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Abstract. Let Bn be the braid group on n ≥ 4 strands. We show
that the abstract commensurator of Bn is isomorphic to Mod(S)n

(Q× n Q∞), where Mod(S) is the extended mapping class group
of the sphere with n + 1 punctures.

1. Introduction

Artin’s braid group on n strands, denoted Bn, is the group defined by
the following presentation:

〈σ1, . . . , σn−1 : σiσi+1σi = σi+1σiσi+1 for all i,

σiσj = σjσi for |i − j| > 1〉.

This group also has a topological interpretation, from which it gets its
name (see e.g. [3]). We denote the center of Bn by Z; it is infinite
cyclic, generated by z = (σ1 · · ·σn−1)

n. The goal of this paper is to
characterize all isomorphisms between finite index subgroups of Bn.

The abstract commensurator Comm(G) of a group G is the group of
equivalence classes of isomorphisms of finite index subgroups of G:

Comm(G) = {Φ : Γ
∼=
→ ∆ : Γ, ∆ finite index subgroups of G}/ ∼

where Φ ∼ Φ′ if there is a finite index subgroup Γ′ of G such that
Φ|Γ′ = Φ′|Γ′. The product of elements of Comm(G) represented by
Φ1 : Γ1 → ∆1 and Φ2 : Γ2 → ∆2 is an element represented by the
isomorphism Φ2 ◦ Φ1|Φ−1

1
(∆1∩Γ2). A simple example is Comm(Zn) ∼=

GLn(Q).
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The extended mapping class group Mod(S) of a surface S is the group
of isotopy classes of homeomorphisms of S:

Mod(S) = π0(Homeo±(S)).

Main Theorem. Suppose n ≥ 4, and let S be the sphere with n + 1
punctures. Then we have:

Comm(Bn) ∼= Mod(S) n
(

Q× n Q∞
)

.

We say that two groups G and G′ are abstractly commensurable if they
have isomorphic finite index subgroups. In this case, it follows from
the definition that Comm(G) ∼= Comm(G′). A special case of this is
when G′ is itself a finite index subgroup of G.

Thus, the main theorem also gives the abstract commensurator of all
finite index subgroups of Bn. We now mention two such subgroups of
general interest. The pure braid group on n strands PBn is the kernel of
the natural map from Bn to the symmetric group on {1, . . . , n} which
sends σi to the transposition switching i and i + 1. The Artin group
A(Bn−1) is isomorphic to the finite index subgroup of Bn generated by
σ2

1, σ2, . . . , σn−1.

Corollary 1. Suppose n ≥ 4, and let S be the sphere with n + 1
punctures. Then we have:

Comm(PBn) ∼= Comm(A(Bn−1)) ∼= Mod(S) n
(

Q× n Q∞
)

.

The factor of Mod(S) in the main theorem comes from the following
theorem of Charney and Crisp, which is a corollary of a theorem of
Korkmaz [5] [12].

Theorem 1.1. Suppose n ≥ 4, and let S the sphere with n + 1 punc-

tures. Then we have:

Comm(Bn/Z) ∼= Mod(S).

This theorem relies on the classical fact that Bn/Z is isomorphic to the
finite index subgroup of Mod(S) consisting of orientation preserving
elements that fix a single given puncture (see e.g. [5]). Thus, there is a
natural homomorphism Mod(S) → Comm(Bn/Z) ∼= Comm(Mod(S)),
as Mod(S) acts on itself by inner automorphisms. Korkmaz’s theorem
is that this map is surjective, and Charney and Crisp’s contribution is
that the map is injective (this is implicit in the work of Ivanov [11]).
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Other braid groups. Our proof does not hold for n = 3, as there
is no analog of Theorem 1.1. Indeed, PB3/Z is isomorphic to the free
group F2, and Comm(F2) contains Aut(Fn) for all n > 0. Also, note
B2

∼= Z and B1 = 1.

Historical background. We think of Comm(Bn) as describing “hid-
den automorphisms” of Bn (compare with [13] and [10]). In that sense,
our main result is a generalization of the theorem of Dyer and Gross-
man that Out(Bn) ∼= Z/2Z [7]. Recently, Charney and Crisp proved
that Out(A(Bn−1)) ∼= (Z o Z/2Z) × Z/2Z [5], and Bell and Margalit
proved that Out(PBn) ∼= ZN o(Σn×Z/2Z), where Σn is the symmetric
group on n letters [1]. Charney and Crisp also showed that the abstract
commensurator of any finite type Artin group (e.g. Bn) contains an
infinitely generated free abelian subgroup. Very recently, Crisp has de-
termined the abstract commensurators of certain 2-dimensional Artin
groups [6].

