
Analysis of the Stochastic Migration Model

Matthew Logan Reimherr
Advisor: Professor Lajos Horváth



1 Abstract

Stochastic Migration Models are a type of probability model that can be used to model

different aspects of a particular population. Gagliardini and Gourieroux (2005) showed

how this general model could be used to model credit risk. The purpose of this paper

is to provide concrete analytic grounding for the model proposed by Gagliardini and

Gourieroux (2005). We start by describing the basic framework for credit scoring and

then move into defining what is meant by Stochastic Migration Model. We derive several

formulas for different probabilities associated with the model. After the model is defined,

we describe the state space of the model. It is assumed, given enough time, that any

company will go bankrupt. We provide proofs verifying such an assumption. Next we

discuss an extension of the model to describe a collective group. We conclude by describing

the correlation between the credit scores of two different companies. Also, we provide

simulations emphasizing different ideas discussed in the paper.
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2 Introduction

How does one define risk? Risk is a relative term which can mean something to one

person and something entirely different to someone else. To analyze risk mathematically,

one has to concretely define what is meant by risk. This paper will address the risk asso-

ciated with businesses and corporations from the perspective of a bank, or any potential

lender. Now risk can take on a more concrete meaning.

A lender only sees risk in a company based on how likely it is that the lender will not

receive a return on their investment. If we look at a specific loan, we can define risk as

the probability that the lender will not receive a full return on the loan. This event is

equivalent to the company defaulting while the loan is still outstanding. As recommended

by the Basel Committee 1, we can express risk in terms of the probability of time until

default, such that the probability that company i will default before time h given that

they are currently at time t can be expressed as:

Pi[τ > h|not at default at time t] = exp[e(xT
i,tb)a(h; θ)],

where xT
i,t is the transpose of observed covariates, or the factors specific to company i that

influence its risk and a(h, θ) is a baseline hazard function. This function can be thought

of as accounting for the risk associated with even the perfect company. Symbols b and

θ are parameters. This model is called the Proportional Hazard Model. In this case we

could define a quantitative credit score, si,t, for company i at time t such that si,t = xT
i,tb̂,

where b̂ is the estimated value of the parameter b.

This is a basic model for understanding the risk of a specific company, but current

rating systems do not use continuous credit scores. Scores are often discretized so that

individuals that have a similar amount of risk can be grouped together.

1The Basel Comittee is an international group that sets banking standards used in many countries
including the United States. A country is typically represented by its central bank.



3 Basic Framework

Let us examine a generic credit rating with K total scores taking possible values 1, 2, . . . , K,

where 1 indicates the minimum amount of risk and K is default. Now let us introduce a

variable Yi,t to denote the credit score of the individual i at time t and ~Yi,t to denote the

entire credit history up to and including time t. Credit scores are not typically updated

at a continuous rate. We are examining periods of some specified length; therefore, we

can assume that t only takes on integer values. ~Yi,t is also known as the lagged credit

history for company i . We can now characterize the risk associated with a company i

from t to t + 1 as

P (Yi,t+1 = K | Yi,t 6= K).

We can also examine the scores of a whole industry or group of individuals. Let us

denote Yt as the vector (Y1,t, . . . , Yn,t) and ~Yt = (Y1, . . . ,Yt) as the lagged ratings for

the whole industry. Each company has K possible scores, thus Yt can take Kn different

values if there are n different companies. In other words, the process Yt has a state space

with Kn elements.



4 Stochastic Migration Model

The Stochastic Migration Model was in introduced by Gagliardini and Gourieroux (2005)

as a generalized model for analyzing credit risk. Let (πt, 1 ≤ t < ∞) be K ×K random

matrices which form a stochastic process. We also assume that for every fixed t all elements

of πt are between 0 and 1, and the sum of the elements in each row must be 1. This means

that each realization of πt is a transition matrix. If the sequence π = (πt, 1 ≤ t < ∞) is

known, we use Pπ and Eπ to denote the corresponding probability and expected value.

