

with a supremum of 2. There are thus parameter
values for which a pair of such Hill functions can
work as a switch. More generally, if

f (y)"
1

1#yn
,

then P ( f )"n. A pair of Hill functions f (y) and
g(x) must have P( f ) )P(g)'1 to work as
a switch. In the asymmetric case where
f (y)"1/(1#y) and g (x)"1/(1#xn) for n'1,
P( f ) )P(g)"1 ) n'1. A combination of the
Michaelis}Menten form with any Hill function
with exponent greater than one can work as
a switch with appropriate parameter values.

In each of these cases, we can compute P( f )
with the graphical method by "nding the largest
value of p for which yp f (y) approaches 0 as y
approaches in"nity. Although yp f (y) must have
a critical point for this p (by the Extreme Value
Theorem; Adler, 1998), it is possible for ypf (y) to
have a critical point for larger values of p. Com-
parison of the degrees of the numerator and the
denominator provides only a lower bound on the
value of P( f ).

MULTIPLE OPERATOR SITES

Consider a gene whose upstream region con-
tains multiple sites for repressor binding, each
with the same repressor a$nity. If the binding of
repressor molecules to di!erent sites is indepen-
dent, and the e!ects of binding on transcription
are additive (diminution of transcription rate is
proportional to the number of repressors bound),
then the system is indistinguishable (in terms of
repression function) from that with a single site.
An example of this situation would be a gene with
multiple promoters, each with its own indepen-
dently acting operator site.

Deviations from independence of binding or
from additivity of e!ect will change the repres-
sion function and might yield a working switch. If
the "rst bound repressor molecule facilitates the
binding of the second, this is called cooperativity
of binding. Cooperativity of binding is the
mechanism underlying the Hill function. This
phenomenon can also exist in the negative
form, i.e. binding at one site can interfere
with binding at another. In addition, the e!ect of
binding of a single repressor molecule need not
be precisely half the e!ect of binding of two
repressor molecules. In particular, binding of
a single repressor molecule might be su$cient to
repress transcription almost completely. This
is a likely state of a!airs when multiple repres-
sor binding sites are associated with a single
promoter.

In this section, we provide a complete analysis
of the case where two repressor molecules can
bind to the target operator, and some indications
of how these results extend to cases where more
than two repressor molecules can bind.

Analysis of the ¹wo-site Case

Binding can be described as in Fig. 5. K
1

and
K

2
are the equilibrium constants for binding of

the "rst and second repressor molecules and are
equal to the ratios of the rate constants for the
forward and reverse reactions.

If we ignore depletion due to binding and
equate free repressor with total repressor, the
relative quantities of states with 0, 1, and 2 bound
repressors are given by 1 :K

1
x : K

1
K

2
x2, where

x is the repressor concentration. To eliminate
parameters, we scale x by JK

1
K

2
and de"ne

b"S
K

1
4K

2

(15)

(the factor of four is a &&statistical factor'' that
accounts for the di!erent numbers of occupied
and unoccupied sites in each state; when binding
is non-cooperative, K

1
"4K

2
). The three states



FIG. 6. Contours for six values of r
2

below which the
switch operators. The values of r

2
, from the highest to the

lowest curve, are r
2
"0, r

2
"1/160, r

2
"1/80, r

2
"1/40,

r
2
"1/20, and r

2
"1/10. The switch cannot work if

r
2
*1/9.
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then occur in the ratio 1 : 2bx :x2 and b(1 indi-
cates (positive) cooperativity of binding. With
b"1 there is no cooperativity, binding at the
two sites is independent, and the three states
occur in binomial proportions.

Suppose that genes with one repressor binding
site occupied produce protein at rate r

1
and those

with both sites occupied produce protein at rate
r
2
, where 1*r

1
*r

2
. The total protein produc-

tion in terms of the scaled x is

g(x)"
1#2br

1
x#r

2
x2

1#2bx#x2
. (16)

Our goal is to "nd the set of values for which
P(g)'1.