As explained, there is a close connection between braid groups and
mapping class groups. There are several recent results giving the ab-
stract commensurators of subgroups of Mod(S). Ivanov showed that
Comm(Mod(S)) is isomorphic to Mod(S) for most surfaces S [11]; the
genus zero case is Theorem 1.1. Farb and Ivanov proved that the
abstract commensurator of the Torelli subgroup of Mod(S) is isomor-
phic to Mod(S) [9]. Most recently, Brendle and Margalit showed that
the so-called Johnson kernel, a subgroup of the Torelli group, also has
abstract commensurator Mod(S) [4]. A similar phenomenon exists
with the related group Out(Fn); it is a result of Farb and Handel that
Comm(Out(Fn)) is isomorphic to Out(Fn) when n ≥ 4 [8].

Some of the ingredients in our proof can be viewed as generalizations
of facts about automorphism groups (see Section 3), and are likely well
known to others familiar with commensurators, though we have found
no references for them.

Outline of proof. First we find a group G which is abstractly
commensurable to Bn, and which is a direct product over its center, Z.

Proposition 1 : G = Ĝ × Z.

We then define the transvection subgroup Tv(G) of Comm(G) and show
this group splits off as a semidirect factor.

Proposition 2 : Comm(G) ∼= Mod(S) n Tv(G).
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To understand the structure of Tv(G), we define the subgroup H of sim-
ple transvections and show this groups splits from Tv(G) as a semidirect
factor.

Proposition 3 : Tv(G) ∼= Q× n H.

Finally, we use the notion of a divisible group to describe H.

Proposition 4 : H ∼= Q∞.

Acknowledgements. We are grateful to Bob Bell, Mladen Bestvina,
Joan Birman, Benson Farb, Walter Neumann, and Kevin Wortman for
much encouragement and many enjoyable conversations. The second
author would like to thank the mathematics department of Columbia
University for providing a very pleasant and stimulating environment
for the visit during which this project was begun.

2. The proof

Let n ≥ 4 be fixed. We start by finding a group G which is abstractly
commensurable to Bn, and which splits over its center. A priori, this
is an easier group to work with than Bn, and as mentioned earlier, it
has an isomorphic abstract commensurator.

Length homomorphism. We will make use of the length homomor-

phism L : Bn → Z, which is defined by σi → 1 for all i. Note that L is
indeed a homomorphism, and that L(z) = n(n − 1).

Proposition 1. Bn is abstractly commensurable to the external direct

product

G = Ĝ × Z

where Ĝ is a finite index subgroup of Bn/Z.

Proof. Let K be the kernel of the composition

Bn
L
→ Z → Z/n(n − 1)Z

where the latter map is reduction modulo n(n − 1).

Since Z < K, we have:

(1) 1 → Z → K → K/Z → 1.

We can view the restriction of L to K as a projection to Z by defining
a map K → Z via g 7→ zL(g)/n(n−1); this is a splitting for the sequence.
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Thus, K is isomorphic to the external direct product which we denote
G = Ĝ × Z ∼= K where Ĝ = K/Z. ˜

As an abuse of notation, we will identify Ĝ and Z with their images in
G.

Transvections. We define the transvection subgroup Tv(G) of Comm(G)
by the following short exact sequence (compare with [5]):

(2) 1 → Tv(G) → Comm(G) → Comm(Ĝ) → 1.

That Comm(G) surjects onto Comm(Ĝ) follows directly from the fact

that G = Ĝ × Z.

Proposition 2. Comm(G) ∼= Mod(S) n Tv(G).

Proof. Since Ĝ is a finite index subgroup of Bn/Z, Theorem 1.1 gives

Comm(Ĝ) ∼= Mod(S). We define a splitting for (2) by sending an

element of Comm(Ĝ) represented by Ψ : Γ̂ → ∆̂ to the element of

Comm(G) represented by Ψ × 1 : Γ̂ × Z → ∆̂ × Z. ˜

Virtual center of G. We will use the fact that the structure of
G with respect to its center is preserved under passage to finite index
subgroups:

Lemma 2.1. If Γ is any finite index subgroup of G, then Z(Γ) = Γ∩Z.

Via the isomorphism of Proposition 1, this lemma is part of the proof
of Theorem 1.1; it is equivalent to the statement that the map from
Mod(S) to Comm(Mod(S)) is injective.

Simple transvections. There is a homomorphism θ from Tv(G) to
Q× which measures the action on Z. Indeed, given an element of Tv(G)
represented by Φ : Γ → ∆, and any zq ∈ Γ, we must have Φ(zq) = zp

for some nonzero p (by Lemma 2.1); define θ([Φ]) to be p/q. This is a
well-defined homomorphism; we call its kernel the group H of simple

transvections:

(3) 1 → H → Tv(G)
θ
→ Q× → 1.

Proposition 3. Tv(G) ∼= Q× n H .

