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Abstract. A single trade-off between competitive ability and mortality has been shown
to support an arbitrarily large number of species in models of interference competition in
spatially structured populations. We show that this results not from spatial structure, but
instead from the assumption that a small difference in mortality translates into a large
difference in competitive ability. We present graphical criteria for recognizing functions
that support one, two, or more species. High levels of coexistence in models of this form
depend on a steep slope or a discontinuous second derivative of the function relating
mortality to competitiveness. These criteria are identical to those in models of interference
competition that lack explicit spatial structure.
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INTRODUCTION

In some guilds of organisms, there is a trade-off
between density-independent components of fitness
(survivorship, fecundity, or colonization ability) and
competitiveness (Tilman 1994). Organisms with a high
mortality rate might be able to competitively displace
those with a lower rate if they allocate little energy to
defense and a great deal to rapid growth (Adler 1999).
Plants with few large seeds might be able to outcompete
those with many small seeds (Geritz 1995, Rees and
Westoby 1997a, Geritz et al. 1988). Highly virulent
pathogens might be able to take over hosts from less
virulent strains (May and Nowak 1994). Recent theo-
retical work has demonstrated that a high degree of
coexistence is possible in groups of species that share
trade-offs of this sort (May and Nowak 1994, Tilman
1994, Geritz 1995).

In an influential paper, Tilman (1994) extended ear-
lier work (Hastings 1980) and showed that an arbi-
trarily large number of competing species can coexist
in a spatially structured habitat. Identical results hold
in a model of disease competition (May and Nowak
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1994). We show that the high degree of coexistence is
due to a simplified model of interference competition
and not to spatial structure.

In particular, assume there is a trade-off between
mortality and competitive ability. Picture a species with
a higher mortality rate competing with a species with
a lower mortality rate. In the simplified model, a spe-
cies that has only a slightly higher mortality rate than
its competitor displaces that competitor just as fast as
a species with a much higher mortality rate (May and
Nowak 1994, Tilman 1994). More mathematically, the
function describing competitive ability as a function of
mortality rate is discontinuous (Mosquera and Adler
1998; Pugliese, in press).

We show that smoothing out this competitiveness
function eliminates much of the coexistence. If the
function has the particularly nice property of being
analytic (meaning that it has an infinite number of de-
rivatives and is equal to its Taylor series), only a dis-
crete set of species can coexist. We use bifurcation
analysis and simulation to indicate that the transition
from infinite coexistence to a discrete number of spe-
cies occurs when the competitiveness function acquires
a continuous second derivative.

Furthermore, the same results hold in a model with-
out explicit spatial structure, where interference com-
petition is modeled as frequency dependence (Rees and
Westoby 1997). Again, the smoothness of the trade-off
curve relating mortality (or other density-independent
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FIG. 1. Per capita transition rates for the basic model. The
dynamics of two species with mortality rates m and z. The
arrows are labeled with the per-patch transition rates.

components of fitness) to success in interference com-
petition determines the extent of coexistence.

Mathematical niceties like the existence of a second
derivative would be impossible to detect in data. We
argue that stochasticity tends to smooth out functions,
implying that the trade-off between mortality and com-
petition will tend to support only a few species in real
systems, with or without spatial structuring.

THE MODEL

The basic model is outlined schematically in Fig. 1.
The world is broken up into patches or safe sites (Til-
man 1994) that can be occupied by a single individual
at a time. The fraction of sites occupied by a species
with mortality rate m will be denoted by p(m). The
total fraction of sites occupied is

T 5 p(m) dm. (1)E
A species with mortality rate m can lose or gain a

site in four ways (Fig. 1):
1) lose occupied sites through death (per site rate

m);
2) lose occupied sites by being taken over by any

another species (per site rate # a(z, m)p(z) dz);
3) take over sites occupied by any other species z

(net rate # a(m, z)p(z)p(m) dz);
4) take over empty sites (net rate (1 2 T )p(m), where

the colonization rate of empty sites has been scaled
to 1).

The function a(m, z) describes the rate at which m
takes over from z relative to the colonization rate of

empty sites and has been called the superinfection func-
tion in an epidemiological context (Mosquera and Ad-
ler 1998). If a higher mortality rate leads to higher
competitive ability, as we assume here, a(m, z) will be
an increasing function of m. The fraction of sites oc-
cupied by species m obeys the differential equation

dp(m)
5 1 2 T 2 m 1 a(m, z)p(z) dzE1dt

2 a(z, m)p(z) dz p(m). (2)E 2
For simplicity, we assume that a(m, z) 5 a(m 2 z),

meaning that the rate of takeover is a function only of
the difference between the two mortality rates. In this
case, we can rewrite Eq. 2 as

dp(m)
5 1 2 T 2 m 1 b(m 2 z)p(z) dz p(m) (3)E1 2dt

where

b(m 2 z) 5 a(m 2 z) 2 a(z 2 m). (4)

The competitiveness function b describes the net rate
of takeover of sites occupied by species z by individuals
from species m. It is necessarily true that

b(0) 5 0 b(z) . 0 if z . 0 b(2z) 5 2b(z).

