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1. Harmonic functions
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Let G = SL2(R).

The group G acts on H by Möbius transformations and commutes
with the non-Euclidean Laplacian

∆H = y2

(
∂2

∂x2
+

∂2

∂y2

)

The space of functions f defined everywhere on H satisfying

∆Hf = λf

(eigenfunctions of ∆H) will therefore be stable under G. Such func-
tions are necessarily real analytic in D.

This illustrates one of the two ways in which representations of G
arise naturally. The other is illustrated by the boundary values of
these eigenfunctions on P

1(R).
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If we write this Laplacian in non-Euclidean radial coordinates it be-
comes

∂2

∂r2
+

1
tanh r

∂

∂r
+

1
sinh2 r

∂2

∂θ2

In small regions Euclidean and non-Euclidean space are asymptoti-
cally alike, so it is reassuring to compare this operator with the Eu-
clidean Laplacian in radial coordinates

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

which looks the same around r = 0 since tanh r ∼ sinh r ∼ r for
small r.
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The Laplacian commutes with rotations. If f is any solution of ∆Hf =
λf we can write

f =
∑

einθfn(r)

where each term is also an eigenfunction. We may first look for so-
lutions of the form einθf(r)—in effect separating variables in polar
coordinates. Since ∆H in radial coordinates is

∂2

∂r2
+

1
tanh r

∂

∂r
+

1
sinh2 r

∂2

∂θ2

we get the equation

f ′′(r) +
1

tanh r
f ′(r) − n2

sinh2 r
f(r) = λf(r)

Like the Euclidean one, this has an irregular singularity at ∞, like for
example the equation f ′′ − f = 0 with exponentially increasing and
decreasing solutions e±r.
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On H the non-Euclidean distance r from i (our non-Euclidean origin)
to iy with y ≥ 1 is ∫ y

1

ds

s
= log y

so that y = er . If we make a change of variables y = er in our
differential equation we get

y2 d2f

dy2
+

2y3

y2 − 1
df

dy
− 4n2y2

(y2 − 1)2
f = λf

which has a regular singularity at y = 1 (and other places).

This equation and other similar equations will be examined in much
detail later, but for now I’ll look only at the case λ = 0.
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So now we want to solve

y2 d2f

dy2
+

2y3

x2 − 1
df

dy
− 4n2y2

(y2 − 1)2
f = 0

This has a regular singularity at y = 1, and the general theory of
such equations tells us that there is a basis of solutions

(y − 1)n(a0 + a1(y − 1) + · · · ),
(y − 1)−n(a0 + b1(y − 1) + · · · )

if n �= 0 and a basis

a0 + a1(y − 1) + · · · ,

(b0 + b1(y − 1) + · · · ) log |y − 1|

if n = 0.
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We are interested for the moment only in well-behaved solutions, so
we discard half of these. What remains are solutions whose Taylor
series start out

(y − 1)|n|(c0 + c1(y − 1) + · · ·)

We could have predicted this!
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We may as well replace H by D. This makes rotational symmetry
manifest.

Let’s change from H to D. The point iy goes to t = (y − 1)/(y + 1)
on the x-axis. The Laplacian becomes

(1 − r2)2∆

so we are looking for functions harmonic in the usual sense.

The equation ∆f = 0 in the unit disk—indeed, even in the whole
complex plane—has as solutions the constants together with all
functions zn and zn for n > 0.
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What we have proved, together with the theory of Fourier series, is
that these are all we get:

Theorem. Every solution of ∆ = 0 which is finite in a neighbour-
hood of 0 is a sum (possibly infinite) of the form

f(z) = c0 +
∑
n>0

cnzn +
∑
n<0

cnz|n| .

This is not quite obvious. Rotationally symmetric eigenfunctions
whose eigenvalue is not 0 will usually, as we’ll see later on, be infi-
nite sums

∑∞
0 ckr2k instead of the simple constants.
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2. Group and Lie algebra
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We demand of our functions that they be well defined throughout D,
the entire unit disk, not just around 0, since G acts transitively on
D. This imposes growth conditions on terms in the infinite series
c0 +

∑
n>0 cnzn +

∑
n<0 cnz|n|.