This means that Pπ and Eπ are the conditional probability and expected value given

(πt, 1 ≤ t < ∞). Let πt(j, k) denote the (j, k)th element of πt.

Definition 4.1. The individual rating histories will satisfy a Stochastic Migration Model

if Y1,t, . . . , Yn,t are stochastic processes satisfying:

(i) Pπ(Yi,t = k|Yi,t−1 = j) = πt(j, k) for all 1 ≤ i ≤ n, 1 ≤ j, k ≤ K, and 1 ≤ t < ∞;

and

(ii) for all sets C1, . . . , Cn we have

Pπ({Y1,t, 1 ≤ t < ∞} ∈ C1, . . . , {Yn,t, 1 ≤ t < ∞} ∈ Cn)

= Pπ({Y1,t, 1 ≤ t < ∞} ∈ C1) · · ·Pπ({Yn,t, 1 ≤ t < ∞} ∈ Cn).

Sets C1, . . . , Cn are vectors of infinite length whose elements take on values in 1, . . . , K.

Conditions (i) and (ii) mean that if the transition matrices are given then (Yi,t, 1 ≤ i ≤ n)

are independent and identically distributed Markov chains.

Note the individuals are independent if the sequence (πt, 1 ≤ t < ∞) is known and

dependant otherwise. Let us denote the transition matrix for Yt as Πt. If we know the

whole lagged history and the whole sequence πt for all t, then Y1,t, . . . , Yn,t are independent

and identically distributed Markov chains. Therefore, we can easily develop Πt for any t.
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The transition matrix for Yt will be characterized by

P (Yt+1 = k | ~Yt, π) = Pπ(Yt+1 = k | ~Yt)

= Pπ(Y1,t+1 = k1, . . . , Yn,t+1 = kn | ~Yt)

= Pπ(Y1,t+1 = k1 | ~Yt) · · ·Pπ(Yn,t+1 = kn | ~Yt),

where the last equality holds because of (ii). Here k = (k1, . . . , kn) where k1, . . . , kn are

taking values in 1, . . . , K. Πt can be written as

Πt =


[πt(1, 1)]n . . . [πt(1, n)]n

...
. . .

...

[πt(n, 1)]n . . . [πt(n, n)]n

 .

With appropriately ordered states Πt can be factored in the following way:

Πt =


[πt(1, 1)]n−1πt . . . [πt(1, n)]n−1πt

...
. . .

...

[πt(n, 1)]n−1πt . . . [πt(n, n)]n−1πt



=


[πt(1, 1)]n−1 . . . [πt(1, n)]n−1

...
. . .

...

[πt(n, 1)]n−1 . . . [πt(n, n)]n−1

⊗ πt

= · · · = πt ⊗ · · · ⊗ πt

= ⊗nπt,

⊗ denotes the Kronecker product, and ⊗n denotes the n–fold Kronecker product. The
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h–step probabilities for Yt can be expressed in terms of the h–step transtion matrices of

Y1,t, . . . , Yn,t. Using Definition 4.1(ii) we conclude

Pπ(Yt+h = k | ~Yt)

= Pπ(Y1,t+h = k1, . . . , Yn,t+h = kn | ~Yt)

= Pπ(Y1,t+h = k1 | ~Yt) . . . Pπ(Yn,t+h = kn | ~Yt).

Therefore Πh
t can be expressed as:

Πh
t = ⊗nπh

t ,

where Πh
t is the h–step transtion matrix from t to t + h for Yt, and πh

t is the h-step

transition matrix from t to t+h for Yi,t, i = 1, . . . , n. Both the single and h-step transition

matrices are derived using the independent and known transition probabilities of the Yi,t

chains.

Suppose the sequence πt is unknown for all t. Now πt is a Markov process and

Y1,t, . . . , Yn,t are dependent processes. Assembling Πt becomes more complicated at this

point. Now we must know something about the underlying distribution driving the ma-

trices πt. If we know something about the underlying distribution of πt, then we can

integrate them out of our probabilities for Yt by taking conditional expected values. Let

us start by proving a lemma that will be used throughout the rest of this paper.

