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Abstract. We describe Sacks and Uhlenbeck’s proof that smooth manifolds satisfying some topological condition
contain nonconstant minimal immersions of two-spheres. This is an example of a geometric variational problem in
which a special minimizing seqgence is chosen that exhbits concentration, yet with sufficient regularity properties to
show convergence to a smooth solution away from finitely many singular points. By conformally blowing up near
the singular points, another minimizing sequence is constructed that converges to another solution, a “bubble.”
As this lecture is aimed at nonspecialists in geometry, we provide some background materials about minimal and
harmonic maps.

This is a continuation of the lecture [T]. We describe Sacks and Uhlenbeck’s proof [SaUl] that smooth,
compact, n-dimensional manifold N satisfying some topological condition (e.g., that mo(N) # 0) contains
nonconstant minimal two-spheres. This is an example of a geometric variational problem in which a special
minimizing seqence is chosen (by solving a related variational problem) that exhbits concentration, yet with
sufficient regularity properties to show convergence to a smooth solution away from finitely many singular
points. By conformally blowing up near the singular points, another minimizing sequence is constructed
that converges to another solution, a “bubble.” Another source for the material is [SY].

In what follows M? and N™ will be a smooth compact oriented boundaryless Riemannian manifolds of
dimension 2 and n > 3, where usually, M = SZ%, the two-sphere. We will be interested in finding a map
f € C(M,N) that is minimal but is not a map to a point. Let us denote the constant or point maps by

Ko={f:M — N :thereis y € N so that f(z) =y for all z € N.}

We shall say that f is nontrivial if it is not freely homotopic to a map in Ky which means it cannot
be continuously deformed to a map in Ky. For example, every map f € C(S2,S?) is trivial whereas
f € C(S%,S! x S?) given by z — ((1,0),z) is nontrivial. The assumption m(N) # 0 simply says that
there is at least some nontrivial fo € C(S?, N), which we may assume to be in C°°(M, N) by smoothing. A
minimal surface is a map that is critical for the area functional Areay (f(M)).

In §1 We show that finding minimal maps is equivalent to finding harmonic maps, which are critical for the
energy functional. There we formulate the variational problems and establish the equivalence. We present
Sacks and Uhlembeck’s proof in §2. We mention some open problems in §3.

1. Conformal, minimal, and harmonic mappings of surfaces.

This material is standard from an introduction to differntial geometry, e.g. [KRST], [T]. By the Nash
Embedding Theorem [G] we may assume that the manifold is smoothly isometrically embedded into some
Euclidean space of sufficiently high dimension N C R¥. This means that the metric ds% is the submanifold
metric inherited from the ambient R*. The Sobolev space of maps is

LY2(M,N) = {L"*(M,R¥): f € N a.e}
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the restriction of vector valued maps whose first derivatives are in L2. Since we have assumed that N is
compact, LV2(M,N) C L>*(M,RF). In this formulation, the energy of a map f € L'2(M,N) is just the
ordinary Dirichlet Integral

E(f) = %/M |df |3 d Arean .

The harmonic map problem is to find minimizers of £ among nontrivial maps.

The definition of Sobolev spaces of maps is subtle [SY]. For example C°°(M, N) may not be dense in
LY2(M,N) for general m. An example of this is given by Schoen and Uhlenbeck [SU2]. Furthermore
C> (M, N) may not be weakly closed, so it may not suffice to consider only limits of sequences of smooth or
continuous maps for the harmonic map problem [B]. L*'2(M, N) is not a Hilbert manifold. However, if the
dimension of M is m = 2 then Schoen and Uhlenbeck[SU2] showed that C°°(M, N) is dense in L'?(M, N).

Another difficulty for geometric problems is that an f € L'2(M, N) is not continuous, since dimension
two is critical for the Sobolev inequality. Thus topological conditions, such as nontriviality of the map
cannot be easily passed to the limit. However, some continuity properties persist, such as the fact that the
map on almost every one-dimensional coordinate curve is continuous [M, Theorem 3.1.8]. These properties
were exploited by Lemaire [L] who also proved the existence of minimal spheres by looking for minimizing
sequences directly in LY2(M, N).