But this raises some interesting questions—there are many differ-
ent conditions we can impose on the functions concerning their be-
haviour near the boundary of D, the unit circle |z| = 1, and still
retain stability under G.
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Various G-stable conditions that can be imposed on spaces of har-
monic functions (increasing in strictness):

• they must be real analytic throughout D;

• they must be of moderate growth near the unit circle.

• they must have smooth boundary values on the unit circle;

seriesseries

• they must be real analytic in an open neighbourhood of the closed
unit disk;

All of these conditions are of some importance, but at the same time
all these representations are in some sense the same—they all con-
tain the polynomials in z and z.

All these representations of G contain exactly the same
eigenfunctions of K.

13



The space spanned by the polynomials in z and z is not stable under
G, but

• it is stable under K;

• it is also stable under the Lie algebra g of G.

What this last means in concrete terms is that it is stable under the
differential operators associated to the vector fields derived from g—
that is to say, generated by one-parameter flows on G:

A: α =
[

1 0
0 −1

]

N : ν+ =
[

0 1
0 0

]

K: κ =
[

0 −1
1 0

]
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These vector fields these give rise to are

α: 1 − z2

ν+: (1/2i)(z − 1)2

κ: −2iz

where the holomorphic function f(z) = p + iq identified as a real
vector field becomes

p
∂

∂x
+ q

∂

∂y
= (p + iq)

(
∂

∂x
− i

∂

∂y

)

+ (p − iq)
(

∂

∂x
+ i

∂

∂y

)

= f(z)
∂

∂z
+ f(z)

∂

∂z
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Certain complex vector fields are useful because they raise and lower
K-weights. Recall that

x± = α ∓ i(κ + 2ν+) .

Then

κ + 2ν+ = −i(1 + z2)

� 2xy
∂

∂x
− (1 + x2 − y2)

∂

∂y

i(κ + ν+)� 2xy i
∂

∂x
− (1 + x2 − y2)i

∂

∂y

α� (1 − x2 + y2)
∂

∂x
− 2xy

∂

∂y

x+ = α − i(κ + 2ν+)� −z2 ∂

∂z
+

∂

∂z

x− = α + i(κ + 2ν+)� ∂

∂z
− z2 ∂

∂z
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This leads to the idea of considering certain representations of the
pair (g,K) that satisfy various modest compatibility conditions—
instead of representations of G itself.

The advantage of this reduction is simplification. In any smooth rep-
resentation of G the elements of the Lie algebra act as linear opera-
tors. Lie algebras are very tightly structured, so the representation of
the Lie algebra is often also structured. If

ϕn =

{ 1 if n = 0
zn if n > 0
zn if n < 0

the messy formulas on the previous page boil down to

κ ϕn = −2ni ϕn

x+ϕn = −n ϕn+1

x−ϕn = n ϕn−1
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κ ϕn = −2ni ϕn

x+ϕn = −n ϕn+1

x−ϕn = n ϕn−1

5 4 3 2 1 0 -1 -2 -3 -4

-4 -3 -2 -1 0 1 2 3 4 5

-4 -3 -2 -1 0 1 2 3 4

In some sense we understand this space quite well. We can see that
the constants form a subspace stable under the Lie algebra, and of
course the group as well. No surprise.
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5 4 3 2 1 0 -1 -2 -3 -4

-4 -3 -2 -1 0 1 2 3 4 5

-4 -3 -2 -1 0 1 2 3 4

But we can also see that the quotient by the constants is the direct
sum of two components, holomorphic and anti-holomorphic. And
that each of these is irreducible. Each of these corresponds to a G-
stable component, too.

We can summarize the situation in a long exact sequence (where H
is the space of harmonic polynomials):

0 −→ C −→ H −→ D+ ⊕ D− −→ 0

There are analogous sequences for every irreducible finite-dimensional
representation of SL2(R). The representations D± occurring here
turn out to be unitary, and strongly so.
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3. Restriction to P
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There are almost always two important ways to look at a
representation (of G or its Lie algebra). One is to describe
its restriction to a maximal compact subgroup, in this case
K = SO2. The other is to describe its restriction to a mini-
mal parabolic subgroup, in this case P .

