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Abstract. In this lecture we describe some elementary varitional problems from geometry and mention some
higher dimensional generalizations. We begin by discussing two problems for embedded plane curves, the reverse
isoperimetric inequality for curves of bounded curvature and the deformation of a planar elastic ring under hy-
drostatic pressure. These problems illustrate how topological and geometric conditions of the problem, as well
as the coordinate invariance of the quantities involved tend to make the problems inherently nonlinear and often
nonconvex. Arguments combine analytic and geometric considerations.

Many of the main problems of differential geometry are variational in nature. For example in harmonic
maps [N], one is interested in finding f : M — N with least energy E(f) = [,, |df|? d vol, where (M, g) and
(N, h) are smooth Riemannian manifolds with their metrics, |df|?, the energy density (which is the g-trace
of the pullback f*h) that depends on g and h, and f is a C' map that is topologically nontrivial, say that it
cannot be continuously deformed to a constant map, or that its values are prescribed on the boundary of M.
If M =SS!, the circle, then harmonic maps are geodesics (length minimizing curves). If N = R then f is a
harmonic function. If one considers the volume voly (f(M)) instead of energy, then the least volume map is a
minimal submanifold. We shall consider minimal spheres, M = S?, in Part II. The volume constrained area
minimization problem leads to surfaces with constant mean curvature. Another very important variational
problem is the Yamabe Problem, that asks whether the metric of any compact boundaryless manifold (M, g)
of dimension m can be conformally deformed to a metric h = u*/("=?) g of constant scalar curvaure, where

u > 0 is a function. Yamabe formulated the question variationally: minimize [, |du|* + 42:1) Ryu?dvol,

for u € H'(M)\{0} and [,, [u*"/("=2) dvol, = 1, where Ry is the scalar curvature of a background metric
g. The problem was partially solved by Aubin(1976) and completed by Schoen(1984), (see [Au], [SY] for an
exposition).

Since the geometric quantities involved, such as length, area, volume, curvature are independent of the
choice of coordinate system, the solutions tend to be defined only up to a large group of gauge transformations
such as reparameterizations by diffeomorphisms. In the harmonic map problem, the domain is not a subet
of FEuclidean space, but rather of a differentiable manifold, and the space of competing functions is not a
vector space but some nonlinear subspace appropriate for the geometry (e.g., since we may assume N C RV
isometrically for large enough N by the Nash Embedding Theorem, the RN-vaslued maps take values in
N). Thus the problems tend to have an inherently not stricly convex (or nonconvex) nature and analysis
proceeds without the benefit of the underlying Euclidean structure.

1. HISTORICAL REMARKS AND PRELIMINARIES

We shall recall and formulate some basic notions from geometry such as the mean curvature of a sur-
face and describe some of its properties. This material is typically covered in an upper division course on
curves and surfaces. Good references are Blaschke & Leichtweif[BL], Chern[Ch], Courant[Ct], do Carmo[dC],
Guggenheimer[Gg], Hicks[Hc], Hopf[H{], Hsiung[Hs], O’Neill[ON], Oprea[Opl], Struik[Sk]. Good references
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specializing on minimal and constant mean curvature surfaces are Jost[Jo], Dierkes et. al.[DHKW], Law-
son[La], Nitsche[Ni], Osserman[O1].
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The Plateau Problem. Suppose 7 is a closed Jordan curve in Euclidean Space, i.e., a subset homeomorphic
to acircle. The Plateau Problem is to find a regular immersed surface with least area having 7 as its boundary.
It may happen that for some curves, such as one that nearly goes around a circle twice may be spanned by a
surface of the type of the disk or the type of a Moebius strip with much less area. There are more complicated
curves that bound surfaces with infinitely many topological types, and such that the more complicated the
surface, the smaller the area can be made. For that reason, we fix the topological type and try to minimize
among parametric surfaces given by maps of a fixed two-manifold with boundary X : M — E3. The simplest
case is to consider maps from the closed unit disk D in the plane. A mapping X : D — E? is called piecewise
C! if it us continuous, and if except along OB and along a finite number of regular C! arcs and points in
the interior D, X is of class C'. A continuous map b: B — 7 is monotone if for each p € v, the set b~ (p)
is connected. Define a class of maps

X, ={X:D — E®: Xis piecewiseC' and X|, is a monotone parameterization of ~}

Then we define the area functional A : X, — [0, 0c] by the following (generally improper) integral.

A(X):/D\/det(gij(ulﬂﬂ))du1 du®.

Here (u',u?) € D are coordinates in the disk, X; = % and g;; = (X;, X;) where (-, -) is the usual Euclidean
inner product on R?®. Using the notation |V |* = (V, V) to denote the square length of a vector, then the
integrand can be interpreted as the area of the parallelogram spanned by the X;’s. If § = ZX; X, is the
angle, then the squared area of a parallelogram is

X1 %1 Xo)?sin® 0 = | X% X2]*(1 — cos® 6)
<X17X2>2
X1 [?[Xo[?

X[ X2 <1 - ) = g11922 — g1 = det(gij).

In E? this also equals | X; x X3|?. The statement of the problem is to find X € X, so that A, = A(X) and

A, = inf A(Y).

Yex,

The interesting case is if - satisfies A, < oo which will have to be assumed. There are curves  for which
A, = oco. Lawson gives the following example[La]. Imagine starting with a planar circle v;. String a
number of beads (solid torii) onto y; and replace v; by a new curve 7, gotten by splicing in curves coiled
a number of times around each bead. Repeat the beading and splicing process for each successive ,,. Let
Yoo = liMy, 500 Vn- By estimating the area of the surface needed to span each helical coil, and by selecting
the number and dimensions of the beads appropriately, one can arrange that A, = occ.

