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In this Letter we show that an inhomogeneous input can induce wave propagation failure in an
excitatory neural network due to the pinning of a stationary front or pulse solution. A subsequent
reduction in the strength of the input can lead to a Hopf instability of the stationary solution
resulting in breather-like oscillatory waves.
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A number of theoretical studies have established the
occurrence of traveling fronts [1, 2] and traveling pulses
[3–5] in one-dimensional excitatory neural networks mod-
eled in terms of evolution equations of the form

τ
∂u(x, t)

∂t
+ u(x, t) =

∫ ∞

−∞
w(x|x′)f(u(x′, t))dx′

−βv(x, t) + I(x)
1
ε

∂v(x, t)
∂t

+ v(x, t) = u(x, t) (1)

where u(x, t) is a neural field that represents the local
activity of a population of excitatory neurons at position
x ∈ R, I(x) is an external input, τ is a synaptic time
constant (assuming first–order or exponential synapses),
f(u) denotes an output firing rate function and w(x|x′)
is the strength of connections from neurons at x′ to neu-
rons at x. The neural field v(x, t) represents some form
of negative feedback recovery mechanism such as spike
frequency adaptation or synaptic depression, with β, ε
determining the relative strength and rate of feedback.
(One can also incorporate higher–order synaptic and den-
dritic processes by replacing τ∂u/∂t + u with a more
general linear differential operator L̂u). It has been es-
tablished [5] that there is a direct link between the above
model and experimental studies of wave propagation in
cortical slices where synaptic inhibition is pharmacologi-
cally blocked [6–8]. Since there is strong vertical coupling
between cortical layers, it is possible to treat a thin corti-
cal slice as an effective one–dimensional medium. Analy-
sis of the model provides valuable information regarding
how the speed of a traveling wave, which is relatively
straightforward to measure experimentally, depends on
various features of the underlying cortical circuitry.

One of the basic assumptions in the analysis of travel-
ing wave solutions of equation (1) is that the system is
spatially homogeneous, that is, the external input I(x) is
independent of x and the synaptic weights depend only
on the distance between pre-synaptic and post-synaptic
cells, w(x|x′) = w(x−x′) with w a monotonically decreas-
ing function of cortical separation. It can then be estab-
lished that waves are in the form of traveling fronts in the
absence of any feedback, whereas traveling pulses tend to
occur when there is significant feedback [5]. However, the

cortex is more realistically modeled as an inhomogeneous
medium. For example, inhomogeneities in the synaptic
weight distribution w are likely to arise due to the patchy
nature of long-range horizontal connections in superficial
layers of cortex [9]. Another important source of inho-
mogeneity arises from external inputs induced by sensory
stimuli, which may be modeled in terms of a nonuniform
input I(x). In this Letter we show that for appropriate
choices of input inhomogeneity, wave propagation failure
can occur due to the pinning of a stationary front or pulse
solution. More significantly, we find that these stationary
solutions can undergo a Hopf instability at a critical in-
put amplitude, below which an oscillatory back-and-forth
pattern of wave propagation or “breather” is observed.
Our analysis predicts that the Hopf frequency depends
on the relative strength and rate of feedback, but is in-
dependent of the details of the weight distribution. We
also show numerically how a secondary instability leads
to the generation of traveling waves. Analogous breather-
like solutions have been found in inhomogeneous reaction
diffusion systems [10, 11] and in numerical simulations of
a realistic model of fertilization calcium waves [12].

First, let us consider traveling front solutions of equa-
tion (1) in the case of zero input I(x) = 0 and ho-
mogeneous weights w(x|x′) = w(x − x′). For mathe-
matical convenience, we take w(x) = (2d)−1e−|x|/d with∫ ∞
−∞ w(y)dy = 1. The time and length scales are fixed by

setting τ = d = 1; typical values for these parameters are
τ = 10msec and d = 1mm. As a further simplification,
let f(u) = Θ(u − κ) where Θ is the Heaviside step func-
tion and κ is a threshold. We then seek a traveling front
solution of the form u(x, t) = U(ξ), ξ = x − ct, c > 0,
such that U(0) = κ, U(ξ) < κ for ξ > 0 and U(ξ) > κ
for ξ < 0. The center of the wave is arbitrary due to the
translation symmetry of the homogeneous system. Elim-
inating the variable V (ξ) = v(x − ct) by differentiating
equation (1) twice with respect to ξ, leads to the second
order differential equation

