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Super- and Coinfection: Filling the Range

Frederick R. Adler and Julio Mosquera Losada

10.1 Introduction
How many different strains of a disease can coexist in a single population of hosts?
What effect do different mechanisms of coexistence have on the properties of dis-
eases? The principle of competitive exclusion (Armstrong and McGehee 1980;
Levin 1970) states that no more species can coexist in a system than the number
of resources or limiting factors allow, which can be thought of, somewhat impre-
cisely, as stating that a single trade-off can support only a single species – the one
that deals best with that trade-off. Disease models describe a simple ecological
interaction, with hosts acting as resources, to test the limits of competitive exclu-
sion. Trade-offs for the disease often involve virulence, a trait of abiding interest
to hosts.

In the absence of a trade-off between host mortality and transmission efficiency,
the disease strain with the lowest virulence would always win out in competi-
tion, and diseases would be favored to evolve ever-reduced virulence. When such
a trade-off between host mortality and transmission efficiency exists, the single
strain that maximizes the basic reproduction ratio R0 will persist (see Boxes 2.2,
5.1, and 9.1; Bremermann and Thieme 1989). Ecological factors that affect this
trade-off, such as host density, might favor higher or lower virulence (Ewald
1994a). However, in the absence of spatial or temporal variation in these fac-
tors, only one strain persists [but see Andreasen and Pugliese (1995) for a case in
which coexistence is due to density-dependence in the host].

As many authors have shown, including an additional trade-off between viru-
lence and competitive ability (ability to take over from or share hosts with less
virulent strains) may not only favor higher levels of virulence, but may also sup-
port coexistence of multiple strains (Hastings 1980; Levin and Pimentel 1981).
In fact, this single additional trade-off has the potential to support an entire con-
tinuum of strains (May and Nowak 1994, 1995; Nowak and May 1994; Tilman
1994; see also Chapter 9). In addition, the pattern of coexistence has been shown
to differ depending on the mode of interaction between strains, whether it is coin-
fection (two strains sharing the same host) or superinfection (one strain having the
capability to quickly take over a host from another).

This chapter investigates two issues related to this coexistence based on some
earlier work (Mosquera and Adler 1998; Adler and Mosquera 2000). Mosquera
and Adler (1998) explicitly derive the superinfection model as a limit of the coin-
fection model, based on the argument that hosts are removed rapidly from the
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doubly infected class through either recovery or death. This sort of derivation
points out an often neglected subtlety of the super- and coinfection processes: the
existence of a discontinuous function relating virulence to the ability to coinfect or
superinfect (Pugliese 2000).

Let the coinfection function φ(α, η) describe the rate at which a strain with
virulence α can coinfect a host infected with strain with virulence η, relative to
its ability to infect an uninfected host (Mosquera and Adler 1998, Pugliese 2000).
This function will be increasing in α and decreasing in η. Competition is asym-
metric because more virulent strains have an advantage within hosts. Other models
have used a step function for the coinfection function (see Figure 10.2a), such as

φ(α, η) =
{

σ if α > η

0 if α ≤ η
(10.1)

(Tilman 1994; May and Nowak 1994). Biologically, a slightly more virulent strain
has the same advantage as a much more virulent strain, which is probably quite
unrealistic. Mathematically, φ(α, η) is discontinuous at α = η.

Mosquera and Adler (1998) derived pairwise invasibility plots for smooth forms
of the coinfection function, showing that the picture changes qualitatively when
φ(α, η) is continuous or differentiable at α = η (Figures 10.2b to 10.2d). Further-
more, the possibilities for coexistence in superinfection models differ depending
on how the superinfection limit is approached (the mechanism by which doubly
infected hosts are rapidly removed). Pairwise invasibility plots, however, address
only two strains at a time. They show that every strain is invasible when the coin-
fection function is discontinuous, but cannot reveal the actual diversity of creatures
that can coexist in the model.

In related work, Adler and Mosquera (2000) investigated diversity in a super-
infection model, simplified by ignoring the trade-off between virulence and trans-
mission efficiency. Smoothing the superinfection function (so that it has a contin-
uous second derivative) eliminates the infinite number of strains that can coexist.
Smooth superinfection functions can, when sufficiently steep at α = η, support a
large number of strains, but the number depends sensitively on the slope.