The most significant difficulty in solving the variational problem arises from the fact that the area is
independent of parameterization. Thus there is a loss of compactness for minimizers. Douglas found a
way to finesse around this difficulty. Thus if n : D — D is a diffeomorphism then if X € X, then so
isY = Xon e A, but A(X) = A(Y). This simply follows from the change of variables formula: If
n(vt,v?) = (u',u?) then writing ¥; = 0Y/0v" and g;; = (V;,Y;) then

oY oXout _ ufdu!
= IR DT B

Yi= o= =7 = Jij
det (2 et (22 [ aut du? =\ faet(goy)du du?
et | 57 et | 5 u' du” = y/det(g;;)du” du®.

vl dur dvi
\/det(gij)dvl dv2

det(gre)
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Nonparametric surfaces and the Constant mean Curvature equation. If we assume that f(u', u?)
has minimal area among all competitors, then we may derive the Euler equation as follows. Assume that ( €
C2(B) is a function with compact support and consider the variation X[t] = (u!,u?, f(u',u?) + t{(u',u?)).
Since A[0] < A[t] for a minimizer, the first derivative vanishes. Differentiating inside the integral, and
integrating by parts,

. fivr + favo 1 2 _ - (f1, f2) 1 2
. A(z[t]) = Bimdu Adu®, = /Bd <7m> vdu' Adu’.

Since, v is arbitrary, the remaining term must vanish. The resulting divergence structure elliptic equation is
the minimal surface equation.

. Vf
1.1 div| ———— | =
w2 ()

where Vf = (f1, f2).
Similarly, if we assume that the volume under the surface is kept constant, then we minimize A under
the condition that

V(X) = / fdu' Adu® = c,
B
where ¢ is a constant. Besides this equation, the minimizer satisfies the Euler Lagrange equation

d

7| (Al +AV(XTH)

t=0

(Vf, Vo) 1 2

= — 4+ v du du”,

./)3{\/1+|Vf|2+ } " '
Cdiv [ Ly
/B{ d ( 1+Vf2>+/\}vdu Adu”.

where )\ is the (constant) Lagrange multiplier. The constrained optimizers satisfy the constant mean curva-
ture equation (CMC equation.)

. Vf
1.2 div| ——| =
w2 (o)

However, it may happen that the minimizing or CMC surface for some  does not project to B as a
graph. Instead we consider parametric surfaces given by the vector function X : D — R? be a mapping of
the closed unit disk which is continuous on the closed domain D and twice continuously differentiable on D.
We assume that X (u',u?) is regular, which means that the cross product X; x X3 is a nonvanishing vector
field on X (D). The area of X (D) is given by

A(X) = /D|X1 x Xo|du' du®.

Suppose that v:S!' = 0D — R3is a continuous one-to-one mapping from the unit circle to three space.
The Plateau Problem is to find Z € X = {X € C(D,R3) N C?*(D,R3?): X is regular} which minimizes area
among all such maps

A(Z) = inf AX).



The second fundamental form and a geometric interpretation of mean curvature. We describe a
geometric interpretation of mean curvature, for arbitrary surfaces in Euclidean space. Suppose we’re given a
parametric surface locally by X (u!,u?) near the point p. The tangent plane to X (M) at point X (u!,u?) is
spanned by the tangent vectors z; and Xs by applying the Gram-Schmidt algorithm to the vector functions,
it is possible to find arthonormal vector fields E;, E, that span the tangent space at X (u!,u?) and which
vary in a C' fashion. We can also let Es = E; x Ey be the unit vector field normal to the surface. Since
the surface is regular, it can be represented as a graph over the tangent plane, so for each p, we may write
X (M) as a graph over the tangent plane near p as

X&) =X p°) + & B, p°) + EE(p', %) + f(€, 5", 0P Es(p', p7).

Since E; and E, are tangent to X (M) at P, f1(0,0;p) = f2(0,0;p) = 0 (at the point X(p).) The second
fundamental form is defined to be the Hessian matrix h;;(p) = fi;(0,0; p). The mean curvatrure is the trace
H = %(hu + hao) = %(nl + k2) and the Gauf} curvature is the determinant K = det(h;;) = k1k2, where &;
are the eigenvalues of h;; at p. These numbers are called the principal curvatures. Because H and K are
symmetric functions of eigenvalues, they are defined independently of he choice of the orthonormal basis at
p. Thus H and K are invariantly defined quantities of the surface. It turns out that one can account for the
effect of the nonzero slope and that the expression (1.2) gives the mean curvature with A = 2H.

Another way to compute is to use the covariant derivative Vy X of a vector function X in the V direction.
This simply means to take the directional derivative and to orthogonally project it to the tangent plane
Vv X =TI(VyX) where II(¢' By + By + £ E3) = £'Ey + £2Ey. Then hij = —(Vg, B3, E;) = (Vi, Ej, E3).
It follows that the quadratic form %hij (p)€i¢7 is a second order approximation to the surface in the tangent
plane, and is sometimes called the shape operator.

Complex analysis and isothermal coordinates. The parameter manifold (AM?,ds?) can be thought
of as a Riemannian surface, that is for each local chart there is a symmetric, positive definite ds® =
Z?,j:l gij(u',u?) dul du’. Tt turns out, that by a (local) diffeomorphism, it is possible to find isothermal
coordinates (z',z?) in which the metric takes the form ds? = e2¢((dz')? + (dz?)?).

Theorem. Suppose M? is a surface with boundary, homeomorphic to the unit disk D in the plane via the
chart X : D — M. Suppose the coefficients of the metric tensor of M can be defined in this chart by
bounded measurable functions g;; with det(g;;) > ¢ > 0 in D. Then M admits a conformal representation
T € H"2NC*(B, D), where B is the unit disk and T satisfies almost everywhere the conformality relations

In? = |m|?, (11,72) =0,

where (z',x2) denote the coordinates in B and the inner product is given by the metric of M so in terms of

gij on D. moreover T can be normalized by the three point condition, namely three prescribed points on the
boundary of D can be made to correspond, respectively to three points on the boundary of B. Furthermore, T
is as reqular as M, i.e., if M is of class C*® (k € N,0 < a < 1) or C™ then 7 € C%%(B) or C*(B), resp.

In particular, if k > 1 then the conformality relations are satisfied everywhere and 7 is a diffeomorphism.