Lemma 4.1. Suppose that ξ, γ, and ζ are random variables with finite expected values.

Then

E[ξ | γ = y] = E(E[ξ | γ = y, ζ] | γ = y),
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where y is an arbitrary outcome of γ.

Proof. Suppose that ξ takes values in an arbitrary set X and ζ takes values in an arbitrary

set Z. We shall now provide a proof when ξ, ζ, and γ are discrete and a seperate proof

for the continuous case. We start with the discrete case. Notice that

E[ξ | γ = y, ζ]

is a function of of γ and ζ. However, γ = y and is therefore nonrandom. Now we have

that

E(E[ξ | γ = y, ζ] | γ = y)

=
∑
z∈Z

E[ξ | γ = y, ζ = z]P(ζ = z | γ = y)

=
∑
z∈Z

∑
x∈X

xP(ξ = x | γ = y, ζ = z)P(ζ = z | γ = y)

=
∑
z∈Z

∑
x∈X

x
P(ξ = x, γ = y, ζ = z)

P(γ = y, ζ = z)

P(ζ = z, γ = y)

P(γ = y)

=
∑
x∈X

x

P(γ = y)

∑
z∈Z

P(ξ = x, γ = y, ζ = z)

=
∑
x∈X

x
P(ξ = x, γ = y)

P(γ = y)

=
∑
x∈X

xP(ξ = x | γ = y)

= E[ξ | γ = y].

Exchanging the above summations is justified since all three variables have finite expected

values, which implies the above sums are absolutely convergent. Now assume that ξ,ζ, and

γ are continuous random variables and let f denote a density function. Then following

the arguments used in the discrete case we obtain that



4 STOCHASTIC MIGRATION MODEL 8

E(E[ξ | γ = y, ζ] | γ = y)

=

∫
Z

E[ξ | γ = y, ζ = z]fζ(z)dz

=

∫
Z

∫
X

xfξ|ζ,γ(x | z, y)fζ|γ(z | y)dxdz

=

∫
Z

∫
X

x
fξ,ζ,γ(x, z, y)

fζ,γ(z, y)

fζ,γ(z, y)

fγ(y)
dxdz.

We can now justify switching the integrals because they must be absolutely convergent if

the random variables have a finite mean. Now we have

=

∫
X

x

fγ(y)

∫
Z

fξ,ζ,γ(x, z, y)dzdx

=

∫
X

x
fξ,γ(x, y)

fγ(y)
dx

=

∫
X

xfξ|γ(x | y)dx

= E[ξ | γ = y].

Now using Lemma 4.1, Πt will be characterized by:

P (Yt+1 = k | ~Yt)

= E[P (Yt+1 = k | ~Yt, π) | ~Yt]

= E[Pπ(Yt+1 = k | ~Yt) | ~Yt]

= E[Pπ(Y1,t+1 = k1 | ~Yt) . . . Pπ(Yn,t+1 = kn | ~Yt) | ~Yt].(4.1)

We can also derive a formula for Πh
t using Lemma 4.1 when we condition on ~Yt:
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P (Yt+h = k | ~Yt)

= E[P (Yt+h = k | ~Yt, π) | ~Yt]

= E[Pπ(Yt+h = k | ~Yt) | ~Yt]

= E[Pπ(Y1,t+h = k1 | ~Yt) . . . Pπ(Yn,t+h = kn | ~Yt) | ~Yt].

The resulting transition matrix for Yt will be symmetric with respect to the i indices of

the Yi,t chains that make up Yt. In other words, changing which company is i and which

company is j has no effect on the distribution of Yt.

4.1 Classifying the State Space

It is assumed once the state of default, K, is entered the process can never leave. This

type of state is referred to as an absorbing barrier. Classifying which states are transient

and which are recurrent can reveal what the long term distribution of any Yi,t chain may

look like. Our simulations (see Section 6) suggest that the only recurrent state for any Yi,t

chain is the default state and all other states are transient. This should not be surprising

since the default state is assumed to be an absorbing barrier. Now we provide a proof

that the product of π1 . . . πn converges almost surely when π1, . . . , πn are independent and

identically distributed transition matrices with an absorbing barrier in state K.

