Stable degenerations of symmetric squares of curves

Michael A. van Opstall

1 Introduction

SupposeC — A’ is a family of smooth curves of genus greater than two overratawed disk. Denote bgl(;) the
fibered symmetric squar this family, that is, the quotient of the fibered prodGct ,, C by theZ, action swapping
the factors. The theory of moduli of stable surfaces endinas(after possibly taking a base change by a covex of
totally ramified over 0) this family of surfaces may be contgtkto a family of surfaceS — A satisfying

1. §, hassemi-log canonica(sic) singularities;

2. some reflexive poweog;‘]A of the relative dualizing sheaf of the family is locally free

3. w[s':] is an ample line bundle.

By analogy with the theory of moduli of stable curves, thegass of findings— A is calledstable reduction

The main result of this article is a geometric descriptionhafse stable reductions. The first step is completing
C — A’ to a family of stable curves oveéx (I will ignore base changes in this non-technical discugsi@he family
C(AZ) — A is not stable in general. A partial resolution of this farmsygiven by the Hilbert scheme HJiC/A) of

length two subschemes in the fibers. Geometrically, thitaces the points on‘,(AZ) coming from the quotient of
a product of a node with itself by rational curves. The fiberslitb,(C/A) have slc singularities, and the relative
dualizing sheaf is locally free, but the special fiber dogsyebin general have an ample dualizing sheaf. The last step
of stabilization is an exercise in geometry of products gmdraetric squares of smooth curves.

This explicit description of the stable degenerationsdgel description of the irreducible component of the moduli
space of stable surfaces which is the closure of the modatiespf symmetric squares of curves of a given genus.

This article continues the program of studying moduli spawfestable surfaces using compact moduli spaces of
simpler objects to complete families of surfaces. Like [\\@@e moduli space of stable curves is used here to ensure
that a degeneration of smooth curves may be replaced by aeegen with special fiber at worst nodes. Moduli of
stable curves with group action was used to study surfaoggius to a productin [vOb]. One could conceivably use
the methods of Abramovich and Vistoli [AV00] to study statikgenerations of Kodaira fibrations (see [BHPVdV04],
V.14). This method has been employed by La Nave in the cadbmifafibrations [Nav]. Studying symmetric squares
of smooth curves by stable degeneration of curves has yietteilts on the cone of effective divisors of such surfaces;
the article [CK99] contains excellent pictures which majphbe reader in visualizing the constructions used here.

2 Stable surfaces and their moduli

This section contains the relevant references and defisifimm the theory of moduli of stable surfaces which are
necessary in what follows. Since ampleness of the canoriasd is more important for us than nonsingularity, we will
consider families whose general member aaonically polarized surfagehat is, a projective surface with rational
double points and ample dualizing sheaf.

Definition 2.1. A stable surfacés a projective, reduced surfaBavith semi-log canonical (slc) singularities such that
NI (the reflexive hull of theN-th power of the dualizing sheaf & is an ample invertible sheaf for sore The
smallest suciN is called the index o$.

Remark 2.2. For the definition of slc singularities, see [KSB88], Defimit4.17. In the same article, all slc surface
singularities are classified, and we will use the classificatore than the definition. For our purposes, the following
information suffices:



1. Normal crossings singularities are slc.

2. Products of slc singularities are slc (in particular, pheduct of nodal curves has slc singularities — these are
special cases afegenerate cusps

3. Slc singularities are those which appear on the fiberslative canonical models of semistable reductions (see
below).

It turns out that the naive definition of a family of stablefages — a flat, proper morphism whose fibers are stable
surfaces — does not lead to a separated moduli functor. Geusrefurther condition on the family.

Definition 2.3. A family of stable surfaceis a flat, proper morphism : X — B whose fibers are stable surfaces and
whose relative dualizing sheag(/B is Q-Cartier, i.e., some reflexive power is a line bundle. One abys that the
morphismf is Q-Gorenstein.

In [Kol90], a stronger condition is required on a family oéBte surfaces. For the purposes of this article, the
weaker condition given here suffices, since the weaker tiondjiven here implies Kollar’s stronger condition if the
family has a smooth curve as base and canonically polarieeérgl fiber.

