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ABSTRACT Explanations of self-thinning in plant popu-
lations have focused on plant shape and packing. A dynamic
model based on the structure of local interactions successfully
reproduces the pattern and can be approximated to identify
key parameters and relationships. The approach generates
testable new explanations for differences between species and
populations, unifies self-thinning with other patterns in plant
population dynamics, and indicates why organisms other than
plants can follow the law.

Ecological patterns tend to be obscured by noise. Those that
stand out must derive from robust structural or dynamical
principles. One such pattern is the 23y2 self-thinning law for
plant populations (1, 2). As individuals in a competing popu-
lation of even-aged plants grow, their mean biomass, B,
increases and their number, n, decreases, with the trajectory
plotting log(B) against log(n) often approaching a line with
slope near 23y2, or

log~B! 5 c 2 1.5 log~n! [1]

for a wide range of species (1, 2). Some sample forestry data
are shown in Fig. 1. The graphs plot the log mean size against
the log number of trees over time, starting in the lower right
corner with a large number of plants of small size, and moving
up and to the left as the number of plants decline and the plants
grow.
Deviations from a slope of 23y2 are common (4–7). Ex-

isting theories derive self-thinning from packing arguments
that lack individual mechanisms and explain variation around
the expected relation by making specific assumptions about
packing (4–11). I here derive the relation and the deviations
from a dynamic model of local resource competition that
provides a testable individual level mechanism underpinning
these packing arguments. This model suggests an alternative
way to analyze data, unifies the law with the development of
size hierarchies in plant population dynamics, and indicates
why populations of algae (12) and animals (13) might have
similar dynamics.

A General Model of Local Competition

The decrease in numbers during self-thinning results from
mortality that preferentially strikes plants that have fallen
behind in growth (1, 2, 5–7). The basic differential equation
describing growth is

dyi
dt

5 ri yi , [2]

where yi is the mass of plant i and ri is its relative growth rate.
In a competing population, ri depends on local resource
availability, which depends in turn on the size of and distance
to neighbors, in addition to other abiotic and biotic sources of
heterogeneity.

In the model, the relative growth rate ri is built from a local
competition function that describes the per unit mass effect of
a plant of mass y at distance d. We assume that plant j takes
resources from plant i at distance dij according to

effect5 yj
k1g~yj

k2, dij!.

The ‘‘local competition function’’ g must be increasing in y,
decreasing in d, and have scaling g(y, 0) 5 1. The exponent k1
scales maximum resource absorption as a function of mass, and
k2 scales how effect decreases with distance (Fig. 2). A large
value of k1 exaggerates the local effect of large plants and
describes one form of asymmetric competition (14, 15) (Fig. 2
Lower Left). A large value of k2 stretches the spatial extent of
effects of large plants and produces another form of asymme-
try (Fig. 2 Lower Right). These differences correspond to
differences in the resource exploitation profiles of plants of
different sizes, and link this argument with arguments based on
shape (8).
The total competitive effect gi(t) at time t on plant i is the

sum

gi~t! 5 O
j5/ i
yj
k1g~yj

k2, dij!. [3]

If ri is proportional to the fraction of local absorption con-
trolled by plant i, growth obeys

dyi
dt

5
yi
k1

yi
k1 1 gi

yi, [4]

where the maximum relative growth rate has been scaled to 1.
When gi is small relative to yi, the plant grows exponentially
near its maximum rate. When gi is large relative to yi, growth
nearly stops. Simulations of the model generate an increasingly
skewed size hierarchy. The model is a generalization of earlier
models that used particular forms of the local competition
function (16–18).

Effective Number and the Size Hierarchy

Because the model does not include mortality, I recast the
self-thinning process in terms of the ‘‘effective number’’ of
plants. The effective numberN gives less weight to small plants
that can modify the self-thinning relation (19) or are not
counted (3). Formally, N is the reciprocal of the probability
that two units of mass chosen at random from the population
come from the same plant, or

N 5
1

Oi51
n pi

2 5

S Oi51
n yiD 2

Oi51
n yi

2 5
yT
2

M2
, [5]

where pi is the fraction of mass in plant i, yT is the total biomass,
andM2 is the second moment of the biomass distribution. The
effective number N is less than or equal to the census number
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effective mean biomass M is the total biomass divided by the
effective number, or M 5 yTyN 5 M2yyT.
Writing effective number and mean size in terms of the

moments of the distribution, the self-thinning relation M }
N23/2 translates to M2 } yT4. In terms of effective number, the
23y2 self-thinning law encodes a particular power function
relation between moments of the mass distribution. In general,
M2 } yT

p corresponds to

M } N
2
p21
p22 . [6]

p. 2 indicates development of a size hierarchy, p, 2 indicates
a decrease in the size hierarchy, and p 5 2 indicates equal
growth with no development of a size hierarchy.

