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1. Lebesgue integration on Rn
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If f(x1, . . . , xn) is a smooth function on Rn with support in the
open set X , its integral is

∫

X
f(x) dx1 . . . dxn ,

which can be explicitly calculated (rarely) by reducing it to one-
dimensional integrals, where one can apply the fundamental the-
orem of calculus. If we make a change of variables x = h(y)
where h is an invertible smooth function the integral becomes

∫

h−1(X)
f
(
h(y)

)
|∂x/∂y| dy

since x ∈ X if and only if y = h−1(x) lies in h−1(X). What is
important here is that this formula involves the absolute value of
the Jacobian determinant.
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The change of variables formula in 1D might seem a bit paradoxi-
cal but it agrees with the usual rules of calculus. For example

∫ ∞

−∞
f(x) dx = −

∫ −∞

∞
f(−y) dy =

∫ ∞

−∞
f(−y) dy

The point is that this integral represents an integral of a measure.
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2. Integration of forms on Rn
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If ω is an n-form on Rn it can be written as f(x) dx1 ∧ . . . ∧ dxn

and then its integral is
∫

Rn

ω =

∫

Rn

f(x) dx1 . . . dxn

The point is that we have to first arrange the formula for ω so as
to match the standard orientation of Rn.
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3. Integration on oriented manifolds
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Suppose M to be an oriented manifold. We can cover it by coor-
dinate patches Ui embedded in Rn in such a way that the orien-
tations all match that of M , and we can find a partition of unity
ϕi subordinate to this covering. Then ϕiω may be identified with
a compactly supported form ωi on Rn and

∫

M
ω =

∑

i

∫

Ui

ωi .
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4. Integration on arbitrary manifolds
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Suppose now that M is an arbitrary manifold of dimension n.
At each point m of M we have the one-dimensional real vector
space

∧n Tx. The fibre bundle M̃ of orientations on M is the
quotient of

∧n Tx − {0} by the positive real numbers, a set of
two elements. The space M̃ is a two-fold covering of M . The
manifold M is orientable if and only if this bundle has a section,
which is to say that at each point we have a continuous choice
of orientation. If it is orientable then we can integrate forms over
M , but only after making a choice of orientation. Reversing the
orientation will change the sign of the integral. So there is no
canonical way to integrate forms on M .

There is, however, a canonical way to integrate something else,
called a density or twisted n-form.
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The covering M̃ has a conical involution, interchanging orienta-
tions at any point of M . The n-forms on M may be identified
with forms on M that are invariant under this involution. Since
changing orientation changes the sign of an integral of a form,
the integral of such a form on M̃ is 0. A twisted n form on M is
defined to be an n-form on M̃ that is taken to its negative by the
involution. If ω̃ is such a form on M̃ then by definition

∫

M
ω̃ =

1

2

∫

M̃
ω̃

In other words, what is invariantly defined on an arbitrary mani-
fold is the integral of a twisted n-form.
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The twisted n-forms on a manifold are sections of a one-dimensional
fibre bundle on M . The fibre at x is the space of all maps f
from

∧n Tx to R such that

f(cv) = |c|f(v)

On any manifold there always exists at least one twisted n-form
that never vanishes.
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5. Homogeneous fibre bundles
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Suppose now that G is a Lie group and H a closed subgroup.
If (σ,U) is a finite-dimensional representation of H , thne there
is associated to it a fibre bundle over H\G whos e fibre at any
point is non-canonically equal to U . Geometrically it is the quo-
tient of U × G by the group H taking (u, g) to (σ(h)u, hg). The
sections of this bundle over H\G are the functions

f : G −→ U

such that f(hg) = σ(h)f(g) for all h in H and g in G. One
representation of H is that on the tangent space at 1 of H\G,
which may be identified with h\g. The bundle to conjugation Ad
is the tangent bundle. Another is the one dimensional represen-
tation of H taking

h −→ |det Adh\g(h)|−1

and the associated bundle is twisted n-forms.
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Take G = SL2(R) and H = P . Here p\g = n and the twisted
n-forms correspond to the character

δP :

[
a x
0 1/a

]
&−→ a2

Since a2 > 0 these do not differ from ordinary n-forms. This
remains true for the spaces P1(Rn) with n odd, but fails for the
non-orientable cases with n even.