We assume that b has a negative (or zero) second de-
rivative for positive values of its argument, meaning
that higher competitiveness produces diminishing re-
turns. Various versions of the competitiveness function
b are shown in Fig. 2. We scale limz→` b(z) 5 1 to
match the rate at which species take over empty sites.

Our goal is to find stable equilibria, consisting po-
tentially of a coalition of species (those species present
at positive frequency), that cannot be invaded by any
other species. At equilibrium, the per capita reproduc-
tion of each member of the coalition must be zero. For
the equilibrium to be uninvadable, the per capita re-
production of every species absent from the coalition
must be nonpositive. Denoting the coalition as the set
V, the per capita reproduction of any species m is given
by the invasion function f (m):

f (m) 5 1 2 T 2 m 1 b(m 2 z)p(z) dz. (5)E
z∈V

The coalition is uninvadable if

f (m) 5 0 if m ∈ V

f (m) # 0 if m ∉ V. (6)

RESULTS

How many species will be members of a stable co-
alition for different forms of the competitiveness func-
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FIG. 2. Three versions of the competitiveness function b:
(a) discontinuous, wherein a species with a slight advantage
takes over as readily as a species with a large advantage; (b)
analytic, using the form b(z) 5 2/p tan21(p/2 z) [the factors
of p/2 normalize the slope at z 5 0 and limz→`b(z) to be equal
to 1]; (c) discontinuous second derivative, using the form b(z)
5 z / (1 1 zzz).

tion b? We verify that discontinuous forms for the com-
petitiveness function b support a coalition that consists
of a whole continuum of species (May and Nowak
1994, Tilman 1994). In contrast, coalitions supported
by an analytic (very smooth) form of the competitive-
ness function b cannot include such a continuum of
species. For such functions, we identify the conditions
under which one or two species can form a coalition.
In contrast, a competitiveness function with a discon-
tinuous second derivative never supports a coalition
with exactly two species. Finally, we show that the
same results hold when the competitiveness function
describes frequency-dependent competition in a non-
spatial model.

Infinite coexistence with a discontinuous
competitiveness function

Previous papers (May and Nowak 1994, Tilman
1994) have analyzed one particularly simple form for
the function b, the step function

s if m . z
b(m 2 z) 5 (7)52s if m , z

(Fig. 2a). In this case, a species with high mortality
takes over at rate s even when it is only slightly dif-
ferent. It is straightforward to show that the coalition
with

1 2s
p(m) 5 for 0 # m #

2s 1 1 s

is stable (Appendix A). This discontinuous competi-
tiveness function b produces a continuum of species in
the coalition.

Finite coalition with an analytic
competitiveness function

In contrast to this discontinuous function, analytic
functions are extremely smooth. Not only do they have
an infinite number of continuous derivatives, but they
have a Taylor series that is equal to the function at all
points (Rudin 1974). A coalition that includes a con-
tinuum of species is impossible with any nonlinear an-
alytic function (the linear case is degenerate). The proof
is sketched in Appendix B. There could, however, be
a coalition consisting of a large number of discrete
species.

Condition for a single-species coalition

When will a single species repel all invasions? We
show in Appendix C that such a species must have the
mortality rate m 5 0 (the lowest possible mortality).
A species with mortality m cannot invade the species
with mortality 0 if it gains sites (rate b(m)) at a lower
rate than it loses sites (rate m). Because we have as-
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FIG. 3. Coalition of two coexisting species after the initial
bifurcation. Here the competitiveness function has a contin-
uous third derivative at z 5 0 and slope b9(0) 5 s 5 1.2. The
species with higher mortality is approximately twice as com-
mon (Eq. 17).

FIG. 4. The reduced function h (Eq. 9) derived from two
versions of the competitiveness function b. (a) Analytic, using
the form in Fig. 2b. The reduced function is increasing for z
, 0.964, the maximum possible value of the mortality rate
in a two-species coalition (the coalition breaks up for values
much below this). (b) Discontinuous second derivative, using
the form in Fig. 2c. The reduced function is decreasing, and
there can be no two-species coalition.

sumed that the competitiveness function b is concave
down, b(m) , m for all m . 0 if and only if

b9(0) , 1. (8)

The slope of the competitiveness function b at 0 de-
termines whether a single species, the least competi-
tive, can repel all others. If the benefits of higher com-
petitiveness are high enough, species with higher mor-
tality and higher competitiveness can invade.