Simulation Results

The particular value p 5 4 arises from the dynamics of local
competition. Fig. 3 plots log(M) against log(N) generated by
simulations using exponential, Gaussian, fractional, and step
function versions of the local competition function, the last

corresponding to neighborhood models (17, 20). In each case,
the slope approaches the value 23y2, although the Gaussian
form produces a steeper slope for reasons explained below.
Even with initial conditions of very different forms (21),
simulations are similar. These robust results describe a char-
acteristic pattern of amplification of variability created by local
interaction. Globally averaged competition, in which all plants
compete for the same pool of resources, creates a very
different pattern.
Fig. 4 plots the minimum slope achieved (the minimum ratio

of the logarithmic derivatives of M and N) during simulations
of self-thinning as a function of k1 and k2. The slope of the
self-thinning relation becomes less steep with larger values of
k1 and k2, corresponding to a more rapid development of the
size hierarchy with more asymmetric competition.

FIG. 1. Self-thinning curves for three stands of Pseudotsuga men-
ziesii (3): stand 85 (diamonds), stand 105 (plus signs), and stand 145
(squares). Growth in each stand moves up and to the left, with values
measured every 5 years starting from ages ranging from 20 to 30 years.
The slopes are approximately21.68 (4). Log number is normalized to
match the values in Fig. 3.

FIG. 2. Comparison of effects of small and large plants with different local competition functions and different values of k1 and k2.

FIG. 3. Simulations of self-thinning (Eq. 4) compared with a line
of slope 23y2 with k1 5 1, using an exponential form g(y, d) 5 e2ad/y

with a 5 50 (diamonds), a Gaussian form g(y, d) 5 e2ad2/y with a 5
750 (plus signs), a fractional form g(y, d)5 1y(11 adyy) with a 5 400
(squares), and a step function g(y, d) 5 1 if adyy . 1 and g(y, d) 5 0
if adyy, 1 with a 5 50 (3). Values of a were chosen to roughly match
themean initial competitive effects. Each dot indicates an elapsed time
of 0.3. Plants (n 5 100) of initial biomass 1.0 were scattered randomly
with uniform density on a 2 by 2 torus, except for one simulation using
the exponential local competition function with a 5 50, but with initial
variability generated by placing 100 plants in a rectangular grid with
initial sizes chosen uniformly from the range 0.5 to 1.5 (triangles). The
pattern persists when both forms of variability are combined.
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Other simulations show that the dynamics of effective and
census number match if a plant dies when its relative growth
rate drops below a threshold value (about 0.06 for the param-
eters used here), but that self-thinning is more rapid for higher
thresholds.

Approximation of the Dynamics

The robust behavior can be explained by approximating the
equations. First, we estimate the competitive effect gi(t) as a
function of the mean biomass y#(t) and the initial competitive
effect gi(0). Simulations show that log competitive effect
depends approximately linearly on the log initial competitive
effect, or that

ln~gi~t!! < a~t! ln~gi~0!! 1 b~t!. [7]

We can approximate the mean and variance of gi(t) as func-
tions of the mean biomass y#(t) (Appendix A) finding that

gi~t! < bhEy#~t!k112k2 e2
E0u
y#~t!k2 gi~0!

u

y#~t!k2 [8]

in two dimensions, where the parameters b, hE, E0, and u are
functions of the density and the local competition function.
Each factor of k2 is multiplied by Dy2 in D dimensions.
Substituting this expression for gi(t) into the full system of

local competition equations (Eq. 4) produces a highly nonlin-
ear system, simplified in that the growth of each plant is
coupled only to the mean biomass. Simulations of this approx-
imation match simulations of the full model over time (Fig. 5),
and predict quantitatively how final size depends on log(gi(0)).
The simplest equation retaining dependence on gi(0) and a

function of y#(t) matching the dominant term in equation 8 sets
gi(t) 5 gi(0)y#(t)k112k2. With much further approximation (Ap-
pendix B), we can derive a simplified system for which the
self-thinning slope can be computed explicitly as

self-thinning slope5 2
1
k1

2
1
2k2

[9]

