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Abstract For many infectious diseases, immunity wanes over time. The majority of
SIRS models assume that this loss of immunity takes place at a constant rate. We
study temporary immunity within a SIRS model structure if the rate of loss of immu-
nity can depend on the time since recovery from disease. We determine the conditions
under which the endemic steady state becomes unstable and periodic oscillations set
in, showing that a fairly rapid change between slow and rapid immunity loss is nec-
essary to produce oscillations.
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1 Introduction

Compartmental models for microparasitic infectious diseases separate a population
into classes depending upon the stages of infection (Anderson and May 1992). In
simple compartmental models, the disease is either eradicated or reaches a stable en-
demic equilibrium, depending upon its basic reproductive ratio. Complex dynamics
may arise due to seasonality or pathological effects. Many diseases, such as measles,
mumps, rubella, chicken pox and pertussis, show periodicity in incidence due to
whole array of potential causes: periodic transmission rates, host age-structure, in-
teractions between multiple strains, complex incidence, variable population size, and
disease-related death (Hethcote and Levin 1989).
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Loss of immunity creates another time delay that can destabilize dynamics. Child-
hood diseases like measles have essentially lifelong immunity, although the impor-
tance of “boosting” due to later exposure remains unclear (Krugman et al. 1965).
Other diseases, however, show immunity that wanes either due to loss of immune
memory in hosts or evolution of the disease itself (Pease 1987). Models that in-
clude multiple levels of immunity that wanes in the absence of antigen but can be
boosted with re-exposure create non-constant rates of decay of immunity (Heffernan
and Keeling 2009).

Temporary immunity has been addressed previously in the theoretical literature.
Hethcote (1976) modeled vital disease dynamics and its endemicity in a closed popu-
lation both with and without temporary immunity. Stech and Williams (1981) studied
temporary immunity within a SIRS epidemic model structure and derived sufficient
conditions for global stability of the endemic equilibrium. Hethcote et al. (1981)
considered an epidemic model for a closed population, described by integral and
integro-differential equation, to determine the effect of time delays in development
of periodic oscillations. When temporary immunity was of constant duration, corre-
sponding to a delay, they showed that locally asymptotically stable small amplitude
periodic solutions exist in the appropriate parameter range. They also showed that
a γ -distributed time delay can be modeled by a chain of n subclasses within the re-
moved class as an SIR1R2 . . .RnS model can support periodic solutions when n ≥ 3.
A related study (Hethcote et al. 1981) of a constant population SEIS model showed
no periodicity in the absence of immunity. This model complements the model with
temporary immunity by introducing the delay before rather than after the infectious
period.

Cooke and van den Driessche (1996) considered an SEIRS model with two fixed
delays, corresponding to latent and immune periods. Hethcote (1985) added a sepa-
rate class to represent temporary acquired immunity for newborn infants in an MSEIR
model (Hethcote 1985, 2000). Including a distribution of times in the infected class
rather than the immune class creates substantial effects on the dynamics, particularly
with regard to disease extinction (Keeling and Grenfell 1997).

White and Medley (1998) developed a model framework corresponding to contin-
uous temporary immunity. Hosts were distributed over a continuous range of immu-
nity with immune levels varying within the host due to waning immunity between
exposures and increasing immunity during infection. Gomes et al. (2005) developed
a model with a constant rate of loss of immunity, but looked at the related effects of
partial immunity within the same framework.

Introducing delays in the duration of immunity by using integro-differential equa-
tions was suggested by Brauer and Castillo-Chávez (2001). Kyrychko and Blyuss
(2005) studied temporary immunity and non-linear incidence rates, finding depen-
dence of oscillatory dynamics on the immunity period τ , with the amplitude of os-
cillations increasing with longer duration immunity. In a more recent paper, Blyuss
and Kyrychko (2010) study epidemic models with varying immunity. They model the
system with delay differential equations, in which temporary immunity wanes with
time. They analyze the local and global stability of the endemic steady states using
Lyapunov functions and show that the endemic equilibrium is stable, and use a nu-
merical bifurcation analysis to show that the endemic equilibrium can lose stability
and give rise to stable periodic solutions.
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Other recent work considers temporary immunity in a SIRS model structure using
delay differential equations (DDEs), where R and S classes are coupled using a fixed
delay in the removed class (Taylor and Carr 2009). In these models, only a fraction
of the recovered population returns to the susceptible class, with the rest remaining
permanently immune. Using asymptotic methods they determine how oscillations
depend upon the parameters, primarily the duration of the delay and the fraction of
individuals who become susceptible again. With a fixed delay, they show that it is
possible to obtain periodic epidemics via a Hopf bifurcation of the endemic steady
state, and that longer delays lead to larger epidemics with longer periods.