Harmonic and minimal maps defined. To define the maps we must consider two types of variations of
f € LY*(M, N). The first type, which I call the range variations may be constructed as follows. Consider
any 1 € C*(M,R¥). As f + tn may not be in N, we project it to N by the nearest point projection
Il:U — N where U € RF is some small enough neighborhood of f(M) such that II is smooth. The
variation is f; = II(f + tn) for |t| small. If f is a critical point for E with respect to range variations, then
f satifies the harmonic map equation weakly

(1) A f+ AF)(f,df) =0

where A(f(z))(-,-) is the second fundamental form of N at f(z). A is by definition [Le], the normal part
(perpendicular to the tangent space Ty, N) of the Laplacian applied to f € R*.

The other type of variation is the domain variation which may be described as follows. Let ¢ : M — M
be a smooth 1-parameter family of diffeomorphisms such that g is the identity. The domain variation is
Jt = fot.

We call a map harmonic is it is a critical point of E under both domain and range variations. Morrey [M]
proved that if uw : M — N is harmonic then u € C*° (M, N).

Fact 1. Every smooth two dimensional manifold can be locally parameterized by isothermal coordinates.
This means that around every point of M there is a curvilinear coordinate system (x1,x2) so that the metric
takes the form

dsﬁ/‘, = )\(1‘1,1'2) (dl‘12 + d1’22)

where X\ > 0 is a positive smooth function.

See, it e.g., [T]. For example, if o : S? — R? is stereographic projection, then in the standard stereographic
coordinates o(P) = (x1,x2) € R?, the metric of the two sphere, 0*gys, becomes

4 (d5l712 + dZUQQ)

ds?. = .
s (1+a2 +a2)°

In the jargon, every surface is locally conformal to the Euclidean plane. A conformal map between surfaces
@ : M — M'is a map that preserves angles and infinitessimal circles. Thus, in terms of the metric, the
pulled back metric becomes just a multiple (by a positive function) of the original metric

Tg=¢"g"
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For example, if R = (‘; _;) is the conformal matrix for any a,b € R then the map from R?> — R? given

multiplication by R is conformal.
0f of

8_561837]

Expressing M in isothermal coordinates, how do we write the pullback metric from N7 Let ¢;; =

be the metric of the surface f(M) C R*. Then the metric pulled back to M becomes

2
(21, 22) M1, 22) (d:r12 +dm22) = Z gij dzidr; = f*ds%k.
ij=1
Thus f: M — N is conformal in these coordinates if and only if
g11 = T A = gaz, g12 =921 =0
for some positive function 7. If 7 > 0 but is allowed to vanish, then f is said to be weakly conformal.

Fact 2. Let ¢ : M — M’ be a conformal map between surfaces. Then the energy is preserved: for all
feL (M, R"),
Exm(e"f) = Em (f)-

This follows from how the norm of the gradient and area form change under conformal reparameterizaion.
The transformation formulae are

1
;|d(<p*f)|?vf = |df [, Td Areay = p*d Areays .

Thus, by the change of variables formula,
Bar(£) =% [ 1 dArears = § [ 1d(7 0 0)f3gd Arears = B (")
M M

In particular, for U C R? an isothermal coordinte chart for M, then the identity mapping is a conformal
map from (U,dz1? + dzo?) — (U, M(z1, 22)(dz1? + dz2?)) so we have

EU(f) = %/U|df|2d1’1 dl’g

is the ordinary R? Dirichlet integral.
The area of the image of an isothermal chart U € R? is the usual induced area formula

AreaU(f) = /U wdet(gij) dri dxs.

A surface f : M — N is minimal if it is a critical point for A under range variations. Domain variations
preserve the area.

Lemma 3. [ES] Suppose that fo : M — N is a weakly conformal immersion and n > 3. Then fy is
harmonic if and only if fo is a minimal branched immersion.

Proof. Let f: M — N. Then in a local isothermal chart (z1,22) € U for M,

Ey(f) = %/Utr(gij)dxl dzry > /Uq/det(gij)dml dxo = Areay(f)

by the arithmetic-geometric inequality. Equality holds if and only if the eigenvalues of g;; are equal, in other
words when f is weakly conformal.
Now suppose that f; is a variation for ¢t € (—¢,¢) such that fp is weakly conformal. Then

E(ft) = F(fo) > A(fe) — A(fo)-
Dividing by t and taking limits as t — 0+ shows that at fo, 0E(fo) = 0A(fo). It follows that fo is minimal
if and only if fy is harmonic.
If fo is minimal, it satisfies the equation (1) weakly. Thus by a theorem of Hartman and Wintner [HW],
or Aronszajn [A], the singularities of f (where det(g;;) = 0) are isolated and their vanishing can’t be of
infinite order so are like z — 2*, i.e., branch points [GOR].