(Fig. 4). When k1 5 k2 5 1, shape is preserved (Fig. 2),
competition is proportional to biomass, and the slope is23y2,
matching the results of packing arguments. In D dimensions,
2k2 is replaced by Dk2, changing the slope to a smaller value
of (D 1 1)yD (22). In contrast to the exponential local
competition function, the Gaussian local competition function
g(y,d) 5 e2ad2/y depends on dy=y, so that k2 5 0.5. The
expected slope is then 22, steeper than 23y2 (Fig. 3). Self-
thinning thus depends on the shape of the resource depletion

profile (Fig. 2) in addition to the degree of competitive
asymmetry.

Discussion

These results derive self-thinning and deviations from the
23y2 law from an individual based model of resource-
mediated growth. Large values of the scaling exponents k1 and
k2 produce self-thinning slopes close to 21, and small values
produce large slopes, potentially explaining the wide distribu-
tion of observed slopes (4–7). Because the model explicitly
follows individual plant sizes rather than population level
averages (8, 11), it makes specific predictions about the
connection between the spatial pattern and the size hierarchy
(5–7, 23–25). The approximations show that robust statistical
principles underlie the population level patterns that emerge
from this individual behavior.
Testing can begin with direct measurement of the local

competition function and the exponents k1 and k2, from which
appropriate measures of local crowding can be derived. Studies
that have failed to identify local competition with standard
spatial statistics (26) might succeed by using the initial com-
petitive effect log(gi(0)) estimated in this way. The model
might also apply to self-thinning in algae and animals (13) if
‘‘local’’ competition is interpreted as similarity of resource use
rather than proximity. In addition, the specific predictions
regarding the success of given plants as a function of local
competition makes possible prediction of the evolution of local
interaction strategies.

FIG. 4. (Left) The minimum slope achieved (the minimum ratio of the logarithmic derivatives of M and N) during simulations of self-thinning
as a function of k1 when k2 5 1. (Right) The minimum slope achieved as a function of k2 when k1 5 1. The curve is the theoretical value given
in Eq. 9 (see text), where the dotted portion (Left) indicates the region where the approximation is not strictly justified. Simulations use the
exponential local competition function and combinations of n 5 50, n 5 100, and n 5 200 with a 5 10, a 5 50, and a 5 100. Use of the minimum
slope rather than fitting the straight portion of the curve overestimates the slope. Simulations tend to produce lower slopes for larger values of n
unless plant growth slows at larger sizes.

FIG. 5. Comparison of a simulation with the approximation (Eq. 8)
at two times. The log biomass ln(yi) is plotted against the log initial
competitive effect ln(gi(0)) at the two times 1.5 and 15.9 using the
exponential local competition function g(y, d) 5 e2ad/y with a 5 50.
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Appendix A

To find the slope and intercept of Eq. 7, we approximate the
mean and variance of the g’s using the ‘‘zero-correlation’’
approximation (27) and some properties of random distribu-
tions of points. Suppose plants are arrayed in space according
to a Poisson process with density b. gi can be estimated by
setting yj 5 y# for every j Þ i, where y# is the mean size in the
population, ignoring the fact that the sizes of nearby plants
might be correlated.
Each of our candidate local competition functions (Fig. 3)

can be written in the form g(yk2, d) 5 h (dyyk2) for some
function h. Because gi is the sum of the effects of other plants,
its expected value m(t) can be computed by integrating over all
distances. Changing variables to s 5 ryy#k2,

m~t! 5 E
0

`

2prb y#k1hS ry#k2Ddr
5 b y#k112k2 E

0

`

2psh~s!ds 5 b y#k112k2hE . [10]

Similarly, when the locations of plants are independent, the
variance s2(t) is

s2~t! 5 E
0

`

2prb y#2k1h2S ry#k2Ddr
5 b y#2k112k2 E

0

`

2psh2~s!ds 5 b y#2k112k2hV . [11]

The values hE and hV depend only on the function h, so that m
and s depend on y# only through the power functions.
At time t, gi(t)5 m(t)1 bi(t)s(t) for some set of values bi(t).