At any rate, a smooth real twisted n-form on P\G may be identi-
fied a smooth function f from G to R such that f(pg) = δP (p)f(g).
I write integration of twisted n-forms as

∫

P\G
ω

Since G = PK, the quotient P\G may be identified with K ∩
P\K, and if we assign K a total measure 1 integration on P\G
may be identified with integration over K.
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There is another way to put this. If f is a smooth function of
compact support on G, then

f(g) =

∫

P
f(pg) d!p

is a density on P\G—f(pg) = δP (p)f(g). Then with suitable
normalizations

∫

G
f(g) dg =

∫

P\G
f(x)

=

∫

K
dk

∫

P
f(pk) d!p

=

∫

K
dk

∫

A
δP (a)−1 da

∫

N
f(nak) dn

since the integral with respect to d!P can also be expressed as
∫

A
δP (a)−1 da

∫

N
f(na) dn .
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There is another formula for integration over P\G. The set PN
is open in G, and the integral

∫

N
f(n) dn

converges. It is, up to a constant, another valid formula. If we
identify N with R, what is the constant?
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6. The smooth principal series
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Any character (continuous homomorphism into C×) of A is of
the form

χs,m:

[
x 0
0 1/x

]
&−→ |x|ssgnm(x)

for some s in C and m = 0, 1. This will be a unitary character if
and only if s = it for some real number t.

Any character of A determines one of P since P/N = A. Any
continuous irreducible representation of P is of this form (in par-
ticular trivial on N ). In any continuous finite-dimensional repre-
sentation of P the subgroup N is taken to unipotent matrices.

The principal series representations of G are those induced from
characters of P .
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Ind∞(χ |P,G)

= {f ∈ C∞(G, C) | f(pg) = δ1/2
P χ(p)f(g) for all p ∈ P, g ∈ G}

The group G acts by the right regular action:

Rgf(x) = f(xg)

• Ind∞(δ−1/2
P ) = C∞(P\G)

• Ind∞(δ+1/2
P ) = Ω∞(P\G)

• Ind∞(χ−1) = the dual of Ind∞(χ)

〈f, ϕ〉 =

∫

P\G
f(x)ϕ(x) dx

• Ind∞(χ) is unitary if χ is.
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The best way to picture Ind∞(χ) is to describe its restriction to
K.

Restricting f to K determines a map from K to C such that

f(pk) = χ(p)f(k)

for all p in P ∩ K. Because G = PK this is an isomorphism.
Since P ∩ K = ±I and χ(−I) = (−1)m:

Ind∞(χ) |K =
∑̂

n≡m mod 2
εn

where
∑̂
means a topological sum (C∞ Fourier series).
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Let
ϕn(pk) = δ1/2χ(p)εn(k)

If
g =

[
a b
c d

]

then g = pk where

p =

[
1/r (ac + bd)/r
0 r

]
(r =

√
c2 + d2)

k =

[
γ −σ
σ γ

]
(γ = d/r, σ = c/r)

Therefore
ϕn(g) = δ1/2χ(1/r)(γ + i σ)n
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7. Explicit formulas
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The Lie algebra g acts on the subspace of finite sums of the ϕn.
Recall the basis of the complex Lie algebra

κ =

[
0 −1
1 0

]

x+ =

[
1 −i

−i 0

]

x− =

[
1 i
i 0

]

[κ, x±] = ±2i x±

so that
κϕn = niϕn

κ(x±ϕn) = x±(κϕn) ± 2ix±ϕn

= (n ± 2)i (x±ϕn)

x± ϕn = constant · ϕn±2
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x± ϕn = constant · ϕn±2

What is the constant? Since εn(1) = 1

x± ϕn(1) = constant

Here the Lie algebra acts on the right. So we use the basic trick
(seen before).

RXf(g) = LgXg−1f(g)

here with g = 1. Since

x± = α∓ i(κ+ 2ν+)

Rx±
εn(1) = [Lα∓2iν+

∓ Riκ]εn(1)

= (s + 1 ± n)
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Summary:
κ εn = ni εn

x± εn = (s + 1 ± n)εn

We have seen this before when s = −1 and s + 1 = 0 (except for
some small change of sign) caused by a difference between left
and right actions. The space of Harmonic functions is isomorphic
to Ind(δ−1/2). More generally:

Every irreducible (g,K)-representation can be embedded
into a principal series representation.

To be proven in a later lecture.
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8. Intertwining operators
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Some principal series are isomorphic to other principal series.
Some principal series are reducible. To figure out what’s going
on, we need to calculate the G-covariant (or (g,K)-covariant)
maps from one principal series to another.

