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1. Notation



G = SLy(R)
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Conjugation by w takes an element of P to

i A

In particular it acts as involution a — a~! on A and takes P to P.

The group NV is normal in P and

5 [o 3]0 ] <[



If X is a2 x 2 matrix then the series

2

converges. For small ¢

exp eX =1+ eX + O(e?)

Lemma. For any X

det exp(X) = exp traceX

The tangent space g at I on G may be identified with matri-
ces of trace 0.
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2. Complex geometry



The complex projective line is
IP)(C — Pl(c> — Cz o {O}/CX (:Cay> — ((:U,y))

It is covered by two copies of C

whose complements are single points ((1,0)) and ((0,1)).
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The group GG acts on C by fractional linear transformations:

calli)=lete

:(cz+d)[

g [i] = J(g,2) [g(lz)]

The function J is called the automorphy factor.

(az+b)/(cz—|—d)]
1

The map z — (az + b)/cz + d) from C U {oo} to itself is also called
a Mobius transformation.
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The group P is the stabilizer of ((1,0)) = oo
a 1 fa] |1
0 1/a o |0 0
The copies of C are orbits of W@ and Nc¢:

o =) )=

This gives us the Bruhat decomposition:

Pc = New(oo) U {oo}
G=NwPUP
= PwN U PwuNw™!

— PN UPwN (open sets)
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MoObius transformations take circles and lines to circles and lines.

O=ax—+ py+C
=RE(a —if)(z +iy)) + C

0=z —w*—r?

= (z—w)(z—w) —r?

= |2]° — 2RE(2w) + |w|® — r?

0 = A|z|* +2RE(Bz) + C

o=z 1|5 ¢ |5

Line: A =0, circle: A # 0.



Circles and lines are the null cones of Hermitian forms H with nega-
tive determinants. The stabilizer of the inside of a circle or of a side
of a line is a special unitary group SU(H ). The group SL2(R) is the

special unitary group of
0 2
1 0

and hence stabilizes the upper half plane

H={z=xz+1yl|ly > 0}.

(IXCX = Cifand only if CX ='X ~1C)
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3. The upper half plane



Theorem.

oylzm) y(®)
y(g(z)) — ’CZ—I—d|2 — |J(g,z)|2

1 faz+b az+b
y(9(2)) = 21 (cz+d B c§+d)
1 (az+b)(cz+d)— (aZ+ b)(cz + d)
) ez + d|?
~ (ad = be)y
ez +d|?

So we see again that Sy (R) takes H to itself.
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The group K is the isotropy subgroup of 2.

b

ar,hL =14, at+b=—c+di
cr -+ d

a=d b= —c

So H =G/K. Since

1 x a 0 e ai . 2. \&27;—|—£U_ 9 .
[O 1] [O 1/a]'2' /1/a—az. > | =a"1+x

the group P acts transitively on 'H and G = PK.
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lwasawa decomposition: G = PK.

[cCL Z] _ [(1) (ac+1bd)/r] [1(/)7« S] [Z

where r = V2 +d?2, ~v=d/r,oc=c/r.
This is because

ai+b  (ai+b)(—ci+d)

0= G3a~ e+a
(ac +bd) +i(ad —bc) i+ (ac+ bd)
- 02_|_d2 - 02_|_d2
= o%i + x = p(i)

and solve g = pk to get kK = p~g.
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The group K fixes 7, and its orbits are circles:

/ N\

\ Z

The rotation matrix with angle 6 rotates by 26 in the clockwise direc-
tion.
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Since
dg(z) 1 _ y(®)
dz  (cz+d)?’ y(9(2)) = lcz + d|?

the metric
dz|*>  dz-dz  dx® 4 dy?

y? y? y?

is GG-invariant, as is the differential 2-form

dzANdz  (drv+idy) A (de —idy) dxAdy

(—2¢)y% (—2i) y? y?

which hence determines a GG-invariant measure on H. The Laplacian

In this metric is ) )
oz  Oy?
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4. The Cayley transform



The Cayley transform
2 =0

z+1

takes H to
D={z]| || <1}

It is the MAbius transformation associated to the matrix

B
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Any element X of SLy(IR) acts on D by conjugation:

B2 e | A I

c —S Cc— 18 0
S C 0 c—+ 1S
a+a ' a—at"
a 0 2 2
0 a! a—a ' at+al
2 2 |
I (1 —w w .
[0 1] — | —w 1+w] (w=2/2i)
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Orbits of A and orbits of IV:

—1

1

The group SLy(R) acts as non-Euclidean isometries in the Poincaré
model, in which geodesics are arcs intersecting the boundary at right
angles.
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From the action on ID we get the Cartan decomposition:
G/K=KA"™, G=KA'K

If g = k1aks then
gtg _ k‘lCL2k‘1_1

so a” is the eigenvalue matrix of g g and the columns of k; are its

eigenvectors.

Here AT is the group of diagonal matrices with first entry > 1,
which can be arranged by choosing the eigenvalues in the correct
order. | write +- rather than + to take into account what happens
for groups other than SLo(RR).
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5. Vector fields



The action of a Lie group G on a manifold M determines also vector
fields corresponding to vectors in its Lie algebra, the flows along the
orbits of one-parameter subgroups exp(t.X).

The element X in g determines at m the vector

(I +eX)m—m
3

where we may assume €2 = 0.