The two-spheres are special in the sense that they have only one conformal type. This means that any
metric on S? is the pullback of any other metric by a conformal diffeomorphism.
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Lemma 4. If f:S? — M is harmonic, then it is weakly conformal.
Proof. Following [SaU1l], using the fact that the second fundamental A(f)(df,df) form of N is normal to N
whereas f; = —-- are tangent to NV, and (z1,z2) € R? are stereographic coordinates for the two-sphere, by

ox

2
taking inner products with (1),

0 0
0=f1'Af=%6—xl(911—g22)+8—m2912

0 0
Ozfz'Afzéa—m(gm—gn)*-a—mglz

which are Cauchy Riemann equations on R?. Hence
w = % (911 — g22) +ig12

is a holomorphic function on R?. However, by the Schwarz inequality, g%, < g11g92 so that

/ |w| dzy dzy = / \/i (911 — 922)° + 9122 dzy dzy < E(f) < o0.
R? R?

It follows that w = 0 vanishes identically on R?, thus f is weakly harmonic.

By Lemma 3 and Lemma 4, if one finds a nonconstant harmonic map f : S2 — N then it is a branched
minimal immersion. A separate argument has to be made to show that f is nontrivial.

The minimizing procedure of Sacks and Uhlenbeck. Let M = S? with a metric scaled so that
Area(M) = 1. Sacks and Uhlenbeck consider the perturbed energy functional for any a > 1 given by

E.(f) = /M (1+|df|*)” dArea.

Then 1 + 2E(f) = Ei1(f) < E,(f). Choose a nontrivial fo € C(M,N), which by approximation we may
suppose is C®. Let B = (1 + sup,, |dfo|*)>.

The idea of Sacks and Uhlenbeck is to establish that there is u, € C° (M, N) which is homotopic to fy
and which minimizes the preturbed energy among all maps homotopic to fy

Eo(uq) =inf {Eo(f) : f € L'?*(M,N) and f =~ fo} .

Then E,(us) < B for all 1 < a < 2. They show that u, is a close to a minimizing sequence for E; it
converges to an E-critical function v weakly in L'2(M, R*), almost everywhere so that u € L'?(M, N), and
strongly in L?(M, N). The fact that u, satisfy the E,-Euler equations which admit some uniform apriori
estimates allows them to conclude more about the nature of the limit. They show that the minimizing
sequence concentrates at most at finitely many points. Away from these points the convergence is smooth.
Near these points, either the gradient remains bounded uniformly, in which case the point is removeable,
or the gradient is unbounded. By a conformal blowup reparameterization near the point, they get another
minimizing sequence @, that in fact converges to another limiting solution @, called a bubble, which provides
a nonconstant map % : S2 — N. The limiting function @ of the sequence &, may not be homotopic to fy
and it may not even be nontrivial, nonetheless, it provides the desired nonconstant map.

Fact 5. Let « > 1 and fo € C(M,N) be a nontrivial map. Then there is u, € C°(M,N) which is
homotopic to fo and which minimizes the a-energy amongst maps f € LY2%(M,N) which are homotopic

to fo.

Idea of the proof. First observe that since a > 1 the maps f € LY?*(M,N) ¢ C%'=Y/*(M, N) are Holder
continuous by the Sobolev embedding theorem. Moreover, L'2%(M, N) is a C? separable Banach manifold
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and the energy functional E, satisfies the Palais-Smale condition (C') and the Ljusternik-Scnirelmann theory
works for this functional. Hence E, takes on its minimum in every connected component of LY2%(M,N),
so in particular there is an energy minimizer in the component of maps homotopic to fo [P].

The critical maps of E, in L1'2%(M, N) are smooth if a > 1. The Euler Lagrange equations 6E, = 0
reduce to
(d?u, du)
1+ |dul?

For some small 1 < ap < 2 we have for 1 < a < «aq that L, : L**(M,N) — L*(M,N) is boundedly
invertible. As L*?(M,N) c C'/5(M, N), the smoothness of critical values follows from Schauder Theory.
As the spaces of maps C(M, N) through L':2*(M, N) through C>°(M, N) have the same homotopy type, a
C°° minimizer in the free homotopy class of fo in L*2%(M, N) also minimizes E,, in its connected component
of C*°(M,N). But since [fo] # 0 in m2(N) by hypothesis, u, is not in the component of the point maps
Ko [P].