The start is a version of Frobenius reciprocity. I recall what this
says for a finite group. Let H be a subgroup of another group G.
If σ is an irreducible representation of H , we want to know how
often an irreducible representation π of G occurs in the represen-
tation I(σ) induced by σ. The answer is that π occurs as often
in I(σ) as σ occurs in the restriction of π to H:

dimHomG

(
π, I(σ)

)
= dimHomH(σ, π)

But since represenations of finite groups always decompose
completely, this is also

dimHomH(π, σ)
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Theorem. (Frobenius reciprocity for finite groups) Suppose H ⊆
G are finite groups. If (σ,U) is any finite dimensional repre-
sentation of H and (π, V ) is one of G then there is a canonical
isomorphism

HomG(π, I(σ)) ∼= HomH(π, σ)

I(σ) = {f :G → U |f(hg) = σ(h)}

Either side determines the other—FG(v) = FH

(
π(g)v

)
.
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Let
Λ1: Ind∞(χ) −→ C, f &−→ f(1)

Theorem. (Frobenius reciprocity for principal series) If V is a
smooth representation of G then composition with Λ1 induces
an isomorphism

Hom
(
V, Ind∞(χ |P,G)

)
= HomP (V, δ1/2χ)

The Lie algebra n acts trivially on C, so any P -map from V to
δ1/2χ takes ν+v to 0. It must annihilate the subspace nV of V
spanned all the ν+v. In other words it must factor through the
quotient V/nV , on which A acts. So a new version of the theo-
rem is

Hom
(
V, Ind∞(χ |P,G)

)
= HomA(V/nV, δ1/2χ)

= HomA

(
χ−1δ−1/2, V̂ [n]

)
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There are two kinds of N -invariant functionals on Ind∞(χ), cor-
responding to the two components in the Bruhat decomposition

G = P ∪ PwN

Formally, we have the integral

Λw(f) =

∫

N
f(wn) dn

which satisfies

Λw(Rn∗
f) =

∫

N
f(wnn∗) dn

= Λw(f)

. . .
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. . . and then

Λw(Raf) =

∫

N
f(wna) dn

=

∫

N
f(wa · a−1na) dn

=

∫

N
f(waw−1 · w · a−1na) dn

= δ1/2χ(a−1)

∫

N
f(w · a−1na) dn

= δ−1/2(a)χ−1(a) · δ(a)

∫

N
f(wn) dn

= δ1/2(a)χ−1(a)Λw(f)

giving rise to a G-homomorphism

Tw: Ind∞(χ) −→ Ind∞(χ−1)

32



When is the integral

Λw(f) =

∫

N
f(wn) dn =

∫

R

f(wnx) dx
(
nx =

[
1 x

1

])

defined? Since

wnx =

[
1/

√
x2 + 1 · · ·√

x2 + 1

] [
x/

√
x2 + 1 −1/

√
x2 + 1

1/
√

x2 + 1 x/
√

x2 + 1

]

f(wnx) = (x2 + 1)−(s+1)/2f(kx)

and
Λw(f) =

∫

R

(x2 + 1)−(s+1)/2f(kx) dx

Since (x2 + 1)−(s+1)/2 ∼ 1/xs+1 this converges and is holomor-
phic for RE(s) > 0.
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Explicitly

Λw(ϕ0) =

∫

R

(x2 + 1)−(s+1)/2 dx =
Γ

(
1
2

)
Γ

(
s
2

)

Γ
(

s+1
2

)

since ϕ0(kx) = 1. This continues meromorphically to all of C.
Similarly

Λw(ϕ1) =
Γ

(
1
2

)
Γ

(
s+1
2

)

Γ
(

s+2
2

)

Since x± commutes with Tw and x± · εn = (s + 1± n)εn we see
that Λw is meromorphic on all of Ind(χ).

In fact it is meromorphic on all of Ind∞(χ), but we’ll postpone
checking that.
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9. Characters
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If (π, V ) is any smooth representation of G and f lies in C∞
c (G)

then
[π(f)](v) =

∫

G
f(g)π(g)v dg

defines V as a module over C∞
c (G). This is an element of the

vector space of continuous linear maps from V to itself.

If V has finite dimension then HomC(V, V ) = V̂ ⊗ V , and π(f)
would be an element of this tensor product. One can introduce
a topological tensor product that allows us to make the same
assertion for a large class of smooth representations, but here I’ll
look at the case of V = Ind∞(χ |P,G). I shall define π(f) as
an element of

Ind(χ−1 ⊗ χ |P × P,G × G) ,

which is in fact a topological tensor product of V̂ ⊗̂V when V is
Ind∞(χ).
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For any f in C∞
c (G) define

fχ(g, h) =

∫

A
χδ−1/2

P (a) da

∫

N
f(h−1nag) dn ,

a function on G × G.