For a proof of this, see Jost [Jost]. The local version, known as the Korn-Lichtenstein theorem, was
proved by Lavrenitiev and Morrey for this generality. Morrey and Jost extended it a global result on
multiply connected domains.

If the two-manifold is sufficiently regular then at each point there is a neihborhood in which by a change
of coordinates, the metric is given in this way. The Gauss curvature is then

0? 0?
K=-e¢2—4+_—)o
¢ <8$12 + 85[722> v

Gauss’s Theorema Egregium says that for a surface in R? with the induced metric from Euclidean space, the
curvature computed intrinsically this way using just the metric agrees with the extrinsic computation using
the second fundamental form.



One of the most important formulas in elementary differential geometry is the Gauss-Bonnet formula. The
easiest proof relies on isothermal coordinates on small pieces. Let (M2, g) be any orientable two dimensional
Riemannian manifold which is closed and without boundary. Then
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(1.3) /M K dArea =27 (M)

where x(M) is the Euler characteristic. The Euler characteristic is a topological invariant that may be
computed for M as follows: take a triangulation of M into finitely many curvilinear polygons. Then y(M) =
ba — b1 + by where by is the number of faces, b; is the number of edges and by is the number of vertices in
the triangulation. For example x(sphere) = 2, x(torus) = 0 and x(two holed torus) = —2.

Curvature. For higher dimensional manifolds (M™",g), the sectional, Ricci and scalar curvatures may be
computed from the metric restricted to two dimensional slices of the manifold. First, given a two plane
P C T.M in the tangent space at z € M, we describe how to compute the sectional curvature of the two-
plane K (P). The exponential map exp, : T.M — M is defined on rays. For any unit vector W € T, M,
let ¢ — 7(t) = exp,(tW) be the unit speed geodesic with initial data v(0) = z and ~'(0) = W. Thus if
B.(0) C T.M is a sufficiently small ball, then L, p = exp,(P N B-(0)) is a small two dimensional surface
in M which is tangent to P at z. Then the sectional curvature K (P)(z) is just the Gauss curvature of the
two dimensional manifold (L. p,g|r, ) at the point z. For example, the sectional curvature of the standard
unit n-sphere S™ is K (P)(z) = 1 because L, p agrees with the great unit 2-sphere through z and tangent to
P. For a unit vector W € T, M, let {WW, E,, ..., E,} be an orthonormal basis for T, M. The Ricci curvature
is Ric(W,W)(2) = 37, K(E;)(2) and Ric(V, W) is its polarized form. So for 8", Ric(W, W) = n — 1 for
all W, z. The scalar curvature Ry(z) = 2?21 Ric(E;, E;)(z) is the sum over an orthonormal basis in T, M.
Thus for S, R, = n(n —1).

2. THE REVERSE ISOPERIMERTIC INEQUALITY UNDER INTEGRAL BOUNDS ON
CURVATURE: DEFORMATION OF ELASTIC RINGS UNDER HYDROSTATIC PRESSURE

The classical isoperimetric inequality stated for plane curves is one of the first variational problems a
student encounters. Let X = {I' € C*(R,R?) : I is 27 periodic, injective on [0, 27) and positively oriented}
be the space of embedded closed curves. Then the length and (signed) area enclosed are given by

L) = /0%

The isoperimetric problem, solved by the circle, is to find the greatest Area(I') among curves I' € X so that
L(T') < Lo where Lo > 0 is a constant. The Euler Lagrange equation for this problem is

F(t)‘ dt,  Area(T) = / = dy.

K = const.

where K is the curvature of the curve. To compute K, change parameter to arclength

s:/otl.“(t)‘ dt

so T = 9 = (cosf,sinf) is the unit tangent vector where § = Z(e;,T) is its angle from horizontal. If
' € C? then the curvature is K = 4% = [4T .

The reverse isoperimetric problem is to minimize Area(T") for T' € X so that L(I") > Lg. Of course without
other conditions, thre is no solution in X and the solutions degenerate to loops enclosing zero area. We
shall describe two different additional constraints under which the reverse problem can be solved: the case
of integral bounded curvature and the case of pointwise bounded curvature.



The problem with an additional integral constraint. We wish to minimize Area(I") for I' € X so that
L(T') > Lo and so that . k%2ds < Ky, where Ky > 0 is constant. The dual problem, with highest order
term, the bending energy E(T') as the objective function

Minimize E(T) = / k% ds,
r

Subject to T € X, L(T') > Lo and Area(T') < Ay.

The problem of minimum bending energy for curves (elastica) with fixed endpoints and given length was
proposed by J & D. Bernoulli and studied by Euler [T1]. This problem spurred the development of the calculus
of variations and the theory of elliptic functions. Elastica in three space and other spaceforms [LS1], [LS2], as
well as dynamical deformations [LS3] have been studied. Elasatica with given turning angle are discussed in
[Opl]. Buckling of a circular ring under hydrostatic pressure has een studied by several authors. Carrier [Cr],
Chaskalovic and Naili determine bifurcation points [CN]. The buckling and stability of elastic rings is well
studied [An], [At], [Ka], [Ko], [Ta], [TO].

The ring problem can be regarded as planar deformation of a cross section of an elastic tube under
hydrostatic pressure. This model arose in our study of a design for a nanotube electromechanical pressure
sensor [LT], [WZ], [ZT]. Single walled carbon nanotubes were first created in the laboratory over a decade
ago [I], [II]. Hydrostatic pressure forces the volume reduction of a nanotube. Its walls essentially keep a
fixed cross section length, have area depending on pressure, but resist by minimizing bending energy. The
electrical response to a large deformation is a metal to semiconductor transition resulting in a decrease in
conductance. Since the amount of deformation for different pressures depends on length, by devising an
array of nanotubes of various sizes, any conductance response can be engineered into the sensor.

Let s denote arclength along a curve I'. The position vector is then X (s) = (z(s),y(s)). Since we are
parameterizing by arclength, the unit tangent vector is given by

(2.1) T(s) = (2'(s),9'(s)) = (cosB(s),sin O(s)).

Here prime denotes differentiation with respect to arclength. The position
X(s)=Xo+ / (cosb(o),sinb(o)) do
Jo

may be recovered by integrating.