−c2U ′′(ξ) + c[1 + ε]U ′(ξ) − ε[1 + β]U(ξ)
= −cw(ξ) − εW (ξ) (2)

where ′ denotes differentiation with respect to ξ and
W (ξ) =

∫ ∞
ξ

w(y)dy. The boundary conditions are
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U(0) = κ and U(±∞) = U±. Here U± are the homo-
geneous fixed point solutions U− = 1/1 + β, U+ = 0. It
follows that a necessary condition for the existence of a
front solution is κ < U−. The speed of a traveling front
solution (if it exists) can then be obtained by solving the
boundary value problem in the domains ξ ≤ 0 and ξ ≥ 0
and matching the solutions at ξ = 0. This leads to the
bifurcation scenarios shown in figure 1. Such bifurca-
tions also occur when the Heaviside output function is
replaced by a smooth sigmoid function, which can then
be analyzed using perturbation methods, and for more
general monotonically decreasing weight distributions w
[13]. Note that the bifurcation of the stationary front
shown in figure 1(a) is analogous to the front bifurcation
studied in reaction–diffusion equations, also known as the
nonequilibrium Ising-Bloch (NIB) transition [10, 14–16].
Front bifurcations are of general interest, since they form
organizing centers for a variety of nontrivial dynamics in-
cluding the formation of breathers in the presence of weak
input inhomogeneities (see below).
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FIG. 1: Plot of wavefront speed c as a function of ε for fixed
β and κ = 0.25. Stable (unstable) branches are shown as
solid (dashed) curves. (a) If 2κ(1 + β) = 1 then there exists
a stationary front for all ε; at a critical value of ε the sta-
tionary front loses stability and bifurcates into a left and a
right moving wave (b) If 2κ(1 + β) > 1 then there is a single
left-moving wave for all ε and a pair of right-moving waves
that annihilate in a saddle-node bifurcation. Left and right
moving waves are reversed when 2κ(1 + β) < 1 (not shown).

In the case of an inhomogeneous input, wave propaga-
tion failure can occur due to the formation of a stable sta-
tionary front solution. Stationary front solutions of equa-
tion (1) for homogeneous weights and f(u) = Θ(u − κ)
satisfy the equation

(1 + β)U(x) =
∫ x0

−∞
w(x − x′)dx′ + I(x) (3)

Suppose that I(x) is a monotonically decreasing function
of x. Since the system is no longer translation invariant,
the position of the front is pinned to a particular location
x0 where U(x0) = κ. Monotonicity of I(x) ensures that
U(x) > κ for x < x0 and U(x) < κ for x > x0. The
center x0 satisfies (1 + β)κ = 1/2 + I(x0), which implies
that in contrast to the homogeneous case, there exists a
stationary front over a range of threshold values (for fixed
β); changing the threshold κ simply shifts the position

of the center x0. If the stationary front is stable then it
will prevent wave propagation. Stability is determined
by writing u(x, t) = U(x) + p(x, t) and v(x, t) = V (x) +
q(x, t) and expanding equation (1) to first-order in (p, q):

∂p(x, t)
∂t

= −p(x, t) − βq(x, t)

+
∫ ∞

−∞
w(x − x′)H ′(U(x′))p(x′, t)dx′

1
ε

∂q(x, t)
∂t

= −q(x, t) + p(x, t) (4)

The spectrum of the associated linear operator is found
by taking p(x, t) = eλtp(x) and q(x, t) = eλtq(x). Using
the identity H ′(U(x)−κ) = δ(x−x0)/|U ′(x0)|, we obtain
the equation

(λ + 1)p(x) =
w(x − x0)
|U ′(x0)|

p(x0) −
εβp(x)
λ + ε

(5)

Equation (5) has two classes of solution. The first con-
sists of any function p(x) such that p(x0) = 0, for
which the corresponding eigenvalues always have nega-
tive real part. The second consists of solutions of the
form p(x) = Aw(x − x0), A �= 0, for which the corre-
sponding eigenvalues are

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ε(1 + β)

2
(6)

where

Λ = 1 + ε − (1 + β)Γ, Γ =
1

1 + 2D
(7)

with D = |I ′(x0)|. We have used the fact that I ′(x0) ≤ 0
and w(0) = 1/2.