Theorem 4.1. Assume π1, . . . ,πn are independent and identically distributed random

transition matrices where 0 < πr(i, j) < 1 with probability 1 for r = 1, . . . , n, i =

1, . . . , K − 1 and j = 1, . . . , K. Assume πr(K, j) = 0 for j = 1, . . . , K − 1 and
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πr(K, K) = 1. Finally, assume that E[πr] = π for r = 1, . . . , n, where

lim
n→∞

πn =


0 . . . 1

...
. . .

...

0 . . . 1

 .

Then we have

lim
n→∞

π1 · . . . · πn =


0 . . . 1

...
. . .

...

0 . . . 1


with probability 1.

Proof. This proof will require using several smaller steps. First, let us show that the

product of any two K ×K transition matrices will again be a transition matrix. Let us

denote A and B as two arbitrary K ×K transition matrices. Then A and B will have

the following property:

K∑
j=1

A(i, j) =
K∑

j=1

B(i, j) = 1,

for i = 1, . . . , K, by the definition of a transition matrix. The sum over a row of the

product of A and B can be expressed as

(A ·B)(i, j) =
K∑

s=1

A(i, s)B(s, j),

by the definition of a matrix product. Therefore, the sum over a row of A · B can be
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expressed as:

K∑
j=1

(A ·B)(i, j) =
K∑

j=1

K∑
s=1

A(i, s)B(s, j)

=
K∑

s=1

[A(i, s)
K∑

j=1

B(s, j)]

=
K∑

s=1

A(i, s) · 1

= 1.

The summations are interchangeable because K is assumed to be finite. Therefore, all

entries of A·B are positive and the rows all add up to 1, which implies A·B is a transition

matrix. It is a trivial inductive argument to show that the product of n arbitrary transition

matrices is again a transtion matrix.

Let us now examine

E[ lim
n→∞

π1 · . . . · πn].

The terms in the sequence {(π1 · . . . · πn)(i, j)}∞n=1 are bounded below by 0 and above by

1 for any i = 1, . . . , K and j = 1, . . . , K, since the product of n transition matrices is

again a transition matrix. Therefore, by the Lebesgue Dominated Convergence Theorem

E[ lim
n→∞

π1 · . . . · πn]

= lim
n→∞

E[π1 · . . . · πn]

= lim
n→∞

E[π1] · . . . · E[πn]

= lim
n→∞

πn
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which impiles

E[ lim
n→∞

π1 · . . . · πn] =


0 . . . 1

...
. . .

...

0 . . . 1

 .

Now let us examine the product π1 · . . . · πn · πn+1

(π1 · . . . · πn · πn+1)(i, j) =
K∑

s=1

(π1 · . . . · πn)(i, s) · πn+1(s, j).

Therefore, the (i, K) entry can be written as:

(π1 · . . . · πn · πn+1)(i, K) =
K∑

s=1

(π1 · . . . · πn)(i, s) · πn+1(s, K)

= (π1 · . . . · πn)(i, K) · πn+1(K, K) +
K−1∑
s=1

(π1 · . . . · πn)(i, s) · πn+1(s, K)

> (π1 · . . . · πn)(i, K),

since πn+1(K, K) = 1. Therefore the sequence {(π1 · . . . · πn)(i, K)}∞n=1 is monotonically

increasing and bounded, which implies

π1 · . . . · πn(i, K) → ξ,

almost surely, where ξ is a random variable taking values in [0, 1] with probability 1 and

E[ξ] = 1. We shall now show that P(ξ = 1) = 1. Suppose that there exists an ε > 0 such

that P(ξ < 1− ε) = q > 0. Therefore P(ξ ≥ 1− ε) = 1− q and

E[ξ] ≤ (1− ε)q + (1)(1− q) = 1− qε.
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If q > 0 and ε > 0, we have that

1− q · ε < 1,

implying that E[ξ] < 1, which is a contradiction. Therefore P(ξ = 1) = 1. We now see

that

lim
n→∞

π1 · . . . · πn(i, K) = 1

with probability 1.