We know that P(g)*1 when xg(x) has a criti-
cal point. The set of values where P(g)"1 are
those where that critical point is also a point of
in#ection. The equations

d
dx

xg(x)"0,

d2

d2x
xg(x)"0

can be expressed as a pair of simultaneous equa-
tions and solved for critical values of b and r

1
in

terms of r
2

and x as

b"
1!3r

2
x2

2r
2
x3 ,

r
1
"

x4r2
2
(x2!3)

1!3r
2
x2

.

These are parametric equations for b and r
1

which take on nonnegative values for

J3)x)S
1

3r
2

.

This inequality immediately requires that
r
2
(1/9 to create a switch. With r

2
"0, the criti-

cal values fall along the curve

4b2r
1
"1.
Contours for various values of r
2
(1/9 are

shown in Fig. 6. The region below each curve can
support a switch for that particular value of r

2
.

Smaller values of each of the parameters, corre-
sponding to more repression or more cooperativ-
ity of binding, are more conducive to making
a working switch.

With no cooperativity of binding (b"1), there
can be a switch only if r

1
and r

2
lie below the

critical parametric curve

r
1
"

x2!3
2x(2x#3)

, (17)

r
2
"

1
x2(2x#3)

(18)

(Fig. 7). Very small values of both r
1

and r
2

are
required; repression must be almost complete
even when only one repressor molecule is bound.

Several special cases help to illuminate these
results. If r

1
"0, indicating that binding at just

one site is su$cient for complete repression,
P(g)'1 and the system can work as a switch for
any b and r

2
(1/9. Similarly, with b"0 there is

complete cooperativity of binding, su$cient to
make the switch work for any feasible value of r

1
and r

2
(1/9. The Hill function with n"2 is the

special case with b"0 and r
2
"0.

In the absence of cooperativity of binding
(b"1), the value of r

1
must be less than 0.25 even



FIG. 7. The shaded region indicates the parameter values
for which a switch can work with b"1 (no cooperativity of
binding).
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in the best case r
2
"0. For example, with r

1
"1

and r
2
"0, i.e. when both sites must be occupied

for repression to occur, the switch does not work.
These special cases also provide examples

showing that a sigmoidal repression function
is neither necessary nor su$cient for making
a switch. With b"1, r

1
"1, and r

2
"0 the

repression function is

g(x)"
1#2x
(1#x)2

(19)

which has a sigmoidal graph. The auxiliary func-
tion is

G(x)"
2x2

1#3x#2x2

which never quite takes on its limiting value of 1.
Like a pair of Michaelis}Menten functions,
a pair of such repression functions could not
work as a switch, even though both are
sigmoidal.

Conversely, with b"1, r
1
"0 and r

2
"0, the

repression function

g(x)"
1

(1#x)2
(20)
has a graph that is everywhere concave up. The
auxiliary function is

!xg@(x)
g(x)

"

2x
1#x

which takes on values greater than 1 for x'1.
We can build a switch with a pair of these func-
tions by "nding values of k

1
and k

2
for which the

equations

1
(1#y)2

"k
1
x,

1
(1#x)2

"k
2
y

have solutions with x'1 and y'1. If we pick
x"y, this works for any values k

1
"k

2
(1/4.

More than ¹wo Sites

With more than two sites, "nding general re-
sults becomes di$cult due to the plethora of
parameters. Certain special cases are approach-
able and yield instructive results.

One analysable case is where binding at n sites
is completely cooperative (either zero or all n sites
are occupied) and repressor binding inhibits tran-
scription completely. This case is described by
the Hill functions analysed above, where it was
shown that P( f )"n.

Another analysable case is where binding at
n sites is non-cooperative and only the com-
pletely unbound state is transcribed. The shape of
the repression function is given by

f (y)"A
1

1#yB
n
.

It can be shown that in this case too P( f )"n.
This is an instance of a general property of the
functional P, namely that P( f n)"nP ( f ) for any
function f. In the limit as the number of sites goes
to in"nity, the fraction of genes in the unbound
state is given by the zero term of the Poisson
distribution, and hence has the form f (y)"e~y.
The auxiliary function is the linear function y, so
that P( f )"R. Any equilibrium with xy'1 is
su$cient to make a switch. This provides another
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example of a non-sigmoidal (concave up) repres-
sion function that can produce a switch.