An essential fact for moduli theory of stable surfaces, Wihéproved using Mori theory is the following:

Theorem 2.4 (Stable reduction).Let X — B be a one-parameter family with a smooth base such thé X canon-
ically polarized surface for all i 0 for some poin® € B. Then there exists a finite map-B B totally ramified over
0 and a family of stable surfaces Xs B’ extending the pullback of the famin{g&O} to B. The special fiber of Xs
uniquely determined by the original family.

Sketch of proof After a base change, the original family admits a semisteddelution, so we may assuxe— B

is a family with smooth total space and normal crossingssdid for fibers. In this case, a unique relative canonical
model for the morphisnX — B exists (see Chapter 7 of [KM98] for a proof). This relativecaical model is a family

of stable surfaces. The uniqueness of the special fibemislfoom the facts that every pair of semistable resolutions
is dominated by a third, and the uniqueness of relative daabmodels. O

Once one has established the existence of a coarse modedi Bpestable surfaces (using the notion of family
given above), this theorem implies that the moduli spacedpgr (and in particular, separated). We will only need the
uniqueness part of the theorem, since our work will provestexice for the special class of families which we consider.

A one-parameter famil) — B with smooth base and canonically polarized general fiber #ei theorem will be
called adegenerationlf a degeneratioXX — B is a family of stable curves or stable surfaces, it will bdezhbhstable
degeneration

3 Punctual Hilbert schemes and Chow varieties of nodal cun®

LetC — Bbe a stable degeneration of curves. Note that the fibered eyrinrequar@éz) is isomorphic to the relative
Chow variety Choy,(C/B) of dimension zero, degree two cycles in the fiber€of B. Abbreviatecgz) by X. The
points ofX fall into four classes:

1. Cycles consisting of two smooth points (possibly equalih points are smooth ofiand on its fibers.

2. Cycles consisting of a smooth point and a node: such pametsmooth orX and are normal crossings on its
fibers.

3. Cycles consisting of two different nodes: such pointsispéated singular points oK (cone over a quadric
surface) and degenerate cusps on its fibers.

4. Cycles consisting of the same node taken twice: such pametisolated singular points &nh(Z, quotients of
the cone over a quadric surface). Such singularities argtésaly isomorphic to the vertex of the cone over
the cubic scroll. They are thus singular points of the fiberaall.



The cone over the cubic scroll is n@-Gorenstein, so the famili — B cannot beQ-Gorenstein either, if the
original familyC — B contained nodal curves. The pointsXbf the fourth type considered above will be called the
bad pointsof X.

Let X — X be the blowup of all bad points €. It is easy to check by computing in local coordinates that th
fibers of f : X — B have only slc singularities (indeed, the only singular p®in the fibers are the normal crossings
and degenerate cusps described as points of type 3 abowestatiie reduction of — B will be the relative canonical
model of this morphism, that s,

Proj b f.w}.
n=0

A first step towards a geometric description of this modehésrelative canonical model &f — X. Call thisX.
Example 2.7 of [KM98] describes how to obtafndirectly fromX. This varietyX is a resolution of the singularities
of X with as small as possible exceptional locus, in this casesisting of rational curves rather than divisors. There
is a preferred choice for such a resolution, which is distislged by having an ample relative canonical class.

Let us recall the local description &f from loc. cit. A bad point has a local analytic descriptionas- uv =0
modulo the action oZ , takingx to —x andu to —u. In these coordinates, the parameter on the base is given-byu,
up to a constant factor. In these local coordinates, we bty blowing up the idealx, u) in C[x,y, u,V]/(Xy— uv),
and then taking the quotient by tig-action described above (which clearly extends to the bfywilihe resulting
variety has coordinate ring

2
Clay, -, a7]/ (2535 — ayay, agag — 187, 385 — A3dy, Azdy — 185, B3y — A3ds, YA — 83),

where the variablea; anda, are homogeneous. The central fiber of this new family is olethby setting,; = a,a5.

One easily checks in coordinates that the only singularitiethe central fiber are normal crossings. So the stable
reduction improves the singularities of the central fibdre Total space of the new family is smooth, and the relative
canonical sheaf of the map to the original family is ampleM@38]).