The last step is to show all other values go to zero, i.e.,

lim
n→∞

π1 · . . . · πn(i, j) = 0

with probability 1 for i = 1, . . . , K and j = 1, . . . , K − 1. Let us examine

lim sup
n→∞

π1 · . . . · πn(i, j).

Since the lim sup must still be an entry of a transition matrix we have:

lim sup
n→∞

π1 · . . . · πn(i, j)

≤ 1− lim inf
n→∞

π1 · . . . · πn(i, K)

We have shown that lim
n→∞

π1 · . . . · πn(i, K) exists, therefore

lim inf
n→∞

π1 · . . . · πn(i, K) = lim
n→∞

π1 · . . . · πn(i, K).
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This implies

1− lim
n→∞

inf{π1 · . . . · πn(i, K)} = 1− lim
n→∞

π1 · . . . · πn(i, K) = 0.

Therefore we have

0 ≤ lim
n→∞

π1 · . . . · πn(i, j)

≤ lim sup
n→∞

π1 · . . . · πn(i, j) ≤ 0,

which implies

lim
n→∞

π1 · . . . · πn(i, j) = 0

for i = 1, . . . , K and j = 1, . . . , K − 1. Now combining the previous steps we have

lim
n→∞

π1 · . . . · πn =


0 . . . 1

...
. . .

...

0 . . . 1

 .

4.2 Population Behavior

Yt has a state space of Kn elements, which makes Πt a rather large matrix. However,

since we assumed identical distributions for Y1,t, . . . , Yn,t, then the distribution of Yt

is independent of which company takes which index. Therefore, when examining the

behavior of a whole population, it may be interesting to ignore which individual takes

which value and only examine how many indviduals take on each value. Indeed, we can

see that when two individuals are in the same state at time t− 1, then their next step to
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time t will have identical distributions, i.e.,

P (Yi,t = k1, Yj,t = k2 | Yi,t−1 = k0, Yj,t−1 = k0)

= P (Yi,t = k2, Yj,t = k1 | Yi,t−1 = k0, Yj,t−1 = k0)

for any two values k1 and k2 in the state space. Therefore, we shall analyze how many

individuals take on a specific value. Let us introduce Y∗
t that is a vector of length K

where

Y∗
t =



n∑
i=1

IYi,t=1

n∑
i=1

IYi,t=2

...

n∑
i=1

IYi,t=K


.

Here IX is an indicator function equalling 1 if the arbitrary event X holds, and zero

otherwise. Y∗
t has a state space of

(
n+K−1

n

)
elements which is significantly less than the

state space of Yt (Kn elements) and, may be more useful for describing the behavior of

a whole industry.

Theorem 4.2. Assume Y1,t, . . . , Yn,t satisfy a Stochastic Migration Model; then the num-

ber of elements in the state space of Y∗
t will be strictly less than the number of elements in

the state space of Yt when the population size n is strictly greater than 1, and the number

of possible credit scores K is strictly greater than 1.

Proof. The following is an inductive proof with respect to K. First let us prove
(

n+K−1
n

)
<
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Kn when K = 2 and n ≥ 2. We observe that

(
n + 1

n

)
< 2n

holds if and only if n + 1 < 2n, which holds for n ≥ 2. Assume
(

n+K−1
n

)
< Kn is true.

We will show this implies
(

n+K
n

)
< (K + 1)n, where we have now replaced K with K + 1.

Start by simplifing
(

n+K
n

)
.

(
n + K

n

)
=

(n + K)!

n!K!

=
n + K

K

(n + K − 1)!

n!(K − 1)!