THE EFFECT OF DEPLETION OF FREE REPRESSOR

The use of the Michaelis}Menten form to de-
scribe binding usually rests on an approximation
in which depletion of one free component due to
binding is ignored. If depletion of free repressor is
taken into account, a di!erent family of repres-
sion functions results. The ability of these exact
functions to form a switch must be investigated.

For simplicity, we assume that the decay rates
of free and bound repressor are equal. Decay is
therefore linear in total repressor concentration,
and the dynamics are described by an instance of
system (1). The more general case could be ana-
lysed using the results of Appendix B.

The standard treatment of chemical equilibria,
which does not apply to isolated cells with
a small number of binding sites each, is based on
the equilibrium condition

[OR]
[O][R]

"K
eq

, (21)

where [OR], [O], and [R] are the concentra-
tions of bound operator, free operator, and free
repressor, respectively. Suppose total concentra-
tions of repressor (y) and operator (D) are

y"[R]#[OR],

D"[O]#[OR].

The equilibrium condition [eqn (21)] leads to
a quadratic equation in the concentration of
bound operator sites. If concentrations are mea-
sured on a scale such that K

eq
"1, the relevant

solution for f (y), the equilibrium fraction of oper-
ator sites that are not bound by repressor, is

f (y)"
1

2D
[!y#D!1

#Jy2!2yD#2y#D2#2D#1]. (22)

The rate of transcription is proportional to the
fraction f (y). The shape of this function varies
with the parameter D; as D becomes small, f ap-
proaches the Michaelis}Menten form.

The auxiliary function for f (y), F(y)"
!y f @(y)/f (y), has a single critical point at
y"(D#1)2/D!1. A nonnegative critical point
exists only for D'1. When D)1, F(y) is
increasing for nonnegative y and the relevant
supremum of F(y) is given by lim

y?=
F(y), which

is always equal to one. Thus for D)1, P( f )"1,
just as for the Michaelis}Menten form. For
D'1, P( f )'1 and two such functions can form
a switch.

It would seem from the above that mass action
is, under some circumstances, a su$cient mech-
anism to make a working switch. However,
eqn (21) applies only when the number of oper-
ator sites is large. In reality, each cell contains
only a few operator sites. If there is just one
operator site in each cell, as there would often be
in a haploid cell with one operator site per
genome, the Michaelis}Menten form is exact (de-
pletion of repressor, which a!ects only the rate of
binding, occurs only when the single site is al-
ready occupied). Mass action therefore cannot
su$ce to make a switch in such a case. It may be
countered, however, that at least one of the rep-
ressors will regulate other genes, the ultimate
targets of regulation, and that therefore there will
be at least two operator sites for one of the
repressors. The presence of two operator sites is
su$cient to raise P above one (analysis not
shown), and a working switch could be construc-
ted with appropriate parameters. As the number
of operator sites in each cell becomes large, the
repression function approaches eqn (22).

Discussion

A two-repressor switch can be made to func-
tion, but only with appropriate choice of repres-
sion functions and constant parameters. A simple
graphical method, similar to that used by Collier
et al. (1996), allows assessment of the steady
states of such a system. This method involves
only two functions, each of which describes the
steady-state level of one repressor when the level
of the other is held constant. While these func-
tions do not completely characterize the dynam-
ics of the system, they are all that we need
to know to describe the number, position, and
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stability of the system's steady states. This con-
clusion holds equally well for a four-dimensional
system that models mRNA in addition to protein
concentrations (Appendix A). It also holds for
a more general class of systems than eqn (1)
(Appendix B). It is su$cient that fM and gN can be
de"ned, i.e. that if one repressor's concentration
is held constant, the other's reaches a unique
stable equilibrium.

This method leads to a useful characterisation
of functions, or rather shapes of functions.
A single number, P, characterizes a family of
functions with the same shape. In order for a pair
of functions to operate together as a switch, it is
necessary that the product of the values of P for
their families is at least one. If this product is
greater than one, a switch can be made using
functions from these families if parameter values
are chosen appropriately.

MECHANISMS FOR MAKING A SWITCH

A repressor}repressor system with a single
repressor-binding site per gene fails as a switch if
binding is well described by a Michaelis}Menten
equation. However, we have found several
features that can enable a regulatory system to
function as a switch.