The present article considers more generally the role of temporary immunity in a
population. We consider a generalization of the SIR model in a closed population.
Every recovered individual returns to the susceptible class at a rate that depends upon
time since recovery. The model is mathematically formulated using a combination of
ordinary and partial differential equations. This model is more general because the
kernel function defining the rate of loss of immunity models a specific distribution of
immune times instead of introducing a fixed period of temporary immunity. We show
that the shape of this function determines whether or not the delays in the model can
support oscillations.

2 The Mathematical Model

Our SIRS model consists of a temporarily immune class which loses immunity at rate
ρ(τ) as a function of the time τ since recovery:

dS

dt
= −βI (t)S(t) +

(∫ ∞

0
ρ(τ)R(τ, t) dτ

)
(1)

dI

dt
= βI (t)S(t) − γ I (t) (2)

∂R

∂t
+ ∂R

∂τ
= −ρ(τ)R(τ, t) (3)

S(t), I (t), R(τ, t) represent the susceptible, infected and recovered population, re-
spectively, and we use the initial conditions S(0) = S0, I (0) = I0, R(τ,0) = 0 and
boundary condition R(0, t) = γ I (t). The parameter β gives the rate of transmis-
sion of the disease and γ is the rate of recovery of the infected class. We assume
constant population size and scale the total population size N(t) = S(t) + I (t) +∫ ∞

0 R(τ, t) dτ = 1. The probability that an immune individual remains immune at

time τ after recovery is l(τ ) = e− ∫ τ
0 ρ(s) ds . We assume that limτ→∞ l(τ ) = 0, or

equivalently that
∫ ∞

0 ρ(τ) dτ = ∞. To avoid divergence of the integrals, we assume
that ρ(τ) is bounded for τ large, which is the situation for all cases considered here.
The mean to loss of immunity is L = ∫ ∞

0 l(τ ) dτ .

2.1 Steady States

This model, like a standard SIR model, has basic reproduction ratio R0 = β
γ

. Equa-
tions (1)–(3) have two steady states, the disease-free steady state (S∗ = 1, I ∗ = 0,
R∗(τ ) = 0) and, when R0 > 1. an endemic steady state
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S∗ = 1

R0
(4)

I ∗ = β − γ

β(1 + γ
∫ ∞

0 l(τ ) dτ)
(5)

R∗(τ ) = γ I ∗l(τ ) (6)

For the stability analysis of the disease-free steady state we consider perturbations
around the equilibrium point of the form

S = 1 + x0e
λt

I = y0e
λt

R(τ, t) = z0(τ )eλt

Substituting these into Eqs. (1)–(3) and evaluating gives

x0λ =
∫ ∞

0
ρ(τ)z0(τ ) dτ − βy0

y0λ = (β − γ )y0

z0(τ ) = γy0e
−λτ l(τ )

The corresponding characteristic equation is given by

det

(−λ (γ − β) − λγ
∫ ∞

0 l(τ )e−λτ dτ

0 (β − γ ) − λ

)
= 0

which has the roots λ = 0 and λ = (β − γ ). Therefore the disease-free steady state is
stable for λ < 0, or when R0 < 1.

We analyze the stability of the non-zero endemic state using linear stability analy-
sis by perturbing around the equilibrium and assuming exponential growth of pertur-
bations or

S = S∗ + x0e
λt

I = I ∗ + y0e
λt

R(τ, t) = R∗(τ ) + z0(τ )eλt

Substituting into Eqs. (1)–(3) and evaluating at the equilibrium gives

λx0 = −βI ∗x0 − βS∗y0 +
∫ ∞

0
ρ(τ)z0(τ ) dτ

λy0 = βI ∗x0 + βS∗y0 − γy0

We can solve for z(τ ) = γy0l(τ )e−λτ by substituting into Eq. (3). With this substitu-
tion, the equations for x0 and y0 can be written as the matrix equation

