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Introduction 
 Credit risk management has become one the most popular research areas in 
mathematical finance.  It has been brought to importance by the numerous corporate 
bankruptcies that plagued the United States’ economy after the internet stock bust late in 
the twentieth century.  During that time, many billions of dollars were lost by major 
investors who had a poor understanding of credit risk in the market.  Part of this failure 
was rooted in a misunderstanding in the credit ratings that were assigned by the 
companies Standard and Poor’s (S&P) and Moody’s Investor Service (Moody’s).  These 
firms give a letter grade representing the credit worthiness to various corporations.  If a 
specific company is perceived to be in excellent financial shape, it will be given a “AAA” 
rating.  If it is very close to defaulting on its debt, it will receive a “CCC” rating through 
S&P and a “Caa” rating through Moody’s.  To establish a finer level of rating, the 
intermediate states AA, A, BBB, BB, and B along with +/- to each of these divisions are 
allowed (note that this is S&P’s terminology an that Moody’s has a similar system with 
different notation).   
 Each day, companies that have active bonds (publicly traded debt issued to raise 
capital which terminates as soon as the principle and interest are paid) are evaluated to 
determine their credit worthiness.  If something alters a company’s ability to pay off debt, 
their rating will shift higher if it is believed that their financial position has strengthened 
or lower if their financial position has weaken (these changes are called credit migrations 
or credit transitions).  Therefore, credit ratings indicate a company’s financial strength, 
but do not explicitly predict the probability of migrating into another rating.  This issue is 
resolved through credit migration modeling. 
 The usefulness of credit migration models has become essential to risk 
management.  The New Basel Accord is an international agreement adopted by all United 
States banking institutions that has put stricter restraints on the amount of credit risk 
banks are allowed to take.  Part of this agreement requires banks to use credit migration 
models that are subjected to less uncertainty to reduce unnecessary risk.  In addition, all 
modern credit derivative pricing models (a financial instrument that transfers the risk 
associated with holding an asset without being transferred) rely on the probabilities 
estimated by credit migration models to generate fair pricing.  Therefore, developing 
models that are as accurate as possible is an essential task of risk management. 
 Since I am just beginning my research, I have spent my time gathering 
information about the work that is previously done to set the stage for original research in 
the future.  My writing is geared toward novices in mathematics. 
 
Literature Review 
 The first credit migration model to be based on observable data was developed by 
Jarrow et al (1997) as a discrete-time homogenous Markov chain (note that it added D as 
a default state which is not found in either Moody’s or S&P’s notation).  A Markov chain 
is a series of probabilities that are organized into a rectangular array called a “matrix”.  



Each cell is called a “transition probability” because a cell in the ith row and jth column 
of the matrix represents the probability of transitioning to the jth state when currently in 
the ith state where i and j are whole numbers that range from one to the total number of 
states allowed in the model (usually eight).  In other words, the probability of migrating 
to a AA state when currently in a AAA state is found in the cell that occupies the first 
row and second column of the matrix.  The probabilities are calculated by dividing the 
number of companies that have moved from one state to another by the total number of 
companies in question for all permutations.  These numbers represent the frequency of a 
particular migration.  Statistical theory tells us that with enough observations, the 
frequency of an event will converge to its probability (this principle is known as the 
“Strong Law of Large Numbers”).  This theorem has an intuitive analog: the number of 
times a penny lands on heads after repetitive flips will eventually average out to be one-
half—the probability of getting heads in the first place.   
 In addition to formulating a discrete-time homogenous Markov chain, Jarrow et al 
(1997) show that a continuous-time model can be constructed with more complicated 
mathematics.  When developing a continuous-time Markov chain, a practitioner is 
required to estimate the values of a “generator matrix” using a “maximum-likelihood” 
estimation technique.  A generator matrix can be thought of as the backbone to a 
transition matrix because it allows for a systematic calculation of the transition matrices 
for any period of time once it is computed.  Yet still, given an estimated generator matrix, 
it is not guaranteed that a corresponding transition matrix will exist.  This problem is 
presented in research by Israel et al (2001).  They conclude that existence is guaranteed if 
all of the elements off the diagonal of the generator matrix are strictly positive; if the 
computed transition matrix does not have a zero in any entry; and if all rows of the 
generator matrix must sum to zero.  Further work by Lando and Skødeberg (2002) 
determined that existence is not guaranteed, but nearly achieved.  This implies that the 
existence problem will not be an issue in most instances. 
 Lando and Skødeberg (2002) were the first to criticize the use of a discrete-time 
model in favor of a continuous-time process.  First, they note using a least-likelihood 
estimator for the transition probabilities will produce the lowest expected error under 
reasonable assumptions.  This is because transitions that jump many states are infrequent 
events.  Consequently, the Strong Law of Large Numbers will not apply because there are 
not enough observations to ensure convergence to the true probabilities.  Therefore, it is 
nearly guaranteed that frequency based estimation found in discrete-time approaches will 
produce worse estimates than that of log-likelihood estimation.  Another advantage of the 
continuous-time approach is that it greatly reduces the number of events with zero 
probability—an essential improvement since even an extremely rare event is always 
possible.  It achieves this by counting both direct and indirect migrations.   
 In a direct migration, a transition will take place from the present state to another 
without any other migrations.  In an indirect migration, a plurality of movements will 
occur that will eventually reach a specific state.  For example, if a firm moves from AA 
to B to CC to D in a year, then there would be one direct migration from AA to B, from B 
to CC and from CC to D.  In an indirect framework, all of the direct migrations would be 
recorded in addition to all combinational transitions such as from AA to B, from AA to 
CC, etc.  Lando and Skødeberg (2002) claim that using this procedure helps minimize the 
downward migration bias created by successive downgrades right before a firm defaults.  