Positive cooperativity of binding is one such
feature. It can result from non-independent bind-
ing at two adjacent operator sites, but a similar
phenomenon might result if repressor functions
only as a dimer and the monomer}monomer
a$nity is su$ciently weak. The model for Delta-
Notch signaling presented by Collier et al. (1996)
depends implicitly on cooperativity of binding
for its bistability. Several models of bistable sys-
tems involving only positive regulation (Tyson
& Othmer, 1978; Wolf & Eeckman, 1998) also
invoke cooperativity of binding.

A switch can also work when binding at any
one of multiple sites is su$cient for strong repres-
sion, even if there is no cooperativity of binding.
A simple case of this is where binding at either of
two operator sites is su$cient to inhibit tran-
scription completely. This phenomenon is
responsible for the bistability of Keller's (1995)
model &&E'' with the parameter values he ana-
lysed.

Simple mass action with a single repressor
binding site per gene copy can also be su$cient
for a switch if depletion of free repressor is signi"-
cant. For this to work there must be more than
one copy of the operator per cell, and the dis-
sociation constant for operator binding must be
su$ciently small. The latter requirement might
present a problem for the robustness of the switch
to stochastic #uctuations, as we discuss next.

ARE YOU A GOOD SWITCH OR A BAD SWITCH?

Our analysis has focused on the existence of
multiple steady states. While this is a sine qua non
for a switch, additional considerations are rel-
evant to the quality of the switch.

One important feature is separation of the
steady states, as illustrated in Fig. 8(b). Real
switches are subject to stochastic #uctuations or
noise (McAdams & Arkin, 1997). If the steady
states are close to one another, or rather if either
is close to the curve that separates the two basins
of attraction, then the switch will have poor im-
munity to noise. Even in the absence of noise it
may be desirable to have a large separation be-
tween the equilibria. The purpose of the switch is
to bring about changes in the expression levels of
other genes. The expression levels of the objects
of regulation will not be greatly a!ected by the
states of the switch if the steady states are close.
While downstream elements of the regulatory
circuitry might &&sharpen'' the distinction between
the states, it is simpler and perhaps better if the
switch itself provides good separation.

Another robustness criterion applies even to
systems with identical steady states. The very
existence of the switch may be threatened
by real-world #uctuations in parameters. For
example, a change of temperature will likely
a!ect the equilibrium constant for repressor
binding, and genetic background may a!ect all
of the parameters. With poor transversality of the
nullclines [Fig. 8(c)], a slight change to the sys-
tem can lead to loss of a steady state. Even
a transient loss of the switch will lead to loss of
the information stored by the switch. With highly
transverse nullclines [Fig. 8(a)], the system can
tolerate more movement of the nullclines without
the disappearance of a steady state.

Stochastic #uctuations in protein levels arise
in part because the number of protein and
mRNA molecules is "nite. Therefore, a switch
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with high concentrations of low-a$nity repres-
sors might be superior to one with low con-
centrations of high-a$nity repressors. The
advantage of noise reduction must be balanced
against the cost of additional protein production,
but this might be quite small. Note that these
alternatives are not distinguished by our non-
dimensionalized equations. If the number of op-
erator sites per cell is speci"ed, our description of
mass action with signi"cant depletion of free rep-
ressor does distinguish these possibilities. The
cases in which simple mass action can form
a switch require that the dissociation constant is
not large compared to the concentration of rep-
ressor sites, which will usually be only a few sites
per cell. A consequence is that just a few repressor
molecules in a cell will have a signi"cant e!ect on
transcription. This may reduce the robustness of
the switch to stochastic events.

REGULATION OF BACTERIOPHAGE j

Bacteriophage j is a virus that infects the
bacterium Escherichia coli. Various aspects of j
gene regulation have been subjects of theoretical
and numerical studies (Ackers et al., 1982; Shea
& Ackers, 1985; McAdams & Shapiro, 1995).
A portion of the j regulatory circuitry approxim-
ates a two-repressor switch (Ptashne, 1992). In
reality, this j system is somewhat more complic-
ated than those we have been discussing because
each of the two proteins involved can a!ect its
own rate of synthesis in addition to that of the
other protein.