<
n + K

K
Kn = nKn−1 + Kn.(4.2)

Now we can simplify (K + 1)n using the binomial theorem:

(K + 1)n =
n∑

i=0

(
n

i

)
Kn−i

= Kn + nKn−1 +
n∑

i=2

(
n

i

)
Kn−i.(4.3)

Combining 4.2 and 4.3 we have

nKn−1 + Kn < Kn + nKn−1 +
n∑

i=2

(
n

i

)
Kn−i,

if and only if 0 <
∑n

i=2

(
n
i

)
Kn−i, which holds for n ≥ 2. Therefore the inductive argument

holds.

Let π∗t denote the transtion matrix for Y∗
t and define Ωk∗ as the set of all k in the
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sample space such that Yt = k implies that Y∗
t = k∗, i.e.,

Ωk∗ = {k : Yt = k ⇒ Y∗
t = k∗}.

Then the entries of π∗t will be given by

P (Y∗
t+1 = k∗ | ~Yt)

=
∑

k∈Ωk∗

P (Yt+1 = k | ~Yt).

Using equation 4.1 we have:

P (Y∗
t+1 = k∗ | ~Yt)

=
∑

k∈Ωk∗

E[Pπ(Y1,t+1 = k1 | ~Yt) . . . Pπ(Yn,t+1 = kn | ~Yt) | ~Yt],

where k = (k1, . . . , kn) and k1, . . . , kn take values in 1, . . . , K.

4.3 Limiting Behavior

Let us now examine the case where the number of individuals included in Yt is tending

to infinity. With such a large number of individuals, any unbiased estimators for the

transition probabilities of πt will converge in probability to the theoretical values. That

is, if we define Nk;t to be the number of individuals in state k at time t, Nk,l;t to be the

number of individuals stepping from k to l from time t to time t + 1, and n to be the

total number of individuals in the population then Nk,l;t/Nk;t is an unbiased estimator for

πt(k, l). Therefore we have:

Nk,l;t

Nk;t

→ πt(k, l),
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in probability as n →∞. Thus we can now see that for large populations πt is observable

for any past t.



5 Correlation

Now that the Stochastic Migration Model has been defined, we can compute the corre-

lation of some specified movement between two companies. Correlation is only relevant

in the case where the sequence of πt for future t is assumed to be unknown; otherwise

the companies will be independent and therefore uncorrelated. Start by first defining the

correlation between the movement of a company i from state k to k∗, and a company j

moving from state l to l∗, denoted ρt(k, k∗; l, l∗), as

Cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)1/2Var(IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2
.

The indices of the companies do not matter, therefore, the above equation depends only

on the current credit score of the two companies, not which company is i and j. Also

note that the correlation is conditioned upon ~Yt, Yi,t = k, Yj,t = l in order to emphasize

the present state of the companies, and to acknowledge their dependence on the entire

lagged history of the population. Start with simplifying the value of the covariance in the

numerator. Using the definition of the conditional covariance we write

Cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l]

− E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]E[IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l].

Now using Lemma 4.1 we get

Cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[πt(k, k∗)πt(l, l
∗) | ~Yt]− E[πt(k, k∗) | ~Yt]E[πt(l, l

∗) | ~Yt].(5.4)
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Now the denominator can be simplified in a similar fashion resulting in

Var(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]− E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]2

=E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l](1− E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]).

Again, using Lemma 4.1 we conclude

Var(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[πt(k, k∗) | ~Yt](1− E[πt(k, k∗) | ~Yt]).(5.5)

We shall denote equation 5.5 as σ(k, k∗; ~Yt)
2. Now, combining equations (5.4) and (5.5)

we have

ρt(k, k∗; l, l∗) =
E[πt(k, k∗)πt(l, l

∗) | ~Yt]− E[πt(k, k∗) | ~Yt]E[πt(l, l
∗) | ~Yt]

σ(k, k∗; ~Yt)σ(l, l∗; ~Yt)

One correlation of particular interest is that of two companies with the same credit rating

moving simultaneously into default, also called default correlation. If two companies are

in a state l where l 6= K, then their default correlation is defined as ρt(l,K; l,K).