Conditions for a two-species coalition

Suppose that the slope b9(0) of the invasion function
is indeed greater than 1, meaning that no single species
can be uninvadable. When will there be a coalition of
two species that can repel all others? The details, laid
out in Appendix D, can be summarized in the following
graphical criterion.

Denote the slope b9(0) by s. Define the ‘‘reduced
function’’ h(z) as

b(z)
1 2

sz
h(z) 5 . (9)

z

The reduced function h will be continuous if b has a
continuous second derivative because the two divisions
by z effectively remove two derivatives of b.

The graphical method requires checking whether the
reduced function h(z) is increasing for small values of
z . 0. If it is increasing, the number of species in the
coalition increases from one to two when the slope s
crosses 1. For s , 1, the single species m 5 0 forms
an uninvadable coalition. For s slightly greater than 1,
there is an uninvadable two-species coalition (Fig. 3).
In this case, the species with the higher mortality rate

has a population that is generally twice as large as that
of the species with m 5 0 (Appendix D).

As an example, consider the analytic function based
on arctangent:

2 p
21b(z) 5 tan sz (10)1 2p 2

normalized to have slope of s at z 5 0 and a limit of
1 as z → ` (Fig. 2b). The reduced function is

2 p
211 2 tan sz1 2psz 2

h(z) 5 .
z

This function is increasing for small positive values of
its argument (Fig. 4a). In this case, the number of spe-
cies in the coalition changes from one to two as s cross-
es 1 (as in Fig. 3).
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FIG. 5. Equilibrium coalitions found by simulation. The
figures show a range of values of the slope s for (a) the
analytic form (Eq. 10) and (b) the form with discontinuous
second derivative (Eq. 11). Coalitions are read vertically for
each value of s in the range from 1 to 10, with the lines
indicating strategies present at equilibrium. Simulations of
Eq. 2 were run up to time 100 000, starting from initial con-
ditions of 50 evenly spaced equally common strategies.

Alternatively, consider the following function:

sz
b(z) 5 (11)

1 1 szzz

with discontinuous second derivative at z 5 0 (Fig. 2c).
The reduced function is

s
h(z) 5

1 1 sz

for z . 0 (Fig. 4b). This function is everywhere de-
creasing, thus the coalition jumps from one species to
more than two species when the slope s crosses 1.

Simulation results

When the competitiveness function has a reduced
function h(z) that is increasing for small positive values
of z (meaning that it has a continuous second deriva-
tive), the uninvadable coalition bifurcates from a single
species at m 5 0 when the slope s , 1 to a two-species
coalition when s . 1. Algebraic methods become too
complicated for slopes far from 1. Fig. 5a shows results
of a simulation of many competing species using an
analytic competitiveness function. In accord with the
theory, the population always includes the strategy m
5 0. The coalition has two species over the range s 5
1 to s 5 1.96 (this value can be found using the theory
in Appendix D), then splits to 3 (over the range of
approximately s 5 2 to s 5 2.8), then quickly to 4 and
more species as s increases further. When the function
has a discontinuous second derivative, there is no stable
two-species coalition. Simulation results indicate that
the coalition includes many species for any s . 1 (Fig.
5b). Although neither our simulation nor our analysis
can prove it, we believe that the coalition includes a
continuum of species.

Space is not necessary

Rees and Westoby (1997) present a model for evo-
lution and diversity of seed size that differs substan-
tially in structure from that used here. They model a
trade-off between seed size (competitiveness) and seed
number (fecundity, rather than mortality). Furthermore,
their model describes a well-mixed population rather
than one where interactions occur in discrete sites.
Mathematically, their model takes place in discrete
rather than continuous time. Nonetheless, the conclu-
sions of the present analysis apply to their model.

We use our notation to present a simplified model
that follows the dynamics of the number of seeds of
size s. Let N(s) and N9(s) represent the number of seeds
size s in the present and subsequent generations re-
spectively. Then,

l(s)N(s)
N9(s) 5 . (12)

`

1 1 a a(u 2 s)N(u) duE
0

The function l(s) is a decreasing function representing
the lower fecundity of adult plants with larger seed
size, and a(u 2 s) is an increasing function describing
the competitive effect of an individual seed of size u
on a seed of size s. The parameter a is chosen to scale
a(0) 5 1.

All of the results derived for the spatially structured
model hold when l(s) is decreasing, and a is suitably
symmetric (Appendix E). An infinite coalition of spe-
cies exists when a is discontinuous. Only a finite co-
alition is possible when the function a is analytic. If
the competitiveness function of a is differentiable, the
evolutionarily stable coalition bifurcates from a single
species with the minimum seed size into a two-species
coalition as the slope of a increases only if the com-
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petitiveness function also has a continuous second de-
rivative. In fact, if l(s) is a linear function, the con-
ditions are identical to those for the spatially structured
model.