λ

(
x0
y0

)
=

(−βI ∗ −γ + γF

βI ∗ 0

)(
x0
y0

)

where F = ∫ ∞
0 ρ(τ)l(τ )e−λτ dτ . Substituting in the solution for z(τ ) and integrating

by parts gives the simplification F = 1 − λ
∫ ∞

0 l(τ )e−λτ dτ . The matrix equation has
a non-trivial solution when

det

(−βI ∗ − λ −λγ
∫ ∞

0 l(τ )e−λτ dτ

βI ∗ −λ

)
= 0
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Fig. 1 Comparison of the ρ(τ)

functions. ε = 0 corresponds to
the step function, while
ε = 10,100 corresponds to the
second smoother function

This has a root when λ = 0 due to the assumption of constant population size, and
other roots that solve the characteristic equation

λ + βI ∗ = −γβI ∗
(∫ ∞

0
l(τ )e−λτ dτ

)
(7)

To determine the stability of the endemic equilibrium we need to determine whether
any of the solutions of the characteristic equation have positive real parts.

We break Eq. (7) into real and imaginary parts, as λ = a + iω where a and ω are
real. Then

a + βI ∗ = −γβI ∗C(ω) (8)

ω = γβI ∗S(ω) (9)

where C(ω) and S(ω) are the sine and cosine transforms of l(τ ) defined by

C(ω) =
∫ ∞

0
l(τ )e−aτ cos(ωτ)dτ (10)

S(ω) =
∫ ∞

0
l(τ )e−aτ sin(ωτ)dτ (11)

A necessary condition for Eq. (8) to have a solution with positive a is that
C(ω) < 0 for some ω when a = 0. However, this is impossible when l(τ ) is every-
where concave up, or l′′(τ ) > 0 for all τ (Tuck 2006). This shows immediately that
linear instability cannot occur when ρ(τ) is constant, because l(τ ) is then a declining
exponential which is everywhere concave up.

Two other cases can be shown directly to fail to support oscillations. If ρ(τ) in-
creases linearly in time according to ρ(τ) = ρ1τ , then

l(τ ) = e
−ρ1τ2

2
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Although this function is not everywhere concave up, with a = 0,

C(ω) =
√

π

2ρ1
e

ω2
2ρ1

which is everywhere positive.
The linear function

l(τ ) =
{

1 − ρ1τ for τ ≤ 1
ρ1

0 for τ > 1
ρ1

cannot support oscillations. It is associated with the hazard

ρ(τ) = − l′(τ )

l(τ )
= ρ1

1 − ρ1τ

for τ ≤ 1/ρ1. Although this function increases quickly to infinity, this increase, as in
the linear case, is not sufficiently fast to support oscillations.

To simplify further analysis, we use two forms for ρ(τ). One is a step function,
which introduces two different rates of transfer from the R class depending on the
time since recovery. Initially everyone loses immunity slowly, but this rate of loss
jumps to a higher value after some fixed time. The second function is a smoothed
version of the step function where the rate of loss of immunity increases gradually
with time since recovery (Fig. 1).

2.2 Step Function

We assume

ρ(τ) =
{

ρ1, 0 < τ ≤ T

ρ2, T ≤ τ < ∞ (12)

In this case, we can evaluate each of the key functions in the characteristic equation
explicitly. In particular,

l(τ ) =
{

e−ρ1τ if 0 < τ ≤ T

e−ρ1T e−ρ2(τ−T ) if T ≤ τ < ∞
and the mean time of immunity is

L = 1 − e−ρ1T

ρ1
+ e−ρ1T

ρ2

which reduces to L = T + 1/ρ2 if ρ1 = 0. The cosine and sine transforms for a = 0
are

C(ω) = ρ1

ρ2
1 + ω2

+ (ρ2 − ρ1)e
−ρ1T

(ρ2
1 + ω2)(ρ2

2 + ω2)

× ((
ω2 − ρ1ρ2

)
cos(ωT ) + ω(ρ1 + ρ2) sin(ωT )

)

S(ω) = ω

ρ2
1 + ω2

+ (ρ2 − ρ1)e
−ρ1T

(ρ2
1 + ω2)(ρ2

2 + ω2)

× ((
ω2 − ρ1ρ2

)
sin(ωT ) − ω(ρ1 + ρ2) cos(ωT )

)
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Fig. 2 Effect of the choice of ρ1 on (a). The smallest value of ρ2 above which oscillations can arise for a
given value of ρ1 with the given value of T and γ = 0.1. (b). The ratio of the period of the oscillation to the
delay T at this critical value (c). The value of the contact rate β at this critical value. (d) The equilibrium
I∗ at this critical value

Because the value of C(ω) must be negative for the system to be unstable, we can
see immediately that this is impossible if ρ2 = ρ1, which corresponds to the constant
rate case.