Proof. There is a splitting of (3): given p/q ∈ Q×, where p, q ∈ Z, let

Φ : Ĝ × 〈zq〉 → Ĝ × 〈zp〉 be the transvection which is the identity on
the first factor, and sends zq to zp. ˜
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Subgroup structure. Given finite index subgroups Γ̂ < Ĝ and
Z0 < Z, by an abuse of notation, we identify the external direct product
Γ̂×Z0 with its image under the obvious inclusion Γ̂×Z0 < Ĝ ×Z. The
next lemma says that we can always choose subgroups of this type as
domains for representatives of commensurators.

Lemma 2.2. If Γ is a finite index subgroup of G, then Γ has a finite

index subgroup Γ′ of the form:

Γ′ = Γ̂′ × Z(Γ)

where Γ̂′ is a finite index subgroup of Ĝ.

Proof. By Lemma 2.1, Z(Γ) < Z. Let Γ′ be the kernel of the composi-
tion

Γ →֒ G → Z → Z/Z(Γ)

where the latter two maps are the obvious projections. Denote the
composition of the first two maps by π. Then the short exact sequence

1 → Z(Γ) → Γ′ → Γ′/Z(Γ) → 1

has a splitting Γ′ → Z(Γ) given by g 7→ π(g) with kernel Γ̂′ < Ĝ, and
the lemma follows. ˜

Transvections and cohomology. In order to get a clearer picture
of H, we need a description of elements of Tv(G). Recall that for a
group G, we have H1(G, Z) ∼= Hom(G, Z).

Lemma 2.3. Suppose Φ : Γ → ∆ represents an element of Tv(G).
Then there exists φ ∈ H1(Γ, Z) so that Φ is given by:

Φ(g) = gzφ(g).

If [Φ] ∈ H and Γ ∼= Γ̂×Z(Γ), we may view φ as an element of H1(Γ̂, Z).

By Lemma 2.2, the second statement applies to all elements of H.

Proof. We define an element φ ∈ H1(Γ, Z) by the equation

zφ(g) = g−1Φ(g).

That φ is a homomorphism follows from the assumption that Φ is a
transvection (in particular, g−1Φ(g) is central):

zφ(gh) = h−1g−1Φ(g)Φ(h) = g−1Φ(g)h−1Φ(h) = zφ(g)+φ(h)

The first statement follows. The second statement is clear: if [Φ] ∈ H,

then Φ(g) = g; thus φ|Z(Γ) = 0, and φ descends to Γ̂ ∼= Γ/Z(Γ). ˜
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Direct limits. Let I be a directed partially ordered set; that is, I
is a partially ordered set with the property that for any i, j ∈ I, there
is a k ∈ I with i, j ≤ k. A collection of abelian groups {Gi}i∈I and
homomorphisms {fij : Gi → Gj}{i,j∈I|i≤j} forms a direct system if: (1)
the homomorphism fii is the identity map for all i; and (2) given any
two homomorphisms fij and fjk, we have fik = fjk ◦ fij .

The direct limit of the direct system (Gi, fij), which we denote lim Gi,
is the group which satisfies the following universal property: if ιi : Gi →
G is a collection of homomorphisms respecting the homomorphisms fij,
then there is a unique homomorphism ι : lim Gi → G through which
each ιi factors. It follows that if each ιi is a monomorphism, then so is
ι. In this case, each Gi naturally includes into lim Gi.

Direct limit of cohomology groups. We will consider the di-
rect system of groups H1(Γ̂i, Z), where Γ̂i ranges over all finite index

subgroups of Ĝ. Since Z is torsion free, the natural homomorphism
H1(Γ̂1, Z) → H1(Γ̂2, Z), for any Γ̂2 < Γ̂1, is injective; the inclusion is

given by restriction of homomorphisms. That (the index set of) {Γ̂i}
forms a directed partially ordered set is the fact that any two finite
index subgroups have a common finite index subgroup (namely, their
intersection). Properties (1) and (2) of direct systems are apparent.

Thus, lim H1(Γ̂i, Z) is defined.

Lemma 2.4. H ∼= lim H1(Γ̂i, Z).

Proof. If Γ̂i is any finite index subgroup of Ĝ, then there is a monomor-
phism

ΞΓ̂i
: H1(Γ̂i, Z) → H

given by

φ 7→
[

Φ : Γ̂i × Z
∼=
→ Γ′

]

where Φ(g) = gzφ(g).