The cross section of the tube is to be regarded as an inextensible elastic rod which is subject to a nonstant
normal hydrostatic pressure P along its outer boundary. The rod is assumed to bend in the plane and have
a uniform wall thickness hg and elastic properties. The centerline of the wall is given by a smooth embedded
closed curve in the plane T' C R? which bound a compact region Q whose boundary has given length Ly and
which encloses a given area A(€). Among such curves we seek one, I'g, that minimizes the energy

) = g/F(K — Ky)? ds + P (A(Q) — Ay),

where B = Eh}/{12(1 — v?)} is the flexural rigidity modulus, E is Young’s modulus, v is Poisson’s ratio and
K denotes the curvature of the curve and Kj is the undeformed curvature (= 27/Lg for the circle.)
This is equivalent to the problem of minimizing

(2.2) E) = /FK2 ds,

among curves of fixed length at least Ly that enclose a fixed area Area(2) < Ag. We are interested in the
relation between the geometry of the minimizer and the values of Ag and Lg. The problem is invariant under
a homothetic scaling of I'y. Thus if the curve is scaled to I'y = ¢y, its area, length and energy change by
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Ay = *Ay, Lo = cLg and E = ¢ ' E for ¢ > 0. Since the shape of the minimizer is independent of the scaled
data, it suffices to find the relation between the Isoperimetric Ratio, Z, and other dimensionless measures of
the shape of I'g. The isoperimetric ratio Z = 452’4 satisfies 0 < Z < 1 by the isoperimetric inequality, which
says that the area of any figure with fixed boundary length does not exceed the area of a circle with that
boundary length. Moreover, the only figure with Z = 1 is the circle.

To simplify the embeddedness condition, one argues that the extremals have reflection symmetry in two
perpendicular directions. Assuming that the minimizing curve has reflection symmetry in both the xz and
y-directions, we only need to find 6 for 0 < s < L where 4L > Ly, over a quarter of the curve, and then
reflect to get the closed curve. The embeddedness will still have to be checked. We are assuming that I is
a closed C! curve. By rotation and translation, we assume z(0) = y(0) = 0 = x(Lo) = y(Lo). In order for
the curve not to have a corner at the endpoints, it is necessary that #(0) = 0 and #(Lg) = 2x. For 6(s) the
minimizer to be embedded, we’ll check that the resulting curve v = X ([0, L]) remains an embedded and in
the first quadrant.

Then the area is bounded by I', by Green’s theorem is

(2.3) Area(T") = /Fmdy = 4/ymdy

because x dy is zero along the line segments (z(L),y(L)) to (0,y(L)) to (0,0) which complete v to a closed
curve. The variational problem is to find a function 6 : [0, L] — R such that #(0) = 0, §(L) = 7 /2 satisfying
Area(f) < Ag which minimizes (2.3).

Euler Lagrange Equation. Since we are looking to minimize E subject to Area(f) < Ag/4, the Lagrange
Multiplier A = 8P/B > 0 is nothing more than scaled pressure such that at the minimum, the variations
satisfy 40 = — X d Area. The corresponding Lagrange Functional is thus

L] —4/K ds—/\{Ao—/azdy}
_4/ 9 2ds — \ {AO—/ /0059 )do sinf(s)d }

Assuming that the minimizer is the function 8(s) with #(0) = 0 and 6(L) = 7/2, we make a variation
6 + ev where v € C*([0, L]) with v(0) = v(L) = 0. Then

0=0L= — L=

de e=0

s

= S/L%ds—/\/L /v(o) sinf(o) do sinf(s) — /SCOSH(U) do cosB(s)v(s) p ds

Integrating by parts, and reversing the order of integration in the second integral,

L s
= —8/9vds— //sm9 )dsv(o)sin (o //0059 )do cos@(s)v(s) ds
0

Switching names of the integration variables in the second term yields

oL :/ {86(5) —A /sin&(a) do sinf(s) — /cosﬂ(a) do cosf(s) } v(s) ds.

s 0
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Since v € C§ ([0, L]) was arbitrary, the minimizer satisfies the integro-differential equation

(2.4) f(s) = —% {/ sinf (o) do sinf(s) — /OS cos@(o) do cos 9(5)}

Thus if A = 0 we must have 6(s) = 7F and 7 is a circle of radius L/7. Thus if Z < 1 then XA > 0. To see

the differential equation implied by (2.4), we assume that 6 # 0 and differentiate

6" :% {sinf(s) sinB(s) + cosf(s) cosf(s)}

L s
:% -2 / sin6(c) do cos8(s) + / cos6(c) do sin0(s)} 0/ (s)
s J0
nn A : !
6 =3 {sin 6(s) cosB(s) — cosf(s) sinf(s)} 6'(s)+
Aot : .
+ 3 / sin (o) do sin 0(s) —/ cosf(o)do cosf(s) p (8'(s))?
s 0
A L s
-3 / sin (o) do cosf(s) —|—/ cosf(o) do sinf(s) y 6" (s)
s 0
from which we get
(25) 01///01 — 79” (01)3 + |:9’” o %:| 0”(8).
This differential equation may be integrated as follows:
9'"e — gy o ! . VL 1 o A !
—wr w0
so there is a constant ¢; so that
1 A
"no__ I Z(ph3 -
In other words, the curvature K = ' satisfies
Al
2. K'=¢K+ < - K3
(2.6) ak+<-3

Multiplying by K’ and integrating, we find a first integral. For some constant H,

AK — K*

(2.7) (K')? = K?>+ H + I

F(K).

Solution of Euler Lagrange Equation. Since the curve closes, the curvature is a Lg-periodic function
which satisfies the nonlinear spring equation (2.6). As we expect that the curvature to continue analytically
beyond the endpoints of the quarter curve, and as we assume that the curve have reflection symmetries at
the endpoints, the curvature would continue as an even function at the endpoints. In particular we’ll have
K'(0) = K'(L) = 0 as in (2.4). Furthermore, as intuition and numerical experience suggests that the optimal
curves be elliptical or peanut shapes, the endpoints of the quarter curve are also the minima and maxima of
the curvature around the curve, and that we expect these to be the only critical points of curvature. Since
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the minimum K may be negative, as in peanut shaped regions, the embeddedness of the reflection is more
likely to be satisfied if K(0) = K is the maximum of the curvature and K (L) = K is the minimum of
curvature around the curve.