If we choose a value of γ , we can numerically find the smallest value of ρ2 which
produces instability for given values of ρ1 and T . For all values of T , there is critical
value of ρ1 above which no value of ρ2 is sufficiently large to produce an oscillation
(Fig. 2a). At onset, the oscillation has a period roughly twice that length of the time
T between the change in rates of loss of immunity (Fig. 2b).

2.3 A Continuous Function

We now consider a continuous approximation of the step function,

ρ(τ) = ρ2 tan−1( T
ε
) + π

2 ρ1 + (ρ2 − ρ1) tan−1( τ−T
ε

)

π
2 + tan−1( T

ε
)

(13)

This function is normalized to set ρ(0) = ρ1 and ρ(∞) = ρ2. The parameter ε gives
the time scale of the change between slow and fast rates of recovery.

We choose values of the parameters for which the step function produces oscilla-
tions, and examine how ε affects the eigenvalues. Because a rather abrupt change in
the rate is required to induce instability, we find that smoothing the curve stabilizes
the interaction well before the curve becomes everywhere concave up (Fig. 3).
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Fig. 3 Effect of the smoothing parameter ε on stability of the positive equilibrium. (a) The real part of the
eigenvalue a given by Eq. (8) as a function of ε with ρ1 = 0, γ = 0.1, T = 500, β = 0.112 and ρ2 = 0.005
chosen to lie above the curve in Fig. 2a. (b) The shape of l(τ ) as a function of ε with the parameter
values in (a). The black curve shows the value ε = 312 where stability switches. (c) As in (a) but with
ρ1 = 0.0028 (to correspond to loss of immunity in roughly one year), γ = 0.1, T = 300, β = 0.141 and
ρ2 = 0.05. (d) The shape of l(τ ) with the parameter values in (b)

3 Discussion

This paper develops a mathematical approach for understanding the disease dynam-
ics of a population in the presence of waning temporary immunity. The majority of
SIRS models of temporary immunity have considered a constant rate of removal for
the recovered individuals into the susceptible class, or loss of immunity after a fixed
delay. However, temporary immunity is likely to wane at an increasing rate. Using
both a step function and a smooth increasing function, we show this increase must be
sufficiently large and fast for a Hopf bifurcation to occur, and confirm with numer-
ical study. Introducing a delay in the R class can generate oscillations, but we here
demonstrated that oscillations can exist in an SIRS model in the presence of a waning
temporary immunity.

Alternative models consider instead a partial loss of immunity, again finding the
possibility of oscillations at least in the presence of non-linear incidence (Gomes
et al. 2004, 2005). Our analysis assumes that each individual switches from complete
immunity to complete susceptibility, although the population will consist of a mix of
these two types at any given time since recovery (Taylor and Carr 2009). It would be
interesting to compare the results of the present model with one that includes partial
immunity at the individual level.
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Our model also neglects the possibility that immune individuals can have the im-
munity boosted upon re-encountering the disease, a factor considered in several ex-
isting models through inclusion of additional internal states (Heffernan and Keeling
2009; Rouderfer et al. 1994; Glass and Grenfell 2003). This factor could be included
by resetting τ , the time since recovery, to its initial value. Similarly, vaccination adds
individuals to the immune class, with potentially different rates of immunity loss
from those who suffered actual infections. These models could show interesting dy-
namics, because adding vaccination to SIRS models with variable infective and re-
covery rates can introduce backward bifurcations (Kribs-Zaleta and Martcheva 2002;
Schenzle 1984).

For diseases like influenza which produce only temporary immunity, cocirculation
of multiple disease strains is common. Models of multiple disease strains often ex-
hibit oscillatory dynamics (Dawes and Gog 2002; Dietz 1979; Ferguson et al. 2003).
The present model could also be extended to include more than one disease strain to
study how waning temporary immunity affects population dynamics and the strain
coexistence.
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