3.1 Coordinate-free description ofX

There is another way to obtain this model, which is easieregcdbe. However, for computations, the description
given above it indispensible. Le€tbe a smooth curve. Then itis well-known that the Hilbert seaéilb,(C) param-
eterizing length two subschemes@fs isomorphic to the Chow variety Chgw(C) of dimension zero, degree two
cycles. IfC has nodes, or more generally, plane curve singularitieb, giagularity supportsB! (the projectivization

of the tangent space to this singularity) of length two dttes, so the associated Hilbert-to-Chow morphism can be
described exactly as the morphigti— X is described above. In fact, following our notation above,

Theorem 3.1. N
X = Hilb,(C/B)

Proof. By construction, the varietie$ and Hilb,(C/B) are birational oveB. SinceX is a relative canonical model,
there is actually a morphisth: Hilb,(C/B) — X, which if not an isomorphism, must blow down the exceptid?a
in the morphism Hilp(C/B) — X.

The morphisnf is projective and dominant, hence surjective. ConsequémlPs occuring on Hilg(C/S) are
not blown down by this morphism. O

3.2 Athird description of X

We will need a description of the special fit)?yfm or alternately, Hilp(C,). In the fiberX, a sufficiently small analytic
germ at a bad point has three irreducible components (segd-k). One of these components is distinguished in
that it meets both of the others along curves; the other gatomponents meet only at the bad point. The local
computation given above shows that the rational curvﬁdmhich replaces the bad point lies on the inverse image of
this component, and meets the other components in a single pagure 2 sums this up much more clearly.

The product ofC with itself has components; x G for each pairCi,Cj of irreducible components &. The

Z,-quotient turns each produCt x C, into a component of® isomorphic to the symmetric square@f The other
components are not always, however, products of curves.coimponent, x CJ- (i # j) of C? is identified with the



C,xC, ci?

Figure 1: The components of the symmetric square of a nodet@nd their incidences.

Figure 2: Blowing up and regluing.



componenC; x G by theZ,-action, but because of incidences with other componeatsegoints of the resulting
component are pinched together. The components of the tieatian, however, are not pinched, and are indeed
isomorphic to products of curves blown up at the points gpoading to bad points of,.

The simplest example of this pinching is the symmetric sgioéia curveC = C, UC, with two components glued
to each other at two points. The symmetric squ&iR is Cohen-Macaulay, but the componen@® which is not a
symmetric square is not. However, the normalizatiog@t is the disjoint union o€{?, C{?' andC, x C,.

In the case of two irreducible components joined at a singtéercorresponding to a poipton C; andg onC,,
one may describe the symmetric squar€aisC,; x C, blown up in the pointp, g) with C(lz) glued along the strict

transform ofC, x {q} andC{? glued along the strict transform ¢p} x C.,.
1 2 2

4  Stability

4.1 Products and symmetric products of pointed curves

In this section, the symbo@ or C, will denote smooth curves of geng®r g;, andd or & will denote reduced divisors
on these curves. We denote the degreé bf ||, since we have no occasion to refer to the complete lineaesys
usually notated thus. It is well known that the p, ) is of log-general type (that i + o is big, which is the
same as ample for curves) ifj2 2+ |5| > 0. We define log surfaces related to these pointed curves.

Definition 4.1. Thelog productof (C,, 8,) with (C,, &,) is the log surfacéC, x C,, 8; x C,UC, x 8,). Since we will
never associate more than a single divisor to a single ctingenotatiorC, Xjog C, for the log product will not be
confusing.

Thelog symmetric squaref (C, d), denoted:l(ozg, is defined as follows. Letr: C2 — C(? be the quotient map for

theZ ,-action swapping the factors. Thqﬁfg is the surfacdC?, 15,(& x CUC x &)).

Recall that the log-canonical class of a log varigtyD) is defined to b&y + D, whereKy is the canonical class
of X. D is often called &oundary divisor It is clear that the log-canonical class@f x,, C, is ample if and only if
the log-canonical classes @,, 9,) and(C,, 8,) are ample. The case of symmetric squares requires more work.

Proposition 4.2. The log symmetric square (€, 6) has ample log-canonical class exactly in the followingasions:
C is rational and 9| > 3;

Cisellipticand|d| > 2;

Cisgenus 2 anfb| > 1,

C is genus 3 hyperelliptic and| > 0;

C is non-hyperelliptic of genus 3;

R A

C is genus 4 or higher.
The log-canonical class is nef if
1. Cisrationalandd| > 2
2. Cisellipticandd| > 1,

3. Cisgenus 2 or higher.

Proof. First, some notation is in order. Lgtbe the genus df. Denote byB the boundary divisor dtl(ozg. Denote its

irreducible components 3, wherei runs from 1 to 25|. Let 71: C?> — C(? be the quotient map, anlithe diagonal
of C2. Finally, letD; be the inverse image & underr for everyi, andD the union of theD;. TheD; are fibers of the
projections fronC? to its factors.