This chapter outlines an approach to diversity and virulence with two trade-
offs: the trade-off between virulence and transmission efficiency, and that between
virulence and coinfection ability. We present the coinfection model, and take the
superinfection limit. The shape of the resultant superinfection function depends
both on the underlying assumptions about the coinfection process and on how the
superinfection limit is approached. We then examine the number and virulence
of coexisting strains. Management of virulence through public health measures
requires an understanding of the sensitivity of the results to the details of intra-
host competition.

10.2 Coinfection and the Superinfection Limit
Complete models of coinfection can be crushed by the weight of their own nota-
tion. Authors have avoided this collapse by assuming that the interaction between
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strains is simple (May and Nowak 1995; see also Chapter 9), weak (Adler and
Brunet 1991), or that hosts can harbor no more than two strains at one time (Van
Baalen and Sabelis 1995a).

To illustrate some of the complexity and to introduce the notation, we present a
model of a population of hosts beset by many strains of a disease. For simplicity,
we assume that the population size is constant and that a single host can be infected
by no more than two strains simultaneously. The variables α and η both represent
the virulence level and index the disease strains. Let i(α) denote the fraction of
hosts infected only by strain α, and i(α, η) denote doubly infected hosts who were
first infected with strain α and later with η (Figure 10.1). If β(α) gives the rate of
infection of susceptible hosts by strain α, the differential equations describing this
system are

di(α)

dt
= β(α)(1 − i++)i+(α) − αi(α)

+
∫ [

θ1(η, α)i(η, α) + θ2(η, α)i(α, η)
]

dη

−
∫

β(η)φ(η, α)i+(η)i(α) dη , (10.2a)

di(α, η)

dt
= β(η)φ(η, α)i+(η)i(α)

−
[
(θ1(α, η) + θ2(η, α) + δ(α, η)

]
i(α, η) . (10.2b)

The shorthand i++ represents the total infected fraction, or

i++ =
∫

i(α)dα +
∫∫

i(α, η) dη dα , (10.2c)

while i+(α) represents the total infectivity of strain α or

i+(α) = i(α) +
∫ [

i(α, η) + i(η, α)
]

dη . (10.2d)

θ1(α, η) gives the rate of recovery from strain α if infected first by α, θ2(α, η) gives
the rate of recovery from strain α if infected second by α, and δ(α, η) gives the
death rate when infected first by α and then by η. The notation is summarized in
Figure 10.1.

There are four ways that the virulence of a strain affects its success. First, it
has a direct effect on mortality. Second, the infectiousness β(α) generally is an
increasing function of α. More virulent strains have an advantage in transmis-
sion. In the absence of coinfection or superinfection, the strain that maximizes the
ratio of transmission efficiency β(α) to virulence α excludes all others in compe-
tition (Bremermann and Thieme 1989). Third, the coinfection function φ(α, η)

describes how virulence determines the ability of strain α to coinfect strain η.
Finally, the virulence might affect the rate of recovery from each strain and the

host mortality in doubly infected hosts. If hosts infected with two strains tend
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θ1(α,η)

θ2(α,η)

i(α)
Singly infected

by strain α

i(α,η)
Doubly infected

by α then η

i(η)
Singly infected

by strain η

i(η, α)
Doubly infected

by η then α

1� i++
Susceptible
population

β(α)i+(α) β(η)i+(η)

θ1(η, α)

θ2(η,α)

Births to balance deaths

β(α) φ(α,η)i+(α)

ηα

β(η)φ(η, α) i+(η)

δ(η, α) δ(α,η)

Figure 10.1 Transitions in the general coinfection model. Hosts can be infected with at
most two strains. The arrows give the per capita rate at which hosts move from one category
to another; arrows pointing into empty space represent deaths.

to recover from the less virulent strain, then the more virulent strain has another
advantage in intra-host competition. If hosts tend to recover from the more virulent
strain, then the less virulent strain acts as a vaccine, and might be using the host
immune system to gain an advantage in intra-host competition. If doubly infected
hosts die quickly, the model reduces to the single-infection case (Mosquera and
Adler 1998).