Equation (6) implies that the stationary front (if it ex-
ists) is locally stable provided that Λ > 0 or, equivalently,
the gradient of the inhomogeneous input at x0 satisfies

D > Dc ≡ 1
2

β − ε

1 + ε
(8)

Since D ≥ 0, it follows that the front is stable when
ε > β, that is, when the feedback is sufficiently weak or
fast. On the other hand, if ε < β then there is a Hopf bi-
furcation at the critical gradient D = Dc. Consider as an
example the step inhomogeneity I(x) = −(s/2) tanh(γx),
where s is the size of the step and γ determines its
steepness. A stationary front will exist provided that
s > s̄ ≡ |1 − 2κ(1 + β)|. The gradient D depends on
x0, which is itself dependent on β and κ. On eliminating
x0, we can write D = γ(s2 − s̄2)/2s. Substituting into
equation (8) yields an expression for the critical value of
s that determines the Hopf bifurcation points:

sc =
1
2γ


β − ε

1 + ε
+

√(
β − ε

1 + ε

)2

+ 4s̄2γ2


 . (9)
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FIG. 2: Stability phase diagram for a stationary front in the
case of a step input I(x) = −s tanh(γx)/2 where γ is the
steepness of the step and s its height. Hopf bifurcation lines
(solid curves) in s− β parameter space are shown for various
values of ε. In each case the stationary front is stable above
the line and unstable below it. The shaded area denotes the
region of parameter space where a stationary front solution
does not exist. The threshold κ = 0.25 and γ = 0.5.
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FIG. 3: Breather-like solution arising from a Hopf instability
of a stationary front due to a slow reduction in the size s of
a step input inhomogeneity and exponential weights. Here
ε = 0.5, γ = 0.5, β = 1, κ = 0.25. The input amplitude s = 2
at t = 0 and s = 0 at t = 180. The amplitude of the oscillation
steadily grows until it destabilizes at s ≈ 0.05, leading to the
generation of a traveling front.

The critical height sc is plotted as a function of β for
γ = 0.5 and various values of ε in Fig. 2. Note that
close to the front bifurcation ε = β a Hopf bifurcation
occurs in the presence of a weak inhomogeneity. Numer-
ically one finds that reducing the input amplitude be-
low the critical point induces a transition to a breather–

like oscillatory front solution, whose frequency of oscilla-
tion is approximately equal to the critical Hopf frequency
ωH =

√
ε(β − ε). This suggests that the bifurcation is

supercritical. Note that the frequency of oscillations only
depends on the size and rate of the negative feedback,
but is independent of the details of the synaptic weight
distribution. As the input amplitude is further reduced,
the breather itself becomes unstable and there is a sec-
ondary bifurcation to a traveling front. This is illustrated
in Fig. 3, which shows a space-time plot of the developing
breather as the input amplitude is slowly reduced.

The above analysis can be extended to the case of sta-
tionary pulse solutions in the presence of a unimodal in-
put I(x) which, for concreteness, is taken to be a Gaus-
sian of width σ centered at the origin I(x) = Ie−x2/2σ2

.
From symmetry arguments there exists a stationary pulse
solution U(x) of equation (1) centered at x = 0 with
U(±a/2) = κ and U(±∞) = 0:

(1 + β)U(x) =
∫ a/2

−a/2

w(x − x′)dx′ + I(x) (10)

The threshold κ and width a are related according to

(1 + β)κ =
[
I(a/2) +

1 − e−a

2

]
≡ G(a) (11)