Upon infecting a cell, j can proceed along two
di!erent pathways. In the lytic mode, j immedi-
ately begins directing the host cell's machinery
toward making more j phage. Cell lysis and
death follow in a relatively short period of time.
In the lysogenic pathway, j integrates its DNA
into the host chromosome. The integrated j
DNA, referred to as a prophage, replicates along
with the host DNA inde"nitely. In the lysogen,
the only phage-encoded protein produced is CI,
also known as j repressor. CI represses the syn-
thesis of all other j-encoded proteins, including
the repressor Cro.

When the &&SOS response'' of the cell occurs,
indicating DNA damage, the prophage is
&&induced'' to excise itself from the chromosome,
produce more phage, and eventually lyse the cell.
Induction occurs because RecA, altered by the
SOS response, cleaves the CI protein. This allows
production of Cro, which in turn represses syn-
thesis of CI.

It is not obvious that the CI-Cro network
needs to form a switch in the sense of having two
stable equilibria. It might be su$cient, from the
phage's point of view, for it to react to the current
status of the SOS response without any memory.
On the other hand, abortive induction by a tran-
sient SOS response might be disastrous for the



130 J. L. CHERRY AND F. R. ADLER
phage, and a mechanism for irrevocable commit-
ment to excision and lysis might be highly
advantageous. Furthermore, part of the phage's
repertoire, namely entry into the lytic pathway
upon infection, involves repression of CI syn-
thesis by Cro despite the absence of an SOS
response.

Experiments with arti"cial j-derived con-
structs suggest that the two-protein system does
constitute a switch in our sense (Toman et al.,
1985). Presumably, this is part of the reason that
two regulatory proteins, rather than a single rep-
ressor as in the lac operon, are involved in the
switch from lysogeny to lysis.

The CI protein represses the production of
Cro, and Cro represses the production of CI. In
addition to this mutual repression, CI activates
its own synthesis, and each protein can inhibit its
own synthesis, although this inhibition only
becomes important at relatively high concentra-
tions. The genes that encode the CI and Cro
proteins are adjacent and are transcribed, in op-
posite directions, from the region between the
two genes. A compound operator site (O

R
), con-

sisting of three subsites (O
R
1, O

R
2, and O

R
3), is

located between the genes and is involved in their
regulation. Both CI and Cro have a$nities for all
three operator subsites, but they have di!erent
preferences among the sites. Several features of
the system can be identi"ed that promote the
existence of two stable equilibria and hence a
working switch:

f Binding of CI to either O
R
1 or O

R
2 is su$cient

to turn o! production of Cro. As discussed
above, this e!ect alone can lead to the exist-
ence of two stable equilibria.

f Binding of CI to O
R
1 and O

R
2 exhibits a posit-

ive cooperativity. This e!ect could be su$cient
for the existence of a switch even if only one of
the sites were involved in turning o! transcrip-
tion.

f Like most bacterial repressors, functional CI is
a dimer. However, CI is unlike many other
repressors in that the a$nity of monomers for
each other is su$ciently low that monomers
are common over part of the physiological
range of protein concentrations. The need for
dimerization can be considered to be a form
of cooperativity of binding. This e!ect alone
could yield a switch, even if there were only
one binding site for repressor dimer.

f CI activates its own synthesis. This e!ect,
when combined with simple mutual repression
described by Michaelis}Menten functions,
would be su$cient to yield a switch (analysis
not shown).

It is gratifying that this j regulatory system has
some features that we have predicted to support
a switch. It is striking that the system possesses at
least four switch-promoting features when any
one would su$ce for the existence of a switch. As
discussed above, though the existence of two
stable equilibria is su$cient for a switch, other
considerations are important for the quality of
the switch.