The set of bi(t) must have mean 0 and variance 1. If s(t),, m(t)
as in simulations, ln(gi(t)) ' ln(m(t)) 1 bi(t)s(t)ym(t). There-
fore, E(ln(g))' ln(m(t)) and Var(ln(g))' s2(t)ym2(t). Denote
the expectation and variance of ln(g) by E0 and V0 at time t 5
0. The expectation and variance of Eq. 7 are a(t) E0 1 b(t) and
a2(t)V0, respectively. Solving for a(t) and b(t), we find

a~t! 5
s~t!

m~t!ÎV0
[12]

b~t! 5 ln~m~t!! 2
s~t!E0

m~t!ÎV0
. [13]

These values were substituted into Eq. 7 to derive Eq. 8.

Appendix B

We begin by deriving a piecewise linear approximation of Eq.
4. Set xi 5 yik1. Rewriting the definition of gi (Eq. 3) with the
function h as in Appendix A and changing variables gives

ẋi 5 k1
xi

xi 1 gi
xi

gi 5 O
j5/ i
xjhS dij

x
j

k2
k1
D .

The formula for gi has the form of Eq. 3 with k1 replaced by
1 and k2 replaced by k2yk1. Suppose that gi can be approxi-

mated by gi(0)x#k̃ where k̃ 5 1 1 2k2yk1 (Appendix A). We
approximate again to derive the equation

ẋi 5 Hxi 2 gi~0!x# k̃

0
if positive
otherwise [14]

by scaling out the multiplicative factor k1 and expanding
growth in a first order Taylor series truncated to remain
positive.
Until the growth stops, xi follows a linear equation. During

this time, Eq. 14 has solution xi(t) 5 et (1 2 gi(0) X(t))where
X(t) 5 *0

t e2sx#k̃ds. To fully solve, we need to find the time T
when the plant stops growing. This time is a function only of
the initial crowding gi(0), so we write T(gi(0)) as the solution
of

et~1 2 gi~0!X~t!! 2 gi~0!x# k̃ 5 0.

Using the definition of X, this can be rewritten as 12 gi(0)X(t)
5 gi(0)Ẋ(t).
To get rid of the index i, we write gi(0) as T21(ti), where

T21 is well-defined because the derivative of xi in Eq. 14 is
a monotonically decreasing function of gi(0)). Therefore, 1 2
T21(t)X(t) 5 T21(t)Ẋ(t), which has solution X(t) 5
e2t *0

t esyT21(s)ds with initial condition X(0) 5 0.
We can now derive a reduced system of differential equa-

tions for the moments of the distribution. Define Ż(t)
5 *0

t esyT21(s)ds. Then

Ż~t! 5
et

T21~t!
5 Z 1 etẊ 5 Z 1 x# k̃. [15]

To find a differential equation for x#, let f(g) denote the
probability density function of the initial gi(0) with maximum
possible value gm. Then

x#~t! 5 E
0

T21~t!

et~1 2 gX~t!!f~g!dg 1 E
T21~t!

gm

eT~g!

3 ~1 2 gX~T~g!!!f~g!dg. [16]

Differentiating and simplifying,

xG~t! 5 et E
0

T21~t!

f~g!dg 2 Ż E
0

T21~t!

gf~g!dg. [17]

This equation and Eq. 15 form a closed system because every
appearance of T21(t) and Ż can be replaced with functions of
Z and x#.
These equations have asymptotically exponential solutions

when the density f has the form f(g) 5 g1yq21yq for a positive
value of q and 0# g # 1. Suppose that x# increases exponentially
with parameter a (i.e., x# } eat). Then, from Eq. 15, we have that
T21(t) increases exponentially with parameter 12 a k̃. But Eq.
17 also implies that x# increases exponentially proportional to
etT21(t)(1/q). These two expressions give an equation for a,
which can be solved to give a 5 (1 1 q)y(q 1 k̃).
To check the self-thinning relation expressed in Eq. 6, we

must find the first twomoments of the distribution of the actual
sizes yi. By writing equations similar to Eq. 16, and substitut-
ing in the exponential forms for X and T21, we find that y#
increases exponentially with parameter 1yk1 1 (12 ak̃)yq and
M2 increases exponentially with parameter 2yk1 1 (12 ak̃)yq.
The power p relating the growth of the first and second
moments is the ratio of these exponents. Transforming into the
slope (Eq. 6), we find
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slope5 2
1
k1

2
1 1 q
2k2

.

The form of the approximation 8 indicates that the initial
competitive effect gi(0) is raised to a power that approaches 0
as plants grow. The value q 5 0 therefore provides the best
approximation, and is used in Eq. 9.
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