Plotting the function G(a) for a range of input ampli-
tudes I, it can be shown that for κ(1 + β) < 0.5 there
exists a single pulse solution over the finite range of in-
puts 0 ≤ I ≤ κ(1 + β), and no pulse solutions when
I > κ(1 + β). On the other hand, when κ(1 + β) > 0.5
there exist two solution branches as illustrated in Fig. 4,
one corresponding to a narrow pulse and the other to a
broad pulse. These two branches coalesce at the critical
point I = ISN where G(a) = κ(1 + β) and G′(a) = 0.
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FIG. 4: Plot of pulse width a as a function of input amplitude
I obtained by numerically solving equation (11) for σ = 1,
κ = 0.5 and β = 1. The lower branch is unstable whereas
the upper branch is stable for large pulse width. (a) If ε > β
then the upper branch undergoes a saddle-node bifurcation
at I = ISN . (b) If ε < β then the upper branch undergoes a
Hopf bifurcation at I = IHB > ISN .
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Carrying out a linear stability analysis along similar
lines to the case of a front leads to the following stability
results [13]: (i) The single pulse solution for κ(1+β) < 0.5
is unstable. (ii) The lower branch of solutions (narrow
pulse) for κ(1 + β) > 0.5 is always unstable, whereas the
upper branch (broad pulse) is stable for sufficiently large
pulse width a. (iii) If ε > β then the upper branch is
stable for all I > ISN and undergoes a saddle node bi-
furcation at I = ISN . (iv) If ε < β then there exists a
critical input amplitude IHB with IHB > ISN such that
the upper branch is stable for I > IHB and undergoes
a Hopf bifurcation at I = IHB . Numerically we find
that the Hopf instability of the upper branch induces a
breather-like oscillatory pulse solution as illustrated in
Fig. 5. One finds that the associated Hopf frequency is
again given by ωH =

√
ε(β − ε), which is independent

of the pulse–width a. For the parameter values used in
Fig. 5, we have ω ≈ 0.25τ−1 = 25Hz assuming that
τ = 10msec. As the input amplitude I is slowly reduced
below IHB , the oscillations steadily grow until a new
instability point is reached. Interestingly, the breather
persists over a range of inputs beyond this secondary in-
stability except that it now periodically emits pairs of
traveling pulses. Furthermore, in this parameter regime
we observe frequency-locking between the oscillations of
the breather and the rate at which pairs of pulses are
emitted from the breather. Note that although the ho-
mogeneous network (I = 0) also supports the propaga-
tion of traveling pulses, it does not support the existence
of a breather that can act as a source of these waves.
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FIG. 5: Breather-like solution arising from a Hopf instability
of a stationary pulse due to a slow reduction in the amplitude
I of a Gaussian input and exponential weights. Here I = 5.5
at t = 0 and I = 1.5 at t = 250. Other parameter values
are ε = 0.03, β = 2.5, κ = 0.3, σ = 1.0. The amplitude of
the oscillation steadily grows until it undergoes a secondary
instability at I ≈ 2, beyond which the breather persists and
periodically generates pairs of traveling pulses (only one of
which is shown). The breather itself disappears when I ≈ 1.

Two major predictions of our analysis are (i) an inho-
mogeneous input current can induce oscillatory behav-
ior in the form of breathing fronts and pulses and (ii)
the oscillation frequency is approximately independent
of the details of the underlying synaptic weight distribu-
tion, depending only on parameters that have a direct
biological interpretation in terms of single cell recovery
mechanisms. From an experimental perspective, our re-
sults could be tested by introducing an inhomogeneous
current into a cortical slice and searching for these oscil-
lations. One potential difficulty of such an experiment is
that persistent currents tend to burn out neurons. In the
case of traveling fronts, this might be avoided by oper-
ating the system close to the front bifurcation of the ho-
mogeneous network, see figure 1(a), such that only weak
inhomogeneities would be needed to induce oscillations.
An alternative approach might be to use some form of
pharmacological manipulation of NMDA receptors, for
example. Note that the usual method for inducing trav-
eling waves in cortical slices (and in corresponding com-
putational models) is to introduce short-lived current in-
jections; once the wave is formed it propagates in a ho-
mogeneous medium (neglecting the modulatory effects of
long–range horizontal connections [9]). In future work we
will generalize our results to the case of a smooth output
nonlinearity f and determine to what extent the oscil-
lation frequency now depends on the form of the weight
distribution w. We will also consider extensions to target
waves in two–dimensional networks [13].
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