We thank an anonymous reviewer for comments
that greatly improved this paper.
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APPENDIX A

Much gene regulation, including that mediated
by repressor proteins, occurs at the level of tran-
scription. A proper model of such a system must
take account of the dynamics of mRNA as well as
protein concentrations. Suppose that the rate of
protein production is proportional to the concen-
tration of the mRNA that encodes it, that the rate
of mRNA production is a function of the concen-
tration of the repressor protein that regulates it,
and that all components decay with "rst-order
kinetics. If N and M are the concentrations of the
mRNAs measured on an appropriate scale, then
the two-repressor system is described by the
system

dx
dt

"N!k
1
x,

dN
dt

"f (y)!d
1
N,
dy
dt

"M!k
2
y,

dM
dt

"g(x)!d
2
M. (A.1)

The behavior of this system is similar in many
ways to that of system 1. If y is held constant,
then N reaches a stable equilibrium at f (y)/d

1
,

and x will then settle at N/k
1
"f (y)/k

1
d
1
. Thus,

if the concentration of one repressor is held con-
stant, that of the other will settle at some value. It
is therefore possible to de"ne fM (y) as the equilib-
rium value of x when y is held constant, and
analogously de"ne gN . For the four-dimensional
model,

fM (y)"
f (y)
k
1
d
1

,

gN (x)"
g(x)
k
2
d
2

. (A.2)

In the four-dimensional case, as in the two-
dimensional simpli"cation, fM"c

1
f and gN "c

2
g.

Furthermore, it is again a necessary and su$cient
condition for an equilibrium of the system that
fM (gN (x))"x. Crossings of the diagonal by the func-
tion fM (gN (x)) therefore correspond exactly to the
equilibria of the system. Recall that for the two-
dimensional system, crossings from below corres-
pond to unstable equilibria whereas crossings
from above represent stable ones. The stability of
the four-dimensional system can be evaluated
using the Routh}Hurwitz criteria (Murray,
1993). The Jacobian matrix for system (A.1) is

!k
1

1 0 0

0 !d
1

f @ (y) 0

0 0 !k
2

1

g@(x) 0 0 !d
2

.

The characteristic polynomial of this matrix is

j4#(d
1
#d

2
#k

2
#k

1
)j3

#(k
1
d
1
#d

1
d
2
#d

1
k
2
#k

2
d
2
#k

1
d
2
#k

1
k
2
)j2
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#(k
1
d
1
d
2
#k

1
d
1
k
2
#d

1
k
2
d
2
#k

1
k
2
d
2
)j

#k
1
d
1
k
2
d
2
!f @ (y)g@ (x).

The Routh}Hurwitz criteria for stability involve
the non-leading coe$cients of the characteristic
polynomial, designated a

1
}a

4
. For system (A.1),

a
1
"d

1
#d

2
#k

2
#k

1
,

a
2
"k

1
d
1
#d

1
d
2
#d

1
k
2
#k

2
d
2
#k

1
d
2
#k

1
k
2
,

a
3
"k

1
d
1
d
2
#k

1
d
1
k
2
#d

1
k
2
d
2
#k

1
k
2
d
2
,

a
4
"k

1
d
1
k
2
d
2
!g@ (x) f @ (y).

The criteria for stability are

a
1
'0,

a
1
a
2
'a

3
,

a
1
a
2
a
3
'a2

3
#a2

1
a
4
,

a
4
'0.

The "rst two of these criteria are met by virtue of
the fact that d

1
, d

2
, k

1
, and k

2
are all positive. The

third criterion is equivalent to

(k
2
#k

1
)(d

2
#k

2
)(d

2
#k

1
)(k

2
#d

1
)(d

1
#k

1
)(d

1
#d

2
)

#(d
1
#d

2
#k

2
#k

1
)2 f @ (y)g@(x)'0.

This condition is guaranteed to be satis"ed when
the signs of f @ and g@ are the same, as must always
be the case for a repressor}repressor or ac-
tivator}activator system. The fourth condition,
a
4
'0, is equivalent to

k
1
d
1
k
2
d
2
!f @ (y)g@(x)'0.

We can rewrite the inequality as

f @ (y)
k
1
d
1

g@(x)
k
2
d
2

(1

or
f @ (y)gN @ (x)(1.
At an equilibrium point, y"gN (x), and the condi-
tion is equivalent to

fM @ (gN (x))gN @ (x)(1.