Sincertis a finite map, andr* (K, +B) =K, + D —A, it suffices to check tha(, + D — A is ample orC?. For
brevity, we denot& ., simply asK. We will use the Nakai-Moishezon criterion: a divisor is denif and only if its
self-intersection is positive and it is positive on evengdtucible curve. The following are easy to check:

K2 = 2(2g—2)?

D? = 2/5)?
N = 2-2g
KD = 25|(29—2)
KA = 49-4
DA = 2|9

It follows that
(K+D—A)%2=2(2g—2)2+ (4|5| — 5)(2g— 2) + 2|3|(|8] — 2).

This yields the following necessary conditions for ampkme
1. Ifg=0, then|d| > 3.
2. Ifg=1, then|d| > 2.
3. Ifg=2, then|d| > 0.

First, we show that the conditions fgr= 0 or 1 are also sufficient. i = 0, thenK + D — A is a divisor of type
(18] — 3,16 — 3) onP! x P%, hence ample as soon @ > 3. If g= 1, one has that a divisor on an abelian surface with
positive self-intersection and positive intersectionhnibme other curve (in our case, takefor example) is ample
(Corollary 2.2 of [Kan94]).

Suppose now that is hyperelliptic, and lef” be the graph of the hyperelliptic involution . We havel'? =
2—2g, and by the Hurwitz formula

(K+D—A).I =—6+2g9+2|9d]

which proves the necessity of all of the conditions giverhialhypotheses.

If Cis agenus 2 curve, the? is the blowup of an abelian surface at a single point,aedvers the exceptional
curve for this blowup. It follows thaK — A is numerically equivalent td. Sincerl is effective,l" + D is positive on
any curve except possibly its own components as so¢d|as 0, since therD contains a fiber in each direction. The
computations above show thHat- D is positive or” once|d| > 1, and for any componeilt; of D,

(K+D—A).D;=2g9—4+|9|

by adjunction and geometric considerations. This finishegenus 2 case.

Finally, it is well-known that the symmetric square of a geBunonhyperelliptic curve, or of a curve of genus 4 or
higher already has an ample canonical class, so no condstivecessary. Further, it is known that the only -2-curve
onC? for a genus 3 hyperelliptic curve is the curve covered bgol is the only curve to check for positivity on
K+ D — A, and this has been checked above.

The assertions about when the log-canonical class is rleffétom the above computations. O

4.2 Main theorems on stability

Let C be a nodal curve with componeris To eachC,, associate a numbérwhich equals the number of nodes®f

with nodes resulting from self-intersection counted twiBg genus of an irreducible nodal curve, we mean the genus
of the normalization, not the arithmetic genus. The follogviemma is necessary to reduce much of the proof of the
main theorem to the results of the previous section.

Lemma 4.3. The normalization of a product of irreducible nodal curveghe product of the normalizations of the
factors. The normalization of the symmetric square of aedincible nodal curve is the symmetric square of the its
normalization.



Proof. All normalization morphisms will be denoted The normalization of a variet¥ will be denotedX". LetC,
C,, andC, be irreducible nodal curves.
By the universal property of normalization, there existsimue morphismp completing the diagram

(C1xCy)Y

)
C! xCy ——=C; xC,

commutatively. By Zariski’'s main theorem, the fibersgfire connected. By commutativity of the diagram, any
positive dimensional fiber of lies in a fiber ofC} x C§ — C; x C,, which is impossible. We conclude thatis a
homeomorphism, and hence an isomorphism, si@gex C,)" is normal.

We now recycle the notatio@ to denote the morphisi8” x C¥ — (C x C)". Via ¢, we have an action &,
on (C x C)Y, and the normalization morphism is equivariant. Denoterttlge induced morphism frorfC x C)¥ /Z,,
to (Cx C)/Z,. By an argument exactly like the one just gived,x C)¥/Z, is the normalization ofC x C)/Z,. It
follows thatC(? is normalized by(C")(?. O

Theorem 4.4. Let C be a nodal curve. Thetilb,(C) is a stable surface if and only if
1. for every genus 0 component g > 3,
2. for every genus 1 component g > 2,
3. for every genus 2 component g > 1,
4. for every component @ith genus 3 hyperelliptic normalizatiod, > 0.