One degree of freedom in the problem is homothety, which will be irrelevant to deducing nondimensional
measures, as we’ve already remarked. Indeed, if the curve is scaled X = ¢X then K = ¢ 'K, dk/d§ =c 2K',
¢ =c2¢;, H=c¢""H and A = ¢ 3\. For convenience, as A > 0 for noncircular regions, we set A = 1 to fix
the scaling.

As K and K' vary, they satisfy (2.7), thus the parameters ¢;, H, A must allow solvability of (2.7). Moreover,
0 = F(K;) = F(K3) and the points (K1, 0) and (K3,0) must be in the same component of the solution curve
of (2.7) in phase (K, K') space. Thus, given K;, Ky we can solve for ¢; and H,

1/ . ‘ A
2.8 = K+ K - ——— ),
(2.8) 1 4< 1+ 1K K1+K2>‘
K1 K> A
2. H =- KKy + —2> ),
(2.9) 1 < ! 2+K1+K2>‘

provided Ky # —K;. A solution would have a minimum and maximum curvature with appropriate ¢; and
H so we assume the solvability condition. Then 4F(K) = @1(K)Q2(K) can be factored into quadratic
polynomials, where

Q1 =K1 — K)(K — K»);
A

=K?2+ (K + KoK + K Ko + ————
QQ ( 1 2) 1432 K1+K2

Since we’ve assumed that F'(K) is positive in the interval Ky < K < K, this forces other inequalities
among the ¢;, H and \. For example, if K5 = 0, then H = 0 and 2 > 0 near K = 0 only if A = 1, which
we assume to be true. For Ky < 0, then (Jo > 0 near K = 0 for some K; only if K1 + K5 > 0, which we
also assume.

Since the possible homotheties and translations of the same solution (shifts like K (s + ¢)) have been
eliminated, the remaining indeterminacy coming from the constants of integration is to ensure that the
direction angle © changes by exactly w/2 over . Thus given K, we solve for K; so that ©(L) = 7/2 where

Ly K,
(2.10) o(L) :/K(s) ds:/%,

We have used equation (2.7) to change variables from s to K (s). In fact, this integral can be reduced to a
complete elliptic integral. Similarly

(2.11)

L:b/ds:k{\/%

is a complete elliptic integral. In order to graph closed solutions of (2.6), we choose Ko, then find ¢
and H using (2.8),(2.9). Then find K; so that (2.10) holds. Then compute L using (2.11) and integrate
(2.2),(2.1),(2.3),(2.6) numerically on 0 < s < L. K; is found using a simple root finder to solve O(L) = 7/2).

Reduction to Elliptic Integrals. We now describe the reduction of (2.10),(2.11) to complete elliptic

integrals, following the procedure [AS], [HH]. Choose a constant u so that Q2 — u@)q is a perfect square. This
happens upon the vanishing of the discriminant

A=D*pu+1)*—4S*u —4(p+1)

n| >
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where S = Ky + Ko, D = K1 — Ky and P = K, K,. It is zero when p equals one of

S34+4PS 4+ 2X £ /(A + 2K15%) (X + 2K,5?
(212) Hl;u? — \/EgDZ 1 )( 2 )

The factors are

(T4 p) K+ (1= m)SK + (1+m)P+ 5 = Qo — @ =F; = (aK - )

> | >

(14 p2) K2 4+ (1 = p12) SK + (1 4+ o) P + 5 = Q2 — Q1 =F5 = (K +9)*.

§ =
The signs were chosen based on numerical values. It follows that
a =v1+u
A
B =14 wm)P+ g
n =1t

A
0 = (1+u2)P+§

which turn out to be positive. We can now solve for the factors as sums of squares

_ R - F
_,112*1117
_ B — i F¥
B M2 — M1 -

1
Q2

The idea is to change variables in the integral according to

F, oK -4 B+ 6T dT ad + Bn
T:—: y K: s _
F, npK+96 a—nT dK  (nK +6)?

The function T is increasing. Since Q1(K;) = @Q1(K>2) = 0 it follows that T'=1 when K = K; and T =
when K = K>. Moreover,

Q1Q2 = (FY = ) (u FY — i 1) _ (T? = 1) (u2T? — 1 ) Fy
(p2 — p1)? (12 — 1)?

Therefore, the integral (2.11) becomes

2(py — 4( — p2)

~ ) T B
(213) - (aé_'_ﬂn)\/m[ \/(1 7T2)(1 o %T% o (066+/677)\/m

where m = /o /1 is imaginary and

! dT
K = | VAT D)

is the complete elliptic integral of the first kind.



11

To find O(L) we express K by partial fractions

_ B4 _(ad4 )T GEE 6
Ca-qT o =p?T? 1172

Because the first term is odd, we get

2 pm) | K dT
(ad+ By ) A=) T +m’T?)
_ Al — po) ﬁm 0

(2.14) T H<a2, ) o’

where

ar

i, m) = /0 (1 nT?)/1_T2(1_ m?1?)

is the complete elliptic integral of the third kind.

We can also write the solution K (s) in terms of elliptic integrals. Expressing the incomplete integral
corresponding to (2.15), we find by substituting 7' = —cn(v) (see [AS], p. 596) that

s _(a5+ﬁ77\/_/\/1T2 (1 Z272)

o 2(m =) 1< 2 )
(215) “oronvmrm” \arm)

It follows that

T =—cn (CS e >
M1+ 2
so that
_ B —4dcn(Cs)
K= ()
where
(= (ad + Bn)v/i1 + p2
Ay —p2)

This is the result of Levy [Lv] and Carrier [Cr]. As a check, at zero this is K(0) = Ky = (8 — §)/(a+1n) as
it is also a root of Q1. Similarly at L, where K(L) = K1 = (84 68)/(a —n).
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Figure 1.