The l.h.s. of this inequality is the derivative of the
function fM (gN (x)). Thus when fM (gN (x)) crosses the
diagonal with derivative less than one, the equi-
librium is stable, whereas when it crosses with
derivative greater than one it is unstable (we
leave unanalysed the case where an intersection
occurs with derivative equal to one). Thus, our
conclusions regarding the ability of di!erent
shapes of repression functions to make a switch
continue to hold when the dynamics of mRNA
are taken into account.

APPENDIX B

System 1 does not apply when decay is other
than "rst order or when proteins a!ect the rates
of their own synthesis. Nonetheless, many biolo-
gically relevant instances of the more general
form

dx
dt

"f (x, y),

dy
dt

"g(x, y) (B.1)

will have the property that if the concentration of
one of the proteins is held constant, that of the
other will settle at a unique value. This occurs
when the one-dimensional system dx/dt"
f (x, y), with constant y, always has exactly one
equilibrium in the range of interest, and this equi-
librium is stable, and the symmetrical criteria
hold for dy/dt"g (x, y). Let the one-dimensional
equilibrium points be given by fM and gN , respective-
ly [ fM (y) and gN (x) are the x and y nullclines of the
two-dimensional system]. The equilibria of the
two-dimensional system are exactly those points
where both x"fM (y) and y"gN (x). At such points
x"fM (gN (x)), just as in the special case discussed in
the main text [system (1)], and equilibria corres-
pond to crossings of the diagonal by fM (gN (x)). The
stability of an equilibrium can be evaluated based
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on the Jacobian matrix of the system, namely

f
1
(x, y) f

2
(x, y)

g
1
(x, y) g

2
(x, y)

where the f
i
and g

i
are the partial derivatives of

f and g. From the supposition that the one-
dimensional equilibria are stable, we know that f

1
and g

2
are non-positive. We will ignore the cases

where they are equal to zero. The trace of the
matrix must be negative. The stability of an
equilibrium then depends on the value of the
determinant. If the determinant is positive, the
equilibrium is stable. If it is negative, the equilib-
rium is unstable (in particular it is a saddle point).
The condition for stability is therefore

f
1
(x, y)g

2
(x, y)!f

2
(x, y)g

1
(x, y)'0.

Because the one-dimensional equilibria are as-
sumed to be stable, f

1
(x, y) and g

2
(x, y) must

both be negative at any equilibrium of the full
system. Rearrangement gives

A
f
2
(x, y)

f
1
(x, y)B A

g
1
(x, y)

g
2
(x, y)B(1.

At equilibrium points, y"gN (x) and x"fM (y), and
the condition can be written

A
f
2
( fM (y), y)

f
1
( fM (y), y)B A

g
1
(x, gN (x))

g
2
(x, gN (x))B(1. (B.2)

Note that

f ( fM (y), y)"0

and therefore

d( f ( fM (y), y))
dy

"f
1

( fM (y), y) fM @ (y)#f
2
( fM (y), y)"0.
It follows that

f
2

( fM (y), y)
f
1
( fM (y), y)

"!fM @ (y)

at an equilibrium point, and similarly that

g
1
(x, gN (x))

g
2
(x, gN (x))

"!gN @ (x).

Substitution into eqn (B.2) yields

fM @ (y)gN @(x)(1

or, because this is an equilibrium,

fM @ (gN (x))gN @ (x)(1.

The l.h.s. of this inequality is the derivative of the
function fM (gN (x)). Therefore when this composi-
tion crosses the diagonal from above, except with
derivative equal to one, the corresponding equi-
librium is stable. Where it crosses from below
with derivative not equal to one, the equilibrium
is unstable. Our analysis of the shapes of func-
tions, including our condition on the products of
the values of P for two functions, therefore can be
extended to all systems of the form of system (B.1)
where fM and gN exist. In the special case given by
system (1), fM was proportional to f, P( f ) was equal
to P( fM ), and we freely interchanged f and fM in our
analysis of functional shapes. In the more general
case, such interchange is not possible, and only
the shapes of the nullclines can be analysed. The
condition for a working switch is P( fM ) )P(gN )'1.
When this condition holds, bistability is possible
with nullclines of the forms k

1
fM (y) and k

2
gN (x) for

some values of k
1

and k
2
. These are the nullclines

of f (x/k
1
, y) and g(x, y/k

2
).
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