The terms in the sequence {ρt(k, k∗; l, l∗)}K
k∗=1 are dependent random variables. We

investigate the sum

K∑
k∗=1

ρt(k, k∗; l, l∗)Var(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l).
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This sum is equivalent to

K∑
k∗=1

Cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2

K∑
k∗=1

P(Yi,t+1 = k∗, Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2

−
K∑

k∗=1

P(Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)P(Yi,t+1 = k∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2
.

Notice we are summing over all possible values of Yi,t+1, therefore

K∑
k∗=1

P(Yi,t+1 = k∗, Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2

−
K∑

k∗=1

P(Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)P(Yi,t+1 = k∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2

=
P(Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2
− P(Yj,t+1 = l∗ | ~Yt, Yi,t = k, Yj,t = l)

Var(IYi,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2

= 0.
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The following code simulates a sequence of independent and identically distributed 5 by

5 transtion matrices. The fifth row of any matrix is assumed to be an absorbing barrier

and represents the default state. We used the following R code:

n<-5

p<-.5

TM<-function(n,p){

y<-rnorm(n-1,mean=.25,sd=.08)

pi<-diag(c(1-y,1))

for(i in 1:n-1){

nrm=0

nrm<-pgeom(i-1,p)+pgeom(n-i,p)-2*dgeom(0,p)

for(j in 1:n){

if(i != j) pi[i,j]<-((1-pi[i,i])*dgeom(abs(i-j),p))/nrm

}

}

return(x)

}

TRL10<-TM(n,p)

for(i in 1:10) TRL10=TRL10%*%TM(n,p)

TRL100<-TM(n,p)

for(i in 1:100) TRL100=TRL100%*%TM(n,p)

TRL1000<-TM(n,p)

for(i in 1:1000) TRL1000=TRL1000%*%TM(n,p)

TRL10000<-TM(n,p)

for(i in 1:10000) TRL10000=TRL10000%*%TM(n,p)

TRL100000<-TM(n,p)

for(i in 1:100000) TRL10000=TRL100000%*%TM(n,p)

This program generates an independent and identically distributed sequence of transi-

tion matrices by modifying the identity matrix. First a normal random variable with

mean = .25 and variance = .08 is generated for each state except the default state (K− 1
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independent and identically distributed normal random variables). This sequence is de-

noted {yi}K−1
i=1 . Then π(i, i) = 1 − yi for i = 1, . . . , K − 1 and π(K, K) = 1. Next,

yi is distributed into the off–diagonal entries according to a geometric scheme. Each

off–diagonal entry gets the value

π(i, j) =
((1− x(i, i)) ∗ P (geom(p) = |i− j|)

P (geom(p) ≤ i− 1) + P (geom(p) ≤ n− i)− 2 ∗ P (geom(p) = 0)
(6.6)

for i 6= j, geom(p) is used to indicate an arbitrary geometric random variable with mean =

1/p. The denominator standardizes all the entries to ensure the sum over any row is 1,

and thus we have generated a transition matrix. This program produced the following

output:

> TRL1

[,1] [,2] [,3] [,4] [,5]

[1,] 0.74036827 0.13847026 0.06923513 0.03461756 0.01730878

[2,] 0.08270657 0.77255695 0.08270657 0.04135328 0.02067664

[3,] 0.03599434 0.07198868 0.78403396 0.07198868 0.03599434

[4,] 0.02972865 0.05945730 0.11891459 0.67298488 0.11891459

[5,] 0.00000000 0.00000000 0.00000000 0.00000000 1.00000000

> TRL10

[,1] [,2] [,3] [,4] [,5]

[1,] 0.13968539 0.2753065 0.1804053 0.1269599 0.2776429

[2,] 0.10841753 0.2623285 0.1795247 0.1299426 0.3197867

[3,] 0.09628662 0.2241265 0.1660348 0.1238358 0.3897162

[4,] 0.08522965 0.2026122 0.1584807 0.1272861 0.4263913

[5,] 0.00000000 0.0000000 0.0000000 0.0000000 1.0000000

> TRL100

[,1] [,2] [,3] [,4] [,5]