Graphical results. First we observe that the circle is the limiting figure as D — 0. The formulas (2.12)
are not effective for computation for small D, however, the expressions (2.11),(2.14) may be recomputed in
terms of D?p; and become nonsingular as D — 0. To see the limiting circle, make the change of variable
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in equation (2.14) to find

o= /1 2(S + DT)V/S dT N SVECE
~ ) /(1 —T?)(45% — SD? + 4\ + 45°TD + ST2D?) VS + A

as D — 0. Since 7/n = O(L) it follows that the, limiting 2K, = Sy = A(n*> — 1)~'/3 so the circle has
radius Ry = 2(n? — 1)*/3/X. The figures remain embedded for K, > —.2878, suggesting that the embedded
minimizer of the variational problems is not given by these figures for isoperimetric ratios below the critical
Ty = .270949. The ratio 7. = .819469 is the transition point between convex and nonconvex minimizers.

Figure 2.

What evidence is there that the other closed curves that satisfy (2.6) are not the minimizers? One
possibility is that K is periodic of period Lo/n where n > 3. We must have at least n = 2 (four critical
points of curvature) because of the Four Vertex Theorem for closed plane curves [dC]. For example, there
are closed curves with ©(L) = %. Then Ly = 6L and the other variables are suitably increased. The curve
v = ([0, L]) makes up one sixth of the boundary. The area inside I is then six times the area between =
and the y-axis plus the area of the equilateral triangle whose base is 2x(L). Thus Ag = 6A(L) + v/3[z(L)]?.
This time, the ratio Z, = .935405 is the transition point between convex and nonconvex minimizers and the
figures remain embedded for Ky > —.516. The energy is higher for this family of solutions than for the n = 2
family. Several examples are plotted in Figure 2.

The Willmore Problem. We indicate an open problem that can be considered as a generalization of the
ring problem, in that it concerns a quadratic (second order) curvature integrand. The Willmore Problem is
to show that among all immersed torii ¥ in R?, the functional

W(E) = / H? d Area > 27°
b

with equality if and only if ¥ is the anchor ring. An anchor ring is the image under stereographic projection
of translates in S* and R3 of the Clifford torus. The Clifford torus is the minimal surface in S given by
R? 3 (61,0,) — %(cos 6:,sinf;, cosfs,sinfy) € S3 C R*. Stereographic projection o : S — R3 is the

T Y z
l-w’l—w’l-w

conformal map given by (z,y,z,w) — ( ) L. Simon has proved that the minimizer of W

among torii exists and is smooth, embedded and unknotted [Sn]. For an account of recent progress, see e.g.,
[Rs].

3. THE REVERSE ISOPERIMERTIC INEQUALITY UNDER POINTWISE BOUNDS ON CURVATURE

The curvature condition in the reverse isoperimetric problem is now replaced by a pointwise bound
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| K (s)] < Ky for all s, where Ky > 0 is constant.

Minimize  Area(T),
Subject to T € X, |[|K|lx < Kq and L(T') > L.

One may imagine a bicycle chain that flexes freely, but up to a limit, as far as its pins allow, which can be
modelled by a uniform bound on the curvature. For short chains, the least area is again a peanut shape. We
shall only sketch the solution to this problem, the full details may be found in our paper with Howard [HT].

For simplicity sake, let us dilate so that Ky = 1. Since we expect discontinuities in the minimizers, we
shall consider the space of embedded curves X = {7 :S* - R?:~ € C*! and 7(S!) is embedded}. By the
Jordan curve theorem, v € X bounds a topological disk we call M C R? so that v = M. We call curves
whose curvature is bounded by || < 1 in this weak sense curves of class K. When represented by arclength
parameter, v € K satisfies

Iv'(s1) — 7' (s2)] < |s1 — 82 for all 51, ss.

Thus 7, is differentiable a.e. and satisfies ||vs]|cc < 1. Some other extremal problems for such curves have
been studied previously. For example, the problem of finding the shortest plane curve of class X with given
endpoint and starting line element (position and direction) was solved by Markov, e.g. [Pv]. The problem
of finding the shortest plane curve of class K given starting and ending line elements was solved by Dubins
[D].

Theorem 3.1. Reverse Isoperimetric Inequality. If M is an embedded closed disk in the plane R?
whose boundary curvature satisfies || < 1 and with area A < 7+ 2+/3 then the length of OM is bounded by

L2 A-—
1 7TSArcsin( 47T>.

If equality holds then M is congruent to a peanut shaped domain as in Figure 3.

o
< 20 >
Fig. 3. “Peanut” domain.

There is a threshold phenomenon: if the area is larger than 7 4+ 2v/3 then there is no upper bound for the
length of M. This is the area of the pinched peanut domain P z. Examples can be found by breaking a
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thin peanut and connecting the ends with a long narrow strip. In fact, the set of possible points (A, L) for
embedded disks whose boundary satisfies |x| < 1 is further restricted.

To prove existence and uniqueness of the extremal figures, we use a replacement argument to show
that extremals are piecewise circular arcs. Compactness depends on apriori length bounds. The results
depend on a theorem of Pestov and Ionin [PI] on the existence of a large disk in a domain with uniformly
bounded curvature (see e.g. [BZ].) We include an argument for Pestov and Ionin’s theorem along the lines
of Lagunov’s [L] proof of the higher dimensional generalization using analysis of the structure of the cut
set of such a domain. Lagunov gives a sharp lower bound for the radius of the biggest ball enclosed within
hypersurfaces all of whose principal curvatures are bounded |x;| < 1. Lagunov and Fet [LF] show that the
bound is increased if additional topological hypotheses are imposed. It is noteworthy that the examples
which show the sharpness of the Lagunov and Lagunov-Fet bounds for dimension greater than one are not
unit spheres. Our results use both the existence of a disk and structure of the cut set.