Proposition. The function fχ(g, h) lies in

Ind∞(χ−1 ⊗ χ |P × P,G × G)
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For example

fχ(n∗g, h) =

∫

A
χδ−1/2

P (a) da

∫

N
f(h−1na · n∗g) dn

=

∫

A
χδ−1/2

P (a) da

∫

N
f(h−1n · an∗a

−1 · ag) dn

=

∫

A
χδ−1/2

P (a) da

∫

N
f(h−1nag) dn

= fχ(g, h)

and

fχ(a∗g, h) =

∫

A
χδ−1/2

P (a) da

∫

N
f(h−1na · a∗g) dn

=

∫

A
χδ−1/2

P (ba−1
∗ ) db

∫

N
f(h−1n · bg) dn

= χ−1δ1/2(a∗) fχ(g, h)
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If F lies in Ind∞(χ−1⊗χ |P ×P,G×G) and ϕ in Ind∞(χ) then
for each fixed h in G the product F (g, h)·ϕ(g) lies in Ω∞(P\G),
and hence the integral

∫

P\G
F (x, h)ϕ(x) dx = [F (ϕ)](h)

is defined. The map ϕ &→ F (ϕ) is an endomorphism of Ind∞(χ).

If V were finite-dimensional then for any f in V̂ ⊗ V its trace
when considered as an endomorphism of V would be the image
of f under the canonical pairing

v̂ ⊗ v &−→ 〈v̂, v〉

This remains valid here. There is a canonical G × G-covariant
map from Ind∞(χ−1 ⊗ χ |P × P,G× G) to Ω∞(P × P\G× G)
and thence to C and the trace of F is its image in C.

39



We can do things more concretely.

Rfϕ(g) =

∫

G
f(x)ϕ(gx) dx

=

∫

G
f(g−1y)ϕ(y) dy

=

∫

K
dk

∫

A
δ−1
P (a) da

∫

N
ϕ(nak)f(g−1nak) dn

=

∫

K
ϕ(k) dk

∫

A
σ(a)δ−1/2

P (a) da

∫

N
f(g−1nak) dn .

The trace of Rf on Ind∞(χ) is therefore
∫

A
χδ−1/2(a) da

∫

N
f(na) dn where f(an) =

∫

K
f(kank−1) dk
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The result we eventually want is this:

Theorem. The trace of Rf on Ind∞(χ) is
∫

G
f(g)Θχ(g) dg

where
Θχ(g) =

χ(x) + χ−1(x)

|x − x−1|

if g is conjugate to ax and 0 otherwise.

The point here is that the character of Ind∞(χ) is originally de-
fined as a distribution, but it is in fact a distribution defined by
the locally summable function Θχ.
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We want to show that
∫

A
χδ−1/2(a) da

∫

N
f(na) dn

is the same as ∫

GA

f(g)Θχ(g) dg

where Θχ(g) =
χ(x) + χ−1(x)

|x − x−1|
if g is conjugate to ax.

We can write the first as
∫

A
χ(a)fP (a) da where fP (a) = δ−1/2(a)

∫

N
f(na) dn
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Because Θ is conjugation-invariant we can write the other inte-
gral as
∫

G
f(g)Θ(g) dg =

1

2

∫

A
|∆(a)|Θ(a) da

∫

G/A
f(xax−1) dx (Weyl)

=
1

2

∫

A
|∆(a)|

χ(a) + χ−1(a)

|∆(a)|1/2
da

∫

G/A
f(xax−1) dx

=
1

2

∫

A
|∆(a)|1/2

(
χ(a) + χ−1(a)

)
da

∫

G/A
f(xax−1) dx

=

∫

A
χ(a) |∆(a)|1/2 da

∫

G/A
f(xax−1) dx .

Here ∆(ax) = |x − x−1|.
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We want to show that
∫

A
χ(a)fP (a) da =

∫

A
χ(a) |∆(a)|1/2 da

∫

G/A
f(xax−1) dx

i.e.

δ−1/2(a)

∫

N
dn

∫

K
f(knak−1) dk = |∆(a)|1/2

∫

G/A
f(xax−1) dx

This depends on a lemma of Harish-Chandra’s—for any ax in A
with x2 0= 1 the transformation n &→ n · ana−1 is bijective with
modulus |detAdn(a) − 1| = |x2 − 1|.

You’ll need to know that |x2 − 1| = |x||x− x−1| = δ1/2(ax)∆(a).
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SL2( )

The End

45