[1,] 0.003311207 0.006706110 0.008580879 0.005259308 0.9761425

[2,] 0.003026417 0.006129330 0.007842855 0.004806966 0.9781944

[3,] 0.002800917 0.005672630 0.007258478 0.004448795 0.9798192

[4,] 0.002569497 0.005203941 0.006658762 0.004081223 0.9814866

[5,] 0.000000000 0.000000000 0.000000000 0.000000000 1.0000000
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> TRL1000

[,1] [,2] [,3] [,4] [,5]

[1,] 2.129608e-18 3.782552e-18 4.682232e-18 2.951377e-18 1

[2,] 2.072351e-18 3.680853e-18 4.556344e-18 2.872025e-18 1

[3,] 1.925095e-18 3.419301e-18 4.232582e-18 2.667946e-18 1

[4,] 1.809864e-18 3.214630e-18 3.979230e-18 2.508250e-18 1

[5,] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1

> TRL10000

[,1] [,2] [,3] [,4] [,5]

[1,] 1.509437e-168 3.313584e-168 4.174466e-168 2.163808e-168 1

[2,] 1.497106e-168 3.286515e-168 4.140364e-168 2.146131e-168 1

[3,] 1.358130e-168 2.981428e-168 3.756014e-168 1.946906e-168 1

[4,] 1.280975e-168 2.812054e-168 3.542637e-168 1.836303e-168 1

[5,] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1

> TRL100000

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 1

[2,] 0 0 0 0 1

[3,] 0 0 0 0 1

[4,] 0 0 0 0 1

[5,] 0 0 0 0 1

These simulations suggest that the product π1 . . . πn converges almost surely as n →∞

when the sequence is independent and identically distributed and state K is an absorb-

ing barrier. Next we shall simulate the time until convergence of the product of these

transition matrices. The necessary code is an extension of the code used above. We shall

assume that the product has converged when all entries are either less than .01 or greater

than .99. We used the following R code:

K=5000

p=.5

n=5

mconv<-function(K,n,p)

{

num<-numeric(K)

for(j in 1:K)

{
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num[j]<-0

conv<-diag(n)

while(sum(conv[,n]<.99)>0){

num[j]=num[j]+1

conv=conv%*%TM(n,p)

}

}

return(num)

}

x=mconv(K,n,p)

hist(x, xlab="Time", ylab="Frequency", freq = FALSE,main=paste("Time Until Convergence"))

which generated Figure 7.1 (see Section 7). The histogram in Figure 7.1 indicates that

the time until reaching the limit is normally distributed.

Our final group of simulations will simulate the times until default when starting in the

different states. We have been examining a credit score with five possible values therefore

we will simulate the time until default from states one through four. The following R

code simulates the four times until default:

Trials<-function(nn,start){

n<-5

p<-.5

xx<-numeric(nn)

for(i in 1:nn){

run=start

while(run != n){

xx[i]=xx[i]+1

check=0

j=1

pi<-TM(n,p)

u=runif(1)

while(check<u){

check=check+pi[run,j]

temp=j

j=j+1

}

run=temp

}

}
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return(xx)

}

T1=Trials(5000,1)

T2=Trials(5000,2)

T3=Trials(5000,3)

T4=Trials(5000,4).

Figure 7.2 is the density of the time until default from state one; Figure 7.3 is from state

two; Figure 7.4 is from state three; and Figure 7.5 is from state four.
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Figure 7.1. Histogram of 5000 simulated times needed to reach the limit for the product of
random transition matrices
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Figure 7.2. Histogram of 5000 simulated times until default from state one
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Figure 7.3. Histogram of 5000 simulated times until default from state two
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Figure 7.4. Histogram of 5000 simulated times until default from state three
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Figure 7.5. Histogram of 5000 simulated times until default from state four
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