Christensen et al (2004) found more supporting research for a continuous-time model.  
They conclude that it produces a tighter confidence interval than that of a discrete-time 
model.  This implies that the transition probabilities can be used to take a more 
aggressive position with an asset without incurring more risk.   
 Still, there are many that have found problems with the homogeneity assumption.  
Bangia et al (2000), Nickell et al (2000) and Kavvathas (2001) have all found that credit 
migrations are dependent upon the business cycle.  This implies that as the state of the 
economy changes from a rising to a lowering market, the transition probabilities will 
change as well.  Therefore, assuming homogeneity will not be a good idea over long 
periods of time because the transition probabilities would have changed during the long 
timeframe.  In anticipation of dealing with this problem, Lando and Skødeberg (2002) 
included a continuous-time inhomogeneous Markov chain that uses the Aalen–Johansen 
estimator to form the generator matrix.  They note that in this case, this estimator will 
have a lower expected error than any other estimator.   
 Jafry and Schuermann (2004) developed a systematic way to compare different 
models and found that while the advantages of using a continuous-time model over a 
discrete-time model were very large (15-30% gain), the advantages gained by using a 
non-homogenous over a homogenous model were slight (less than 2% gain) under all 
market conditions.  Therefore, it can be concluded that since it takes 100 times more 
computing power to calculate an Aalen–Johansen estimator than a maximum-likelihood 
estimator, under most circumstances the homogenous estimator should be used if the 
extra calculation time is not justified. 
 The next step in this research was undertaken by Frydman and Schuermann 
(2005) who developed what they refer to as a “Markov mixture model”, which weights 
time to account for different effects.  They were able to do this by constructing two 
transition matrices for a given time period—one that is defined up until the current date 
and another that is defined in the past.  For example, when forming a one-year Markov 
mixture model, a one-year transition matrix would be calculated in the timeframe from 
today’s date to a year ago and another from a year ago to two years ago.  The two 
matrices are then weighted so that their combined influence is one when added together.  
In turn, this will create a new transition matrix (which is no longer Markovian) that 
contains past information as well as present.  In theory, this model can be calibrated to 
accommodate business cycle effects by adjusting the weights toward or away from the 
past (although it is not done in their paper).  
 
Conclusion 
 It has been shown that credit migration modeling is an important part of the 
world’s economy through its role in risk management.  Over the last few years, 
continuous-time models have phased out discrete-time models because their results better 
mirror real-world expectations.  Still, no model correctly takes into effect the role of the 
business cycle even though many have shown that it has a strong role to play in 
influencing transition probabilities.  The purpose of my future research will be to make 
the past information relevant by expanding on the work of Frydman and Schuermann 
(2005). 
 
 



Works Cited 
 
Bangia, A., F. Diebold, and T. Schuermann (2002): Ratings Migration and the Business 
 Cycle, With Applications to Credit Portfolio Stress Testing, Journal of Banking & 
 Finance, Vol. 26 (2-3), pg. 445-474 
 
Christensen, J., E. Hansen, and D. Lando (2004): Confidence Sets for Continuous-Time 
 Rating Transition Probabilities, Journal of Banking & Finance, Vol. 28 (11), pg. 
 2575-2602 
 
Frydman, H., and T. Schuermann (2005): Credit Rating Dynamics and Markov Mixture 
 Models, Working Paper, Wharton Financial Institutions 
 
Israel, Robert B., Rosenthal, Jeffery S. and Wei, Jason Z. (2001): Finding Generators for 
 Markov Chains via Empirical Transition Matrices, with Applications to Credit 
 Ratings, Mathematical Finance, Vol. 11 (2-3), 245-265 
 
Jafry, Y., and T. Schuermann (2004): Measurement, Estimation and Comparison of 
 Credit Migration Matrices, Journal of Banking & Finance, Vol. 28 (11), pg. 
 2603-2639 
 
Jarrow, R., D. Lando, and S. Turnbull (1997): A Markov Model for the Term Structure of 
 Credit Risk Spreads, The Review of Financial Studies, Vol. 10 (2), pg. 481-523 
 
Kavvathas, D. (2001): Estimating Credit Rating Transition Probabilities for Corporate 
 Bonds, Working Paper, Goldman Sachs Group 
 
Lando, D., and T. Skødeberg (2002): Analyzing Rating Transitions and Rating Drift with 
 Continuous Observations, Journal of Banking & Finance, Vol. 26 (2-3), pg. 423-
 444 
 
Nickell, P., W. Perraudin, and S. Varotto (2000): Stability of Ratings Transitions, Journal 
 of Banking & Finance, Vol. 24 (1-2), pg. 203-227 