Let’s see what happens for
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On H:

27

|
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On H:

28

0 1 O = I+ O
|10 -1 0 1-—¢

(1+e¢)z
- (1-¢)

A

2(142¢) = 2z + 2¢ez

0 0
20 — 4+ 2y —
“T x@x+y8y

d(1+e)(l+e+e’+--)

|



On H:

29

N U O T I >
A e 1
z—€
b — 2z —¢£(1 2
2 v e(1+ 27)
mH—(1+x2—y2)3—2$y
Ox



On D:
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Lo -1

zZ+é€

- — 1 — 22
p—— z+ ¢ 2°)

a— (1 —27)
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6. Measures



Each of the decompositions or factorizations

G=NAK  (lwasawa)
= PUPwN  (Bruhat)
= KAT™"K  (Cartan)

corresponds to a different formula for integration on G.
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G = NAK:

/Gf(g)dg:/Kd/-c/Aépl(a)da/Nf(nak)dn

This is because G/K ='H, H = P -, and

is (G-invariant.

We’ll say more about this later on.
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G =PUPwN:

[ oo = [ dns [ 5t (@da [ foawny) dn

This will be explained later on, when we look at representations as-
sociated to the space P\G.
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G=KATTK:

/f(g) dg:/ dk; dkz/ 22 — 272|f(k1azks) da
G KxK A+t

Geometrically, this is equivalent to this assertion:

The circumference of the non-Euclidean circle in ‘'H through

ty is mly —y~ .
This can be seen easily by transforming to . The image of 2y is
(y—1)/y+1). on H dy/y = dr, and on D dr = 2dt/(1 —t?). Then

one can use radial symmetry to see that the non-Euclidean circumfer-
ence at Euclidean radius t is 47t/(1 — t°), and interpret in terms of

Y.

36



37

7. Conjugation classes



Suppose g in SLy. Its characteristic equation is

332 — T + 1 =0 (7' — trace(g))

with roots
—T+ V712 -4
T =
2
If |7| > 2 the roots are real and distinct and
g = X [xl ] X—l
L2

fo some X in K. Since conjugation by the element
b — 0 —1
1 0

Interchanges the order of diagonal entries, both x and r1 give rise
to the same conjugacy class.
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—T V72 -4
2

If |7| < 2 the roots are complex, distinct, and of absolute value 1. If
one is ¢ 4 25 with s > 0 then

T =

g:X[c—st 0 ]X‘l

where

with v the eigenvector for ¢ + 1s.
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Then

where now
X =|REv IMUv|

If X has positive determinant then g is conjugate to the same ro-
tation matrix in SLo(R), but otherwise to its transpose (or inverse).
Thus there is one class for each 0 < 6 < 27 excluding m. Geomet-
rically, the question here is whether g rotates clockwise or counter-
clockwise.
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If |[7| = +2 we get +1 and also 4 unipotent classes

[g ii] (e = £1)

We can picture SLs as a solid torus, fibring by circles over the disk
D, and then partition it by conjugacy classes (elliptic, hyperbolic,
unipotent):
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Conjugation classes in the compact group SU(2) are simpler. Every
g in GG is conjugate to a unique diagonal matrix ¢ in 1T with first entry
e, 0 < 6 < m. Weyl's integration formula for G = SU(2) says

1
/:—/ d:r;/f(xtx_l)siHQHdt
¢ 2Jgr T

where measures are chosen so G = (G/T) x T. The 1/2 arises
because in SU(2) the order of eigenvalues doesn’t matter. One thing
the formula means is that if you choose a 2 X 2 unitary matrix with
determinant 1 randomly you are more likely to get one with eigenval-
ues around ¢ than around 41. In terms of density:

y = (2/7)sin2 0
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Something similar happens for SLs, but taking into account the var-
ious eigenvalue possibilities. If 7" is either A or K, let G-* be the
open subset of g conjugate to regular elements of 1I', W the order

of Ng(T')/T. Then

(9)dg =

1 ~1
!WT\/T|D(t)|dt G/Tf(a:ta: ) dx

/
GE
where
D(t) = det(Adg,(t) — I

This is proved by looking at the differential of the conjugation map
G/TxT — G.

For A
D(az)| =|2z® —1]]a7* = 1| = |z —27'|?

while for K
|D(kg)| = 4sin” 0.
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8. Lifting to the group



Since H = G/ K, functions on H may be lifted to functions on G
invariant under right multiplication by K:

It is often necessary to interpret vector fields on H in terms of the
Lie algebra of (& interpreted as left-invariant vector fields, acting on
the right, on G.

The key to this translation process is a simple calculation:

[Rx Fl(g9) = [Lgxg—F|(9)
since F'(g- ([ +e)X)=F({ +¢- ng_l) - q)
LxF](g9) = [Rg—1x4F](9)
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=0 3116 e

takes 7 to a’i + x, so Rx as a vector field on H is Lyxp,-1X where

a’ = y. This gives us:

R, =0
R. =2y0/0y
R, =y0/0x
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There are some elements of the complex Lie algebra of G that are
useful when dealing with the complex structure on . To motivate
these, consider the adjoint representation of /X on g. The subgroup
K is a torus, and the Lie algebra breaks up first of all into skew-
symmetric and symmetric matrices. The group K acts trivially on
the anti-symmetric component, its won Lie algebra, and acts by rota-
tion on the symmetric part, which may be identified with the tangent
plane of H at 7. The eigenvalues and eigenvectors are necessarily
complex. To be precise, if

then
—1 1246
koxsky, =e x4

Since x4+ = a F i(k + 2v4 ), the previous formulas give us

R,, = —2iy0/0z

T4

R, = 2iy0/0z
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What right action does the Laplacian correspond to?

There is a very special right-acting differential operator on G called
the Casimir operator (to be explained in detail later):

C=0?/4—a/24+viv_=0a*/4—a/2+v,v  +Vik

This satisfies

Re = Ay)
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The End
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