Sacks and Uhlenbeck also consider other topological hypotheses, such as the case when mo(N) = 0 but
the universal cover of N is not contractible. Then the argument that there is a u, which is nonconstant is
a little more involved. The idea is that if here were no critical points other than g then there would be a
energy decreasing deformation retraction of E_[1, B) to Ky, which would collapse all the topology of N.

Then Sacks and Uhlenbeck show that the sequence u,, satisfies a weak lower-semicontinuity statement.

Aot + A(u)(du,du) = Au+ 2(a — 1) + A(u)(du,du) = 0.

Fact 6. Suppose that {ua}i<a<a, C LY2(M, N) is a sequence of critical maps for E,, and that there is
B < 00 so that Ey(uy) < B for all 1 < a < ag. Then there is a subsequence u, that converges weakly
U — u in LY2(M,RF), that the convergence ua — u is a.e. in M (so that u € LY*(M,N)) and strongly
in L?. Moreover

lim E (uq) > E(u).

a’—1

The u, are not assumed to be minimizing so it is not asserted for u. In Fact 10, the harmonicity of u

is established. It is not known if u is continuous. And it can happen that limy 1 E (uq) > E(u) or that
u € Ky is a point (constant) map.

Fig 1. Minimizing sequence tending to the sum of two spheres may develop a degenerate neck.

The rest of the argument is to show that the Sacks and Uhlenbeck sequence u, converges smoothly away
from finitely many points and that the limiting map if it exists, or the limiting map of the rescaled sequence
(the bubble) is a nonconstant harmonic map.



Digression on bubbles: why the minimizing sequence shouldn’t be converging smoothly. For
the sake of illustration, suppose that there are two disjoint spheres in the manifold which are E-minimizers
in their homotopy classes. Say they are given by smooth maps v/,+" : S> — N which correspond to two
different generators of 72 (M). It may happen (see Figure 1.) that the minimizers u!, and ] of E, in the
two free homotopy classes converge smoothly to 4" and +", resp. Let ¢ be a length-minimizing path from
7' (S?) to v"(S?), and let v : 82 — N be such that upper part or the sphere is mapped to +', the equatorial
belt is mapped to a small tube following ¢ and the lower part is mapped to v". The E, minimizers, v,'",
homotopic to v could then be expected to approximate 7' and ~" but also collapse to the degenerate line ¢
as a — 1. In other words, the minimizing sequence for """ will develop singularities, and not tend (without
taking all bubbles into account) to a minimizer in the "' component. You would do better energetically if
you could cut off part of the map and consider the sequence from half of the sphere. This is what will happen
in effect. One end of the sphere will be rescaled by conformal deformation to confine the gradient, and will
limit to the bubble; the other end will be collapsed to a point, taking some energy with it, as it is excluded
from the rescaled limit. Thus, although the minimizing sequence will spawn rescaled related sequences that
converge to some solution, it will not be possible to find minimizers in every homotopy class, such as for
~"". It may happen that the minimizing sequences may have more than one bubble, or may form bubbles on
bubbles. A method of “bubble trees” to keep track of all of the bubbles rather than discarding everything
except the last bubble was developed by Parker and Wolfson [PW] for a very similar problem.

Apriori estimates. The regularity is a local property. Thus, we may consider topological disks D C M of
various sizes that may identify with closed coordinate disks D(z, R) C R? of center z and radius R in an
isothermal coordinate chart. By dilating the disk to unit radius, the Euler equation transforms on D(z,1)
to

(d?u, du)

+ A(u)(du, du) = 0.
Thus Sacks and Uhlenbeck are able to give apriori estimates for this equation that are uniform for 1 < a < aq
and 0 < R. We mention only a couple of the estimates.

The first is a removeable singularities theorem for harmonic maps.

Fact 7. Let 0 < R < oo and suppose f : D(R) — {0} — N is a smooth harmonic map. Suppose that the
enerqy is finite
/ |df|2 dz1 dzoy < 0.
D(R)-{0}

Then f extends to a smooth harmonic map f: D(R) — N.

By inversion, D(1) — {0} is conformally diffeomorphic to R? — D(1)°. This says that a harmonic map can
be extended across the point at infinity.

The second is a global estimate for small energy E,-critical maps. It says uniformly that if the E,-energy
is small, then the map must be a point map.