Proof. We have already seen that Hj{l€) has slc singularities, and that it is Gorenstein. It reméonsheck that its
dualizing sheatv is ample.

w is ample if and only if its restriction to every irreducibleroponent of the normalization of HJC) is ample.
These components are products and symmetric squares esaurpossibly blowups of these. The restrictionuib
a component which is a product or symmetric product is exalt log canonical divisor on these surfaces considered
in 4.2. Therefore it remains to consider the blown-up congms

On the other handy is positive on the exceptional curves of the blowups by trsedgtion of Hilb,(C) as the
relative canonical model of the Hilbert-Chow morphism. O

Remark 4.5. From 4.2, we can see that the morphism %ﬂ(b) — Sis relatively minimal unless there is a genus 1
componentC; with & = 1. In this case, the symmetric squﬂi@) is a ruled surface oveg,, and there is a unique
componen€; of C meetingC;. Running the relative minimal model program coIIap@lé’é to its curve of intersection
with the blown up produdt; x Cj. In general, this will make the (-1)-curve @ x C; zero orKy, so it will be blown
down upon taking the relative canonical model.

From the preceeding theorem and remark, we have an exgizingtric description of the relative minimal model
for Hilb3(C) overS. An explicit description of the canonical model is more cdicgied; we are content to see a few
examples.

Example 4.6. The simplest case to examine is whens a genus 3 hyperelliptic curve. In this case, the graph of
the hyperelliptic involution covers a rational curve offsetersection -2 orC(?. This is blown down to obtain the
canonical model. If the original family has all hyperellgpmembers, then these (-2)-curves sweep out a divisor which
is collapsed by taking the relative canonical model.

Example 4.7. If C has a genus 2 componédtwith |&| = 1, then again, there is a rational curve covered by the
hyperelliptic involution (the unique rational curve Gllﬁz)), this time with self-intersection -1. This curve, however
zero onKy, so taking a minimal model does not contract it. It is corteedo a smooth point by taking the canonical
model.

For a concrete example, suppd@sés a genus 3 stable curve with two components, a smooth geous/2C;
and an elliptic tailC,. The relative MMP collapse@(zz) to its intersection with the blowup &, x C,. Now taking



the relative canonical model blows down the (-1)-curveCgprx C, and the (-1)-curve ori(lz). Thus the stable limit

of some smoothing o€@ is the producC, x C, glued to an abelian surface (the JacobiarCgf along a curve
isomorphic taC,. The canonical class is ample: its restrictiorCiox C, is the tensor product of pullbacks of ample
divisors from each factor, and its restriction@f? is the class of a genus 2 curve, which has positive selfsation
by the adjunciton formula, hence is ample or anti-amples #dsy to see that the class of this curve is ample.

Example 4.8. In general, taking the canonical model introduces morewargies. IfC has a rational component
with only three special points, HJKC) has a component isomorphicR8, and such that the canonical class restricted
to this component is the canonical clas$8ftwisted by the coordinate axes (up to linear equivalenaa)ch trivial.
Therefore the morphism to the relative canonical modebpaiés this component to a point, therefore also collapsing
the curves of intersection of this component with anothengonent to points. The reader may find it amusing to find
the stable limit of a degeneration of smooth genus 3 curvastave obtained by gluing a rational curve to an elliptic
curve in three distinct points.

5 Global moduli results

The study of this seemingly special degeneration givesadbible degenerations of symmetric squares. Indeed, let
X — B be a degeneration whose general fiber is the symmetric sqfiareurveC. By the results of [Fan94], away
from the special point & B, X comes from a familC — B\{0} of smooth curves. One then (possibly after base
change) completes this family to a family of stable cur@es: B. Then, the relative Hilbert scheme may be formed,
and the stable reduction process applied as above. For aCudenote the Hilbert scheme HIli) by clZ and the
stable model of this surface 162}

Letg> 2. Denote bWIg(z) the irreducible component of the moduli space of stableases containing the moduli

point of the symmetric square of a smooth geguesirve. LetMy be the moduli space of gengstable curves.