We know what the restriction of our representation to K is—the di-
rect sum of characters ε2n, where

ε:
[

cos θ − sin θ
sin θ cos θ

]
�−→ eiθ

What can we say about its restriction to P?

Why is this an interesting question?
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I am not going to describe completely its restriction to P , but as
I did with K, I am going to look at it in the neighbourhood of the
point fixed by P . For H this is ∞, but for D it is 1.

I am going to look at the G-space of functions that take smooth
boundary values on the unit circle. Such functions have a Taylor se-
ries at 1 of the form

c0 +
∑
n>0

cn(z − 1)n +
∑
n<0

cn(z − 1)|n|

How does the Lie algebra act on this space of Taylor series?
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κ = −2iz

= −2i(1 + (z − 1))

α = (1 − z2)
= −(z − 1)(2 + (z − 1))

ν+ = (1/2i)(z − 1)2

leading to (for example)

κ : (z − 1)m �−→ −2im(z − 1)m−1(1 + (z − 1))
α : (z − 1)m �−→ −m(z − 1)m(2 + (z − 1))

ν+ : (z − 1)m �−→ (m/2i)(z − 1)m−1

The operators α and ν+ take the ideal m of functions vanishing at
1 to itself, since P fixes 1. They also take each mn to itself. The
operator ν+ even takes mn to mn+1.
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This is closely related to certain simple representations of the Lie
algebra known as Verma modules. They are important in represen-
tation theory of the group because, as is the case here, they are re-
lated to the behaviour of certain functions at ∞. Also to understand-
ing the characters of a representation.
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4. Boundary values
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I have now at hand five spaces of interest—one a representation of
the Lie algebra alone, the rest of the group itself (order of decreasing
strictness):

• harmonic polynomials;

• functions real analytic in an open neighbourhood of the closed
unit disk;

• functions possessing smooth boundary values on the unit circle;

• functions of moderate growth near the unit circle.

• functions real analytic throughout D;
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These are all characterized by their boundary values:

• trigonometric polynomials;

• functions real analytic on the unit circle;

• smooth functions on the unit circle;

• distributions on the unit circle;

• hyperfunctions.

Again, all of these are in some way equivalent, although in other
ways quite different. Furthermore, in this case the map from a func-
tion D to its boundary value is an isomorphism with a simple space
of analytical objects on S

1. The Cauchy integral and its anti-holomorphic
analogue, or equivalently the Poisson kernel, give the map going
back.
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Let’s look at just one of these spaces, that of harmonic functions
with smooth boundary values. The boundary values are all of C∞(P\G),
and behaviour of f(z) as z approaches a point on |z| = 1 is asymp-
totic, described by a non-convergent Taylor series.

In general, representations of G (or, rather, of (g,K)) will have two
different kinds of incarnations. One is by means real analytic func-
tions on G that are eigenfunctions of certain differential operators
like ∆—its matrix coefficients.

The other is as smooth sections of real analytic vector bundles on
flag manifolds like P1(R). These sections are boundary values of
functions in the first type. The exact description is closely related
to the structure of the representation when restricted to a parabolic
subgroup such as P .
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5. Harmonic forms
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If f(z) = c0 +
∑

n>0 cnzn +
∑

n<0 cnz|n| is a harmonic function on
D then

df =
∂f

∂z
dz +

∂f

∂z
dz

In this section I shall look at the holomorphic components of such
forms:

ω =
( ∑

cnzn
)
dz = f(z)dz

where f(z) is holomorphic. The group acts on these (right action)
via the transpose, taking f(z)dz to

f(g(z))dz

J(g, z)2

If ω is a holomorphic form then ω∧ω is a 2-form on D and the metric
ω ∧ ω is both positive definite and G-invariant.

The representations D± possess positive definite G-invariant
innder products, and occur as discrete summands in the
Hilbert space of all square-integrable 1-forms on D.
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SL2(R)

The End
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