Fact 8. Given such M and N, there exists an ag > 1 and § > 0 so that if v is an E,-critical map such that
E,(v) <4 for some 1 < a < ag, then v is a constant map v € Ko and E,(v) = 0.

The partial regularity result, first given by Morrey [M], is that for the sequences being considered, if the
energy remains uniformly small then the convergence is smooth.

Fact 9. Let 0 < R < o and B < oo be given. Suppose that u, : D(R) — N be critical for E,, that
Eqo(uy) < B and that uqa — u weakly in L>'(D(R),R*) as o — 1. Then there is an ¢ > 0 so that if
R

E(us) <€ then ug = u in C* (D(£),N) where u: D(£) = N is a smooth harmonic map.

As E, is almost conformally invariant, the magnitude € is independent of R.

As an application, if uq : D(R) — N are E-critical and limsup,_,; supp(g) |[dua| < oo then there is a
§ > 0 so that u, — u converges in C* (D(6), N) to a smooth harmonic map u : D(§) — N.

Fact 9 is now used to show that u, converges smoothly except at finitely many points. The idea is to
cover M by disks of small radius. Then, using Fact 9, most of the disks will have small energy and thus u,



will converge in such disks. There is a number h € N so that the following is true. For every m € N an
integer, let R = 27™ be the radius of the disks and let Ur = {z € U : D(R,z) C U}. There are finitely
many ¢ = {(m) center points Zp, := {z1.m,- .. ,2¢,m} SO that {D(%, Zi,m) Yi=1,... ¢ C U cover Ug and so that
every point « € Ug is contained in at most h balls {D(R, z;m)}i=1,....¢. The key thing to notice is that the
number of disks ¢ whose energy exceeds ¢ is at most %, which is a number independent of m. Thus by
Fact 9, the convergence as o — 1 is uniform except in the vicinity of QU or near the points Z,,. Letting
m — oo yields the following partial regularity statement.

Fact 10. Let U C M be open and uy : U — N be critical for E,. Suppose that E,(U,) < B uniformly
for some B < oo and that u, — u weakly in L*>Y(U, M). Then there is a subsequence o/ — 1 and finitely
many points z1,...,z¢ € U so that ug — uw in CY (U —{21,...,2¢},N) where u : U —{z1,... ,2¢} = N s
a smooth hamonic map.

Either du, remains bounded near the singular points in which case the convergence can be smoothly
extended across the singular point, or the gradient blows up and sequence can be rescaled to form one which
converges to a new harmonic map, a bubble.

Theorem 11. Suppose u, : M — N be the sequence of smooth E -critical maps constructed in the argument
of Fact 10 such that ug — uw in C* (M — {x1,... ,x,},N) but not in C* (M — {x2,... ,2¢},N). Then there
is a nonconstant harmonic map @ : S> = N. Moreover

(2) E(a) + E(u) < limsup E(ug).

a—1

Sketch of the proof. We show that by conformal rescaling, there is a sequence 4, of F, critical maps
converging to .
Consider a single isothermal chart near ;. Let m € N be fixed but large enough so D(z1,27™) is in the
chart. Let
by = sup |dug ()] = |dua(zq)]
z€D(z1,27™™)
be the sup of the gradient near z1, and z, € D(z1,2™™) the point that realizes the max. We must have b,
unbounded or else, as we remarked after Fact 9, the C! convergence can be extended to a d-disk about ;.
A subsequence, which we also call b, tends to infinity as o — 1.

Now we conformally reparameterize the sphere. Observe that if o : S2 — R? is stereographic projection
from any point being the north pole (other than —z; which is used later), then a translation and dilation
of R? amounts to a conformal diffeomorphism of the sphere. In other words if 7 : R?> — R? is given by a
dilation followed by translation z —+ z; +cz, then 61 oT oo : S? — S? is a conformal diffeomorphism. Thus
we consider the dilated map

U (2) = Uq (ma + biz> : D (ml,ba2_m) — N.

Observe that |di,(0)] = 1 and |di,(2)|] < 1 for all z € D(x1,b,2"™). This sequence converges (in C' on
compacta) to a smooth harmonic function @ : R?> — N. Furthermore, because the energy can be decomposed

as
s i+ [ dual® = B(ua) < B,
D(I1,2_mba) 527D(I1,2_m)

for a subsequence o' — 1 this converges to

a’'—1

E(a) + %/ |dul? = lim sup E(uy).
S2-D(z1,2-™)

Letting m — oo gives (2). But since E(@) < oo on the plane, then the removeable singularities theorem,
Fact 7, implies that the singularity at infinity is removeable and that @ : S — N is a smooth harmonic
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map. Furthermore, since the convergence is in C!, we must also have |d@(0)] = 1, thus @ cannot be a map
to a point.