Theorem 5.1. There is a surjective, birational morphismgM» Mg(z) which is an isomorphism over the locus o M
parameterizing smooth curves.

Proof. Let H — My be a surjective finite morphism from a smooth schétniduced by a family of stable curves.
The existence ofl is guaranteed by [HM98], Lemma 3.89. L@t~ H be the family inducingd — Mg. LetX — H
be relative Hilbert scheme of length two subschemes of tleedibfC — H.

By [Kar00], Lemma 3.1, the relative canonical models H of X — H exists. By separatedness of the moduli
functor, the fibers of this relative canonical model coiroidth those obtained by taking relative canonical models of
one-parameter subfamilies.

X induces a morphistH — M (2 Which clearly descends to the desired morphggnMg — Mg(z). The injectivity
of @ on the locus of smooth curvesiy is the Torelli theorem wheg = 3 and a theorem of Martens for higher genus
curves [CS93]. The aforementioned result of [Fan94] shdwasthe image of the locus of smooth curvesvigis a
dense open set Mg(z). O

Is @ also an isomorphism on the boundary? For a c@yeenote byCl? the special fiber of a relatively minimal
model of the relative Hilbert scheme for some smoothing asidered above. Denote the special fiber of the relative
canonical model b{?. Since minimal models are isomorphic in codimension twégliows that if C12 = D{2}
for some curveC andD, thenCl? = DI?l. Therefore we can avoid describing these relative canbniodels in our
investigation ofp.

Lemma 5.2. Suppose Cand G are smooth curves,#+ 1,2. Then if G x C, = C; x C,, either
1. after possibly renumbering, & C} and C, = C,, or
2. the Gand G are all elliptic curves.

Proof. First, itis clear that up to reordering, the gener&adndC/ are equal. By inclusion of a fiber, the isomorphism
C, x C, — Cj x C;, and projection onto factors, we get finite covers betweercthves, for exampl€, — C;. Letg
be the common genus 6f andC;. Then by Hurwitz,

29-2=n(2g—2)+r



for positive integersy andr. This is only possible if 8—2 =0 or if n= 1 andr = 0, from which the lemma
follows. O

Lemma 5.3. Suppose C and D are smooth curves, afd € D'?. Then either C2 D or C and D are genus 2.
Proof. See, e.g. [CS93]. O
Lemma 5.4. Suppose G C,, and D are smooth curves. Thep €C, # D(?).

Proof. The invariants (&) andK? of a product of curves are related K¢ = 8x. This holds for symmetric squares
only in the casey = 1 whereK? = x = 0. The only product of curves with such invariants is a praadclliptic
curves, and the Kodaira dimension of a product of elliptiwves differs from that of a symmetric square of an elliptic
curve. .

Remark 5.5. Note, however, that it is possible that the blowup of a proddelliptic curves be isomorphic to the
symmetric square of a genus 2 curve.

Theorem 5.6. The morphisng defined above is an isomorphism.

Proof. Let C be a stable curve. We reconstr@from C[3. For simplicity assume that the component<adre all
smooth; the argument for self-intersecting componentinida but longer. WriteS for C? in what follows. The
components o8 arising from symmetric squares of the component€ @re uniquely determined unle€shas an
elliptic tail, since the only component which can “look Itke symmetric square of a smooth curve is a product of
elliptic curves blown up at one point. Such a component sxasty if an elliptic component o is attached to the
rest ofC in a single point.

On the other hand, & has an elliptic taiE, the component o&(? corresponding to the symmetric squareEat
blown down in taking the relative minimal model, which leavthe canonical class &negative on the rational curve
on some product of with another component @& resulting from blowing up. Therefore, there are no prodotts
elliptic curves with a single point blown up occuring amohg tomponents &.

C can be reconstructed by studying the incidences betweesythmetric squares of its components thus recov-
ered, ifC has no elliptic tails. IC has elliptic tails, the tails can be recovered from the comepds ofS corresponding
to (blown up) products of the tails with non-elliptic compaants. If the curve consists solely of elliptic components,
although the product components do not necessarily daterthie elliptic components of the curve, the loci along
which they are glued to each other are isomorphic to the coents of the curve, and the curve can be reconstructed
from the surface. O

Therefore the moduli space of stable degenerations of a syriunsquare of a genwscurve is simplyMg as long
asg > 3.
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