Let M(A) denote the space of all embedded closed disks M C R? whose boundary curves are in class K
and whose areas is A. Let A'(L) denote the space of all embedded closed disks M C R? whose boundary
curves are in class K and whose length [0M| = L. Then we say E € M(A) is extremal if |0E| = sup{|0M ]| :
M € M(A)}. Similarly, E € N(L) is extremal if |[M| = inf{|M|: M € N(L)}. Although these problems
are dual, they require slightly different treatment. By similar analyses, all possibilities of curves in K may
be summarized.

Theorem 3.2. The set of pairs (A, L) where A is the area and L is the boundary length of M C R2?, an
embedded closed disk whose boundary is of class K, consists exactly of the points in the first quadrant (shown
in Figure 4.) satisfying three inequalities:

(1) The isoperimetric inequality

A A < L2

Equality holds if and only if M is a circular disk.
(2) The reverse isoperimetric inequality. If 2m < L < 147 /3 then there holds

L—-2m A—m
4.1 i < .
(4.1) sm< 1 )_ 1

Equality holds in (4.1) if and only if M is congruent to the peanut Py (Figure 1.) where

L —2m
0 = 4si .
an(L2)

(3) Embeddedness border. If L > 147 /3 then

A>7+2V3.

Equality cannot hold, although there are arbitrarily nearby regions for which the embeddedness de-
generates by “puckering”. For example one can consider a sequence of domains decreasing to the
dumbbell region consisting of two unit disks, two triangles with circular sides and a segment of length

L/2—7Tr/3.
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L
Embeddedness
boundary.
Nearby figures Feasible
1471/3 — pucker, e.g. (/.\,L)' for
dumbbell disks in K
Reverse
isoperimetric
inequality
"="iff ,T\
peanut Isoperimetric
inequality
"="iff circle
27 —

A

Unit circle

I I
T T+2V3

Fig. 4. Feasible region.

We shall give a brief indication of the ideas.

Compactness in the class K is immediate because the minimizing sequence is bounded in C'-! provided
that there is a bound on length. For the length minimization problem this follows from Theorem 3.2. A
subsequence converges to a candidate curve with bounded curvature. It remains to show that the extreme
curves are peanuts Fj.

Fig. 5. Replacement argument for a concave arc.

The first step is to show that the extreme curve consists of finitely many arcs of unit circles. If this were
not the case, we show that by replacing a short (L(o) < 7/3) segment o of the curve v = M by another
consisting of arcs of unit circles, we can increase the length or decrease the area or both. By outward dilation
of the replacement curve we maintain membership in X because the curvature |K| decreases and satisfy the
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constraint, but violate the extremality. Actually there are a number of cases that have to be checked. If, for
example as in Figure 5., there is a short concave segment 0 C M, then a competeing curve v consisting of
three circular arcs can be constructed by taking arcs from the inside osculating unit circles at the endpoints
and splicing in a circular arc to connect the outer arcs. One shows that any embedded arc with the same
ending elements (position and direction) as o must stay outside ¢ and thus 1 reduces the area, and be
shorter than .

To finish, a similar argument shows that every convex arc must have length at least 7/2. Since the total
length is bounded by 147 /3, that limits the number different circular arcs (to 6.) A little calculus is used
to show that the peanuts are extremal. By calculating the dimensions of the peanut, we obtain the sharp
inequality.

Let us now give an indication if the proof of the preliminary reverse isoperimetric inequality, needed for
the compactness argument. Observe that 7 + 2v/3 = Area(P)), the peanut whose outer disks are tangent.

Theorem 3.3. Suppose v € K is a closed curve of bounded curvature. If Area(y) < m + 2v/3 then [ < 2A.

The theorem of Pestov and Ionin and the structure of the cut locus. Pestov and Ionin proved
that C? disks with |K| < 1 must contain a unit disk. Lagunov and Fet’s argument applies to curves in
K. Following [HT], the idea is to consider the cut set of 9M. Roughly, the cut set is the set of points
in M equally distant from several boundary points. Let M be a simply connected plane domain with C!
boundary which satisfies a one-sided condition on the curvature. Let the boundary curve of M be positively
oriented, parameterized by arclength, 4’ absolutely continuous and (v'(s + h) — v'(s)), N(s)) < h for all s
and 0 < h < w. Equivalently, the boundary M has curvature satisfying k, < 1 a.e. We denote the class of
all such curves by KF.

Proposition 3.4. (Pestov and Ionin [P1]) Let M C R? be an embedded disk whose boundary is of class
KT. Then M contains a disk of radius one. In particular the area of M is at least m with equality if and
only if M is a disk of radius one.

Outline of the proof. For X € OM let C'(X) be the first point P along the inward normal to M at X where
the segment [X, P(X)] stops minimizing dist(P, M ). Call this the cut point of X € OM in M. From the
definition it is clear that M contains a disk of radius dist(X,C(X)) about C'(X). Lemma 3.5 shows that if
C'(X) is the cut point of X € OM, then at least one of the following two conditions holds

(1) C(X) is a focal point of OM along the normal line to OM at X, or
(2) there is at least one other point Y € dM so that C(Y) = C(X) and

IC(X) — X| = |C(X) - Y| = dist(C(X), dM).

(For example, if the boundary were C2, see [CE, Lemma 5.2 page 93].) If C(X) is a focal point of M then
the curvature condition implies | X — C(X)| > 1 by Lemma 3.6 and we are done. However, if C denotes the
set of all cut points then we will show that C contains at least one focal point. O

We elaborate. For any X € M let nx (s) be the unit speed geodesic, nx (0) = X with x'(0) equal to the
inward unit normal to M. The cut point of X € OM is the point nx (sg) where sg is the supremum of all
s > 0 so that the segment 7x ([0, s]) realizes the distance dist(nx (s), 0M). The focal point of X € OM is the
point nx (s1) where s; is supremum of values s > 0 so that the function on M defined by Y — dist(nx(s),Y)
has a local minimum at Y = X. If 9M is C? at X then s; is the first s where Y — dist(nx(s),Y’) ceases
to have a positive second derivative at Y = X. It is possible that no such s; exists; in this case we say that
the focal distance is s; = 0o. Clearly sg < s;. In geometric optics, the focal points are called the caustics.