Suppose that Equation (10.2b) has reached equilibrium. We can solve for
i(α, η) and obtain

i(α, η) = β(η)φ(η, α)i+(η)i(α)

θ1(α, η) + θ2(η, α) + δ(α, η)
. (10.3)

If the dynamics within hosts are fast relative to the infection dynamics, we can
substitute Equation (10.3) into the differential Equation (10.2a) for i(α) to find

di(α)

dt
= β(α)(1 − i++)i+(α) − αi(α)

+
∫

θ1(η, α)

θ1(η, α) + θ2(α, η) + δ(η, α)
β(α)φ(α, η)i+(α)i(η) dη

−
∫

θ1(α, η) + δ(α, η)

θ1(α, η) + θ2(η, α) + δ(α, η)
β(η)φ(η, α)i+(η)i(α) dη . (10.4)



142 C · Within-Host Interactions

(a) (b)

η
0

η
0

(c) (d)

η
0

η
0

Virulence of second strain, α

Ro
le

 o
f 

su
pe

rin
fe

ct
io

n,
 φ∼

(α
,η

)

Figure 10.2 Four possible shapes of the superinfection function. Each shows the rate at
which strain α takes over individuals already infected with strain η. In the first three panels,
a less virulent strain cannot superinfect. (a) The discontinuous case, in which a slightly more
virulent strain has a high ability to superinfect. (b) The piecewise differentiable case, in
which the ability to superinfect begins increasing immediately. (c) The differentiable case,
in which the ability to superinfect shows no sharp change at α = η. (d) The differentiable
case, in which less virulent strains superinfect more virulent strains at a low rate.

Although this might appear to be a one-dimensional superinfection model because
doubly infected hosts are not tracked explicitly, they appear implicitly in i+(α)

and i+(η), the total infectivity of strains α and η. To write a closed system solely
in terms of i(α) and i(η), we generalize the approach of Mosquera and Adler
(1998) by considering the limiting case in which hosts are removed rapidly from
the doubly infected class. In this case, i+(α) = i(α) and Equation (10.4) becomes

di(α)

dt
=

{
β(α)(1 − i++) − α

+
∫ [

β(α)φ̃(α, η) − β(η)φ̃(η, α)
]
i(η) dη

}
i(α)

+ β(η)δ̃(α, η) , (10.5a)

where

φ̃(α, η) = θ1(η, α)

θ1(η, α) + θ2(α, η) + δ(η, α)
φ(α, η) , (10.5b)

and

δ̃(α, η) = δ(α, η)

θ1(α, η) + θ2(η, α) + δ(α, η)
. (10.5c)

The form of the superinfection function φ̃(α, η) depends on the coinfection func-
tion φ(α, η) and the mechanism that leads to quick removal of hosts from the
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doubly infected class. Most simply, hosts could be removed quickly if one of the
three terms of the denominator of φ̃(α, η) is large:

� Rapid mortality when doubly infected [large value of δ(α, η)]. In this case,
φ̃(α, η) = 0 and the coinfection process is irrelevant (this rapid mortality does
matter when host population size can change). We do not consider this case
explicitly and henceforth assume that δ̃(α, η) = 0.

� Rapid recovery from the less virulent strain [large values of θ1(α, η) and
θ2(α, η) if α < η]. In this case, φ̃(α, η) = 0 when α < η because a less
virulent strain cannot superinfect (Figures 10.2a to 10.2c).

� Rapid recovery from the more virulent strain [large values of θ1(α, η) and
θ2(α, η) if α > η]. In this case, φ̃(α, η) = 0 when α > η. A less virulent
strain acts as a vaccine, favoring evolution of a lower level of virulence (results
not shown).

In addition, it is possible that individuals recover rapidly from strains as a function
of absolute rather than relative virulence. For example, suppose that θ1(α, η) =
θ2(α, η) = θ0α for some large value of θ0, meaning that recovery is proportional
to virulence. The superinfection function is

φ̃(α, η) = η

η + α
φ(α, η) . (10.6)

This particular choice for the recovery rate reduces the advantage of more virulent
strains in a superinfection model.

If the coinfection function is nonvanishing for α < η, the superinfection func-
tion retains this property (Figure 10.2d). A less virulent strain can take over hosts
from a more virulent strain, although probably at a low rate.

10.3 Coexistence and the Superinfection Function
The shape of the superinfection function affects several aspects of the evolutionary
outcome in the system:

� the value and existence of an evolutionarily stable strategy (ESS);
� the number of strains in an evolutionarily stable coalition when there is no ESS;
� the abundances of strains in the evolutionarily stable coalition.

We illustrate results with pairwise invasibility plots to show the structural differ-
ences among the cases, and with numerical simulations of multiple strains in com-
petition.