If bubbles form we get the desired harmonic map. The remaining possibility is that there are no bubbles
S0 Uy — u in C*(M, N). Since we have chosen u, to be nontrivial, it follows that E,(us) > & > 0 for all
1 < a < ag by Fact 8. In this case E(u) = limy—1 Eq(uq) > 0, so that u is not constant, completing Sacks
and Uhlenbeck’s argument.

The statements in [SaUl] and [SaU2] are far sharper. For one, if m3(NN) # 0 then they show that there
exists a generating set for mo(IN) consisting of immersed branched minimal spheres.

3. Some open problems for minimal spheres.

Finding an extremal mapping f : M — N has the drawback that the resulting surface may not be an
embedding. Pitts [Pi] showed that every smooth manifold N™ (3 < n < 6) has an embedded minimal
hypersurface M™ ™! using geometric measure theory instead of mapping. Schoen and Simon [SS] extended
this to n = 7 and identified the singularities for n > 8. However, this method does not say anything about
the topology of the minimizer. Meeks and Yau [MY] showed that if a minimal sphere in a compact three
manifold minimizes area in its homotopy class, then it must be embedded. Meeks, Simon and Yau [MSY]
proved that an area minimizing sequence of surfaces isotopic to a given surface in a three manifold converges
as a measure to a sum of embedded minimal spheres. Smith [Sm] proved using a minimax argument that
there are embedded minimal S?’s in (S?, g), where g is an arbitrary smooth metric. Further generalizations
and extensions are listed in Simon’s survey [Si].

The question of existence of embedded minimal spheres in three manifolds has application to questions
of three dimensional topology, such as the spherical spaceform problem, which asks if any free action of a
finite group on the three-sphere is topologically conjugate to an orthogonal action.

Problem 1. (Pitts-Rubenstein, or Problem 29 of Yau [Y], [CM]) Let N be a closed simply-connected three
manifold. Does there exist a bound on the Morse Index of all closed embedded minimal surfaces of fixed
genus?

We end by mentioning a couple of problems posed by J. Wolfson [W]. They are area minimization ques-
tions for surfaces satisfying an additional pointwise constraint. Let (N,w) denote a smooth 2n-dimensional
symplectic manifold. The everywhere-given two form w is closed (dw = 0) and everywhere nondegenerate
(w~w~ ---~w = cdvol where ¢ # 0). An exampleis R*" withw = """ | dz;~dy;. A submanifold f : M — N
is called Lagrangian if f*w = 0. For example, if ¢ : R™ — R then the n-dimensional submanifold given
by the graph z ~ (z, V(z)) is Lagrangian. An almost complex structure .J (like multiplication by v/—1)
is said to be compatible with w if w(JX,JY) = w(X,Y) for all vectors X,Y. Given a symplectic form
and compatible almost-complex structure, then the compatible metric is defined by ¢(X,Y) = w(JX,Y).
Schoen and Wolfson [SW] have proved that for any Lagrangian homotopy class [f] € m3(N) in a smooth La-
grangian 4-manifold N, there is a finite collection of Lagrangian, compatible-metric area minimizing spheres
fi € L“(S?,N) such that Y_,[f;] = [6].

The general problem has application in mirror manifold theory. Strominger, Yau and Zaslow propose
to construct the mirror manifold using the moduli space of special Lagrangian real 3-tori of a Calabi-Yau
three-fold.

Problem 2. Given a Lagrangian homology class 6 in a smooth symplectic manifold, among the cycles
representing the class, find a canonical one with minimal compatible volume.

Wolfson [W] mentions a related problem from nonlinear elasticity theory. Let D denote the unit disk
in the plane and consider the set of maps f : D — D with prescribed Dirichlet boundary data and with
Jacobean identically equal to one.

Problem 3. Find an energy minimizer in this class of maps.

The existence of the minimizer has been established but nothing is known about its regularity. If d Area
is the area form on D, then w = pi(d Area) — p3(d Area) is a symplectic form on D x D, where p; are the
projections D x D — D. The condition Jac(f) = 1 is equivalent to Graph(f) is Lagrangian.
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