Moreover, this map respects the inclusions of the aforementioned direct
system: if Γ̂2 < Γ̂1 then H1(Γ̂1, Z) < H1(Γ̂2, Z) by restriction. Thus
ΞΓ̂1

is the restriction of ΞΓ̂2
, and so the universal property guarantees

a well-defined injection Ξ : lim H1(Γ̂i, Z) →֒ H. The inverse of Ξ is
provided by Lemma 2.3, so Ξ is an isomorphism. ˜
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Divisible groups. An abelian group G is divisible if for any element
g of G, and any positive integer q, there is an element h of G with
hq = g. The next fact follows from definitions:

Fact 1. Any torsion free divisible group is a vector space over Q.

Braid groups and free groups. Given the inclusion of Bn/Z into
Mod(S) described in Section 1, it follows from the definition of PBn

that PBn/Z is isomorphic to the subgroup of Mod(S) consisting of
orientation preserving mapping classes that fix each puncture (note
Z(PBn) = Z). Thus, for any m < n, there is a surjection PBn/Z →
PBm/Z(PBm) obtained by “forgetting” n−m of the punctures. In this
way, PBn/Z maps surjectively onto PB3/Z(PB3), which is isomorphic
to the free group on two letters F2 (the last statement follows, for
example, from the Birman exact sequence [2, Theorem 1.4]). We record
this fact for future reference:

Fact 2. If n ≥ 3, then PBn/Z surjects onto F2.

The following proposition completes the proof of the main theorem.

Proposition 4. H ∼= Q∞.

Proof. By Lemma 2.4, we need only prove lim H1(Γ̂i, Z) ∼= Q∞. By

Fact 1, and since lim H1(Γ̂i, Z) is countable, it suffices to show that

lim H1(Γ̂i, Z) is a torsion free divisible group which contains free abelian
subgroups of arbitrary rank.

First, lim H1(Γ̂i, Z) is torsion free and abelian since each H1(Γ̂i, Z) has
these properties.

To see that lim H1(Γ̂i, Z) is a divisible group, let φ ∈ H1(Γ̂i, Z) ⊂

lim H1(Γ̂i, Z), and let q ∈ Z. Consider the subgroup Γ̂q of Γ̂ that is the
kernel of the composition:

Γ̂
φ
→ Z → Z/qZ.

Then φ|Γ̂q
maps to qZ. Thus, φ = qφ′ for some φ′ ∈ H1(Γ̂q, Z).

We now construct free abelian subgroups of arbitrarily large rank in
lim H1(Γ̂i, Z). Let Π : PBn/Z → F2 be the surjection given by Fact 2.
We can choose finite index free subgroups Fk < F2 with any rank
k ≥ 2. Thus, since surjections and passages to finite index subgroups
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both induce inclusions on cohomology, we have the required injections:

Zk ∼= H1(Fk, Z) →֒ H1(Π−1(Gi) ∩ Ĝ, Z) →֒ lim H1(Γ̂i, Z)

˜

3. Generalities

As we have mentioned, given a group G, we view Comm(G) as a gen-
eralization of Aut(G). Automorphism groups of central extensions of
centerless groups can be understood as follows. First, let G be a group
with Z(G) = 1, A an abelian group, and

(4) 1 → A → Γ → G → 1

a split central extension. This induces a split exact sequence

(5) 1 → tv(Γ) → Aut(Γ) → Aut(G) → 1.

The subgroup tv(Γ) of Aut(Γ) consists of those automorphisms which
become trivial upon passing to the quotient G. This group fits into a
split exact sequence

(6) 1 → H1(G, A) → tv(Γ) → Aut(A) → 1.

The inclusion of H1(G, A) into tv(Γ) is defined by sending any φ in

H1(G, A) to the map given by g 7→ gφ̃(g), where φ̃ is the pullback of φ
to H1(Γ, A) (compare Lemma 2.3).

If (4) is not split, then we still have sequences (5) and (6), but these
need not be exact (although the second map in each is still injective).

When all finite index subgroups of G are centerless, we obtain a com-
pletely analogous picture for Comm(G). In particular, (5) becomes

(5’) 1 → Tv(Γ) → Comm(Γ) → Comm(G) → 1.

The group Tv(Γ) consists of those commensurators which are trivial in
Comm(G). This also determines a sequence analogous to (6):

(6’) 1 → lim H1(Gi, A) → Tv(Γ) → Comm(A) → 1.

When (4) virtually splits, these are also split exact. Otherwise, they
need not be exact.

Finally, we have lim H1(Gi, A) ∼= lim H1(Gi, A/T ), where T is the tor-
sion subgroup of A. If A is finitely generated and A/T ∼= Zm, then

lim H1(Gi, A) ∼= Qm·vb1 and Comm(A) ∼= GLm(Q)
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where vb1 ∈ Z≥0 ∪ {∞} is the virtual first betti number of G, i.e. the
supremum of the first betti numbers of finite index subgroups of G. So
in this case, we have:

Comm(Γ) ∼= Comm(G) n (GLm(Q) n Qm·vb1)
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