As a baseline, we compute the ESS in the single-infection case. A single strain
α in isolation follows the equation

di(α)

dt
= [β(α)(1 − i++) − α

]
i(α) , (10.7a)
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with stable equilibrium at

i∗(α) = i∗++ = 1 − α

β(α)
. (10.7b)

In the absence of superinfection, the ESS occurs where i∗++ is maximized. With
the function

β(α) = 5
α2

4 + α2
, (10.8)

the ESS virulence level in the single-infection case is equal to 2.
With superinfection, the per capita growth rate of a strain α invading a popula-

tion at equilibrium for strain η is

f (α, η) = β(α)(1 − i∗++) − α +
[
β(α)φ̃(α, η) − β(α)φ̃(η, α)

]
i∗++ , (10.9)

where i∗++ = i∗(η) obeys the equilibrium for strain η [Equation (10.7b)]. A critical
point or evolutionary singularity (Geritz et al. 1998) occurs where

∂ f (α, η)

∂α

∣∣∣∣
α=η

= 0 . (10.10)

The second derivative of f (α, η) with respect to α is negative if β ′′(α) < 0, mean-
ing that this critical point is a local maximum when transmission shows dimin-
ishing returns. When the critical point becomes invasible, therefore, the invad-
ing strain has virulence rather different from that of the former ESS. From Equa-
tion (10.9), the critical point occurs where

∂ f (α, η)

∂α

∣∣∣∣
α=η

= β ′(α)(1 − i∗++) − 1

+
[
β ′(α)φ̃(α, α) + β(α)

∂φ̃(α, η)

∂α

∣∣∣∣
α=η

−β(α)
∂φ̃(η, α)

∂α

∣∣∣∣
α=η

]
i∗++ = 0 . (10.11)

The critical point depends on both the value and the derivative of the superinfection
function at the point α = η. Positive values of φ̃(α, α) or of the derivative of
φ̃(α, η) increase the virulence at the critical point above that in the single-infection
case.

With a discontinuous superinfection function (Figure 10.2a), every strain can be
invaded by a slightly more virulent strain (Figure 10.3a). There is thus no critical
point or candidate ESS, although highly virulent strains can be invaded only by
slightly more virulent strains. The resultant coalition (not shown) does not consist
of one of the many pairs of mutually invasible strains that appear in black in the
pairwise invasibility plot, but of a continuum of strains (Tilman 1994; May and
Nowak 1994). Although any single strain could be invaded by a more virulent
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Figure 10.3 Pairwise invasibility plots. The virulence of strain 1 is plotted on the horizontal
axis, and the virulence of strain 2 is plotted on the vertical axis. In the lightly shaded regions,
strain 1 can invade strain 2, in the darker regions strain 2 can invade strain 1, and in the
black regions both can invade each other. In each case, the transmission function is β(α) =
5α2/(4+α2), chosen to set the uninvasible virulence at α = 2 in the absence of coinfection
[Equation (10.8)]. (a) Discontinuous superinfection function (Figure 10.2a). (b) Piecewise
differentiable superinfection function (Figure 10.2b). With x = α − η, the functional form
is φ̃(α, η) = σ x/1+σ x if α > η and φ̃(α, η) = 0 if α < η. The parameter σ represents the
slope at x = 0, and is set to σ = 1. (c) Differentiable superinfection function (Figure 10.2c).
With x = α − η, the functional form is φ̃(α, η) = σ x2/1 + σ x2 if α > η and φ̃(α, η) = 0
if α < η. The parameter σ is set to σ = 1. (d) Differentiable superinfection function with
nonvanishing invasion rate by a less virulent strain (Figure 10.2d). The functional form,
with x = π/2(α − η), is φ̃(α, η) = 2/π tan−1(σ x) + c, where σ is the slope at x = 0. The
slope at x = 0 is set to 1.

strain, the mix of more and less virulent strains in the coalition places an upper
bound on the persisting virulence.

A piecewise differentiable superinfection function (Figure 10.2b) does include
a critical point (Figure 10.3b). As the slope of the positive part of the curve in-
creases, the virulence at the critical point increases and then undergoes evolu-
tionary branching (Figure 10.4). With the parameter values in Figure 10.3b, the
critical value is unstable, and thus can be invaded by a less virulent strain. With
a yet steeper slope, the coalition includes several less virulent strains. Unlike the
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Figure 10.4 Evolutionary outcomes for the piecewise differentiable superinfection func-
tion (Figure 10.2b). Slopes σ at α = η are 0.5, 1.0, and 2.0 in panels (a), (b), and (c),
respectively. The simulations are based on forty evenly spaced strains started from uniform
initial conditions and were run until convergence occurred.

discontinuous case, the number of strains increases one by one as the slope of the
superinfection function is increased.