DISCUSSION

How many species coexist based on a trade-off be-
tween some component of density-independent fitness
and competitiveness? Contrary to an expectation de-
rived from an imprecise verbal version of the principle
of competitive exclusion (Levin 1970, Levin et al.
1977, Armstrong and McGehee 1980), this number can
be infinite in models with interference competition and
spatial structure (May and Nowak 1994, Tilman 1994).
We have checked whether that surprising conclusion
holds up when the trade-off between mortality and
competitive ability is modeled over a wider range of
conditions, and whether it depends on spatial structure.

Smoothing the competitiveness function, which de-
scribes competitive success as a function of mortality
rate, greatly reduces this coexistence. Mathematically,
an analytic competitiveness function can support only
a discrete set of species. In fact, unless the slope of
the competitiveness function is steep, meaning that a
slightly higher mortality rate leads to a much higher
competitive ability, we predict that only a few species
will coexist based solely on this trade-off. Similar re-
sults have been found in a model of seed size evolution
where a higher degree of competitive asymmetry tends
to support larger numbers of coexisting seed sizes (Ger-
itz et al. 1998).

We have also shown that the conditions for coexis-
tence in a spatially structured patch model match those
in a randomly mixing model of interference competi-
tion, highlighting the similarity between different
‘‘theory lineages’’ (Fagerstrom and Westoby 1997).
Space is not necessary to support high diversity in sys-
tems of this sort, only a steep or discontinuous com-
petitiveness function.

What sort of competitiveness functions might be ex-
pected in nature? Analytic functions are visually in-
distinguishable from functions lacking a continuous
second derivative (Fig. 2). These idealized curves, of
course, would have to be derived from data plotting
probability of successful takeover as a function of the
mortality rates. Probability of takeover would be sub-
ject to noise, such as random differences between sites
or arrival times. This stochasticity could be thought of
as creating a ‘‘realized’’ strategy that is not equal to
the ‘‘genetic’’ strategy. If the realized strategy differs
from the genetic strategy according to a normal dis-
tribution (or any other smooth distribution), arguments
similar to those in Appendix B indicate that the realized
competitiveness function will be analytic, and only a
small number of species will coexist.

Although stochasticity also plays a role in mediating
the extent of coexistence in models of exploitation
competition for a continuum of resource types, the ef-
fects of stochasticity are not consistent among models
(Abrams 1983) and operate through a mechanism that
seems unrelated to smoothing of the competitiveness
function.

We have here considered only one trade-off, between
competition and mortality, assuming that all species
have equal colonization rates. The general result that the
number of species depends sensitively on the smooth-
ness of the competitiveness function carries over to cases
that include trade-offs between colonization and com-
petition or mortality (Adler and Mosquera, in press; Pug-
liese, in press). However, the detailed predictions about
the initial bifurcation may no longer hold.

The relevance of these results depends on the shape,
and indeed the existence, of the competitiveness func-
tion (Banks 1997). The results here show that the extent
of coexistence depends primarily on the slope of the
function for similar species. Testing would require find-
ing species with similar mortality rates (or other den-
sity-independent components of fitness), and finding
the effects of each on the other through interference
competition. For example, in the case of the trade-off
between seed size and fecundity, species with larger
seeds do have higher establishment success, but do not
necessarily win in all sites (Turnbull et al. 1999).

We suggest measuring the slope of the curve relating
mortality or fecundity to the probability of success in
competition. In the absence of other trade-offs, we pre-
dict that such systems will support only one species if
the slope is less than 1, two species if the slope is less
than ;2, and more species only if the slope is larger
than 2. Furthermore, these models predict that the spe-
cies with the highest mortality (or largest seed size)
will be most abundant.
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APPENDIX A

A formula for the continuous coalition supported by a discontinuous competitiveness function is available in ESA’s
Electronic Data Archive: Ecological Archives E081-027-A1.

APPENDIX B

Proof that an analytic function b cannot support a stable coalition with a continuum of species is available in ESA’s
Electronic Data Archive: Ecological Archives E081-027-A2.

APPENDIX C

Theoretical conditions for a single-species coalition is available in ESA’s Electronic Data Archive: Ecological Archives
E081-027-A3.

APPENDIX D

Theoretical conditions for a two-species coalition is available in ESA’s Electronic Data Archive: Ecological Archives E081-
027-A4.

APPENDIX E

Results with a nonspatial model are available in ESA’s Electronic Data Archive: Ecological Archives E081-027-A5.