Denote by C the set of all cut points of OM in M. What is the local geometry of C like at its “nice”

points?

Lemma 3.5. Any point P € C satisfies at least one of the following two conditions

(1) P is a focal point of OM or
(2) There are two or more distance minimizing geodesics from OM to P.



18

Proof. This is standard. If P € C is not a focal point of M then let r := dist(P,0M) and let X € M be
a point with P = nx(r). Then choose a sequence s, N\, r such that for each k there is a point X; € oM
so that nx(sg) = nx, (rr) for some r, < sx. By going to a subsequence we can assume that X, — Y for
some Y € OM. Because P is not focal point of M we have Y # X. It follows that 5y (r) = P and ny is a
minimizing geodesic from OM to P. |

Lemma 3.6. Let M C R? be a domain whose boundary is of class KT. Let Y € C be a focal point. Then
dist(Y,0M) > 1.

Proof. Let Y = nx(sq) for some point X € OM and sy > 0. Let v € KT denote the boundary curve OM
parameterized so that v(0) = X. Since + is tangent to M at X, by the fact that ||K||o < 1, some interval
v((—€,€)) is not contained in the open disk Bs(nx(s)) for each 0 < s < 1. Hence OM > Z — dist(Z,nx (s))
has a local minimum at Z = X. Thus sq > 1. O

Lemma 3.7 (Structure of the cut locus away from focal points.). Let P € C be a cut point that is
not a focal point and let r = dist(P,0M). Then there is a finite number of k > 2 of minimizing geodesics
from P to OM, and

Case 1: If k = 2, then there is a neighborhood U of P so that CNU is a C' curve and the tangent to C at
P bisects the angle between the two minimizing geodesics from P to OM .

Case 2: If k > 3, then the k geodesic segments from P to OM split the disk B,.(P) into k sectors Sy, ... ,Sk.
There is a small open disk U about P so that in each sector S; the set CNUNS; is a C' curve
ending at P and the tangent to this curve at P is the angle bisector of the two sides of the sector
Si at P.

Fig. 6. Cut set. P is a focal point. @ is not.

If there were no focal points then C(M) would consist of a graph consisting of C! curves, meeting at
junctions with valence > 3. In particular, there would be no terminating nodes. However, we have assumed
that M is topologically the disk. Since the cut set is a deformation retract of M (along normals to the
boundary), such a cut set must then be a tree. However, every nonempty tree has terminating vertices,
which is a contradiction.

Thus M must contain a unit disk. In fact, if you pick a point in the regular part of C(M), then the same
argument shows that there are focal points in C(M) on both sides of the point.

The next step of the argument is to show that unless M is star shaped with respect to the center point
of any of its contained disks, then it must have area greater than 7 4+ 2v/3.

First of all, if two disks touch, then M must contain the peanut between the disks. To put it another
way, the boundary curve cannot get close to the intersection points of the two disks, This is a maximum
principle argument, or in the language of ODE’s; there is a field of extremals, K = —1 curves, that foliate
the triangular region between the disks where no boundary curve can enter.
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| . // 2

Fig. 7. Field of extremals.

Since the area 7 + 2v/3 > Area(M) > Area(Ps) = 7 + 26v/4 — 2 it follows that § < p(Area M) < 1.

If the disks are far enough apart, then a similar argument shows that M avoids triangular fillet regions
F near the disks, whose total area exceeds Area(P 5) = 7 + 2v/3, so this does not occur. One can also
imagine an “earphone shaped” region whose area is large for the same reason. For close but nontouching
disks, the argument is that either M contains the spanning peanut or it is earphone shaped so that it must
contain a whole unit disk in the complement where the listerners head would go. In both cases M has too
much area, so these cases don’t occur.

Fig. 8. Configuration with fillets and large area.

The consequence is that if one translates M so that the origin is the center of one of the disks, then
B:(0) ¢ M C Bs3(0). There is not much maneuvering room: one can show using derivative estimates
obtained because the curve turns slower than the circle, that the resulting OM is star-shaped with respect

to the origin.
)

Fig. 9. Small area implies star-shapedness.

Theorem 3.2 is completed if we show that star-shapedness implies the estimate. Formulas with second
derivatives are interpreted the weak sense. The result also follows from (in fact gives a derivation of) the
Minkowski Formulas.

Lemma 3.8. Suppose that the curve OM C K is star-shaped with respect the origin. Then L(OM) <
2 Area(M).



20

Proof. If we let p(X) = |X|* in R? then Vp(X) = 2X. Let v(s) the boundary curve parameterized by
arclength, T' = ~, be the tangent vector and N be the (inward) unit normal vector which is a +90° rotation
of T'. Restricting to v, p =v-7, ps =27-T and pss = 2+ K- N. Star shapedness means that the position
vector and inner normal vector satisfy v - N < 0. Integrating on OM, using || K|« < 1,

0:5/ psSds:/ 1+K7-NdsZL(7)+/ v - N ds.
oM JOM oM

On the other hand, integration by parts gives

2Area(M):%/ ApdArea:f%/ de.s:f/ v+ Nds
Jm Jom am

and the result follows. On 0M we have used py = N - Vp = 2v- N.

A problem of Gromov about pinched curvature. Suppose (M2, g) is an orientable 2-manifold whose
Gauss curvature satisfies —1 < K, < 0 everywhere on M. By the uniformization theorem, there is a metric
go for M so that the Gauss curvature K,y = —1 everywhere on M. Then by the Gauss-Bonnet theorem
(1.3),

Area(M, go) = 7/ Kgy dAreay, = —2nx(M) = — / K, dArea, < / d Area, = Area(M, g)
M Jm M

so that the constant curvature metric minimizes the area of the 2-manifold in this class of metrics. This
led Gromov [Gr] to conjecture that for smooth manifolds M™, n > 3, that admit metrics whose sectional
curvatures satisfy 0 > K,(P)(z) > —1 for all z € M and all 2-planes P

inf vol,,(M, g) > vol, (M, go)
9

if there is a metric with Ky (P)(z) = —1 for all z and P. This problem is undoubtedly intractible by
variational means. For other problems and background, see [P].
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