A differentiable superinfection function with no invasion by less virulent strains
(Figure 10.2c) maintains the critical point at α = 2, even as the positive part of
the curve increases more quickly (Figure 10.3c). This occurs because the slope
at α = η is always 0 (Mosquera and Adler 1998). As the curve increases more
quickly, the ESS value remains at 2 until it bifurcates, when the more common
strain both begins to increase in virulence and is invaded by a less common strain
of even higher virulence (Figure 10.5). With a more rapid increase in the curve,
more strains join the coalition one by one. This case differs from the piecewise
differentiable case in that virulence levels only increase after the critical point
destabilizes, and in that the most common strain is the least rather than the most
virulent.

A differentiable superinfection function that allows some invasion by less viru-
lent strains (Figure 10.2d) produces results most similar to the piecewise differen-
tiable case because the slope at α = η is neither infinite (as in the discontinuous
case) nor 0 (as in the differentiable case). In both cases, the critical virulence in-
creases as the slope increases, and the coalitions that arise are dominated by the
most virulent strain (Figure 10.6).
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Figure 10.5 Evolutionary outcomes for the differentiable superinfection function (Fig-
ure 10.2c). The parameter σ takes on values 0.5, 1.0, and 2.0 in panels (a), (b), and (c),
respectively.

However, the virulence levels supported in this case tend to be higher because of
the additional mixing among strains. As a simple example, consider the invasion
criterion in Equation (10.11) in the simplified case in which any strain can take
over from any other at the same rate, or φ̃(α, η) = φ for any α and η. Substituting
into Equation (10.11) gives

∂ f (α, η)

∂α
|α=η = β ′(α)(1 − i++ + φi++) − 1 = 0 . (10.12)

Substituting for i++ [Equation (10.7b)] and solving for β ′(α) gives the condition

β ′(α) = β(α)/α

1 − φ + φβ(α)/α
. (10.13)

When φ = 0, this reduces to the usual condition (Mosquera and Adler 1998). If
we treat the critical value of α as a function of φ and differentiate both sides, it is
not difficult to show that α is an increasing function of φ at φ = 0. Superinfection,
even in the absence of any competitive advantage for the more virulent strains,
favors strains with higher virulence.

10.4 Discussion
The virulence and coexistence results obtained from models of coinfection depend
on the assumptions underlying the coinfection process:
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Figure 10.6 Evolutionary outcomes for the differentiable superinfection function with non-
vanishing invasion rate by the less virulent strain (Figure 10.2d). The slope σ at α = η is
0.5, 1.0, and 2.0 in panels (a), (b), and (c), respectively.

� Which strains can coinfect;
� How coinfection depends on the virulence of the two strains;
� The fate of doubly infected hosts.

When the time scale of double infection is short, these assumptions manifest them-
selves in the shape of the superinfection function in the resultant model.

The evolutionarily stable coalition that results depends on the shape of the su-
perinfection function for similar strains. If there is a discontinuity, so that slightly
more virulent strains can superinfect at a high rate, a continuum of strains can
coexist. This result vanishes with a continuous function. In general, as the slope
becomes larger, the community adds strains one by one, with a concomitant in-
crease in average virulence. Furthermore, a nonvanishing rate of superinfection by
identical strains increases the virulence in any coalition. The virulence of the most
abundant strain in the coalition also depends on the shape of the superinfection
function. Only for the differentiable superinfection function (see Figure 10.5) is
the least virulent strain the most common.

Different shapes of the superinfection function thus produce different patterns
of coexistence, with more detailed differences including whether the most abun-
dant strain is the most or least virulent. Ideally, these predictions could be com-
pared with estimates of real superinfection functions to test whether the real sys-
tems exist in the region of parameter space where large numbers of strains can
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coexist, or whether this particular trade-off tends to support only a few strains with
a characteristic pattern of abundance.

Is manipulation of the superinfection function a viable strategy for virulence
management? In general, reducing the extent of superinfection reduces virulence.
More specifically, our models show that decreasing the competitive advantage of
more virulent strains reduces not only the mean virulence, but also the variance in
virulence that provides the potential for further evolution. Any control measures
that selectively harm more virulent strains could help control virulence in both the
short and long term.
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