Paul Roberts - Lecture |

Several of the early homological conjectures were settled by the following
result, and several later ones are meant to generalize it:

Theorem 1 (Peskine-Szpiro). (Intersection Theorem) Let M, N be nonzero
finitely generated modules over a local ring A such that (M ®4 N) < oc.
Then dim N < pd M.

Note that this theorem is really one about modules of finite projective
dimension, since the assertion is trivial if M has infinite projective dimen-
sion. Furthermore, as phrased in Peskine and Szpiro’s original paper, it is a
statement about the topology of the support of a module of finite projective
dimension (see Peskine-Szpiro [5]).

Example: For an easy example, let A be Cohen-Macaulay and M =
A/(z1,...,z) where the x; form an A-regular sequence. Then M ® N =
N/(z1,...,2x)N. Note that since the x;s were A-regular, the Koszul complex
on the x;s gives a minimal free resolution of M and hence pd M = k. Hence
the Intersection Theorem says that dim N < k, and this case is a consequence
of Krull’s Principal Ideal Theorem.

Along a similar vein, we give an elementary fact about the support of
modules of finite projective dimension that will be used throughout the lec-
tures.

Proposition 2. Suppose that A is a Noetherian ring and M a module of
finite projective dimension over A. Suppose there exists p € Supp(M) N
Ass(M). Then Supp(M) = Spec(A).

Proof. Let
F:0—=F—=-—=F—>M=0

be a resolution of length k. Then M, # 0, as p € Supp(M), and also
Ay, has depth 0 as p € Ass(A). Now the Auslander-Buchsbaum formula
tells us that pd M, + depth M, = depth A, = 0, and hence pd M, = 0
so that M, is free. So, localizing the above resolution at p gives us that
rank(M,) = S°F (—1)"rank(F}) > 0. Therefore, we must have that M, # 0
for all q € Spec A. Therefore, Supp(M) = Spec(A). O

As somewhat of a motivation towards the multiplicity conjectures, also
note that in certain ‘nice’ situations, pd M < dim A — dim M, and so the



intersection theorem says that dim M + dim N < dim A. This is a result
proved by Serre in the regular case and remains open in many other cases.
However, this motivation does not work in all cases, since the inequality
pd M < dim A — dim M does not always hold.

The following was once a conjecture of Auslander and is a consequence
of Peskine and Szpiro’s Intersection Theorem.

Theorem 3. (Auslander’s Zero-Divisor Conjecture) Suppose M is a nonzero
module of finite projective dimension. If v € A is a nonzerodivisor on M then
x 18 a nonzerodivisor on A.

We give an equivalent formulation of the above theorem below. Also,
we show why the zerodivisor conjecture is a consequence of the intersection
theorem.

Theorem 4. For all p € Ass(A), there exists q € Ass(M) with q 2 p.

Proof. We proceed by induction on dim A. Assume that there exists a coun-
terexample A, M # 0, pd M < oo, and p € Ass(A). We wish to find a
prime q € Supp(M), p C q and q # m, so that dim A, < dim A. Then
we would have that p; € Ass(Ay), and by induction we would have that
there exists q' € Ass(M,) such that q' O p,. But then this q' would cor-
respond to an associated prime of M that contradicts the fact that A and
M were supposed to be a counterexample. So, the above argument fails if
we cannot find the q, i.e., if and only if Supp(A/p) N Supp(M) = {m}, i.e.
if and only if [(A/p ® M) < co. Hence, the intersection theorem says that
dimA/p < pdM. So p € Ass(A) implies that depth(A4) < pd(M). How-
ever, the Auslander-Buchsbaum formula again tells us that depth M = 0
hence m € Ass(M), so m D p, hence m satisfies the conditions of ¢ in the
conjecture. ]

Another conjecture settled by the intersection theorem was one of Bass:

Theorem 5. (Bass’s Congecture) If A has a finitely generated nonzero mod-
ule N of finite injective dimension, then A is Cohen-Macualay.

We sketch the proof of this conjecture below (for a complete proof, see
Peskine-Szpiro [6], I1.5). We will use the fact, proven in the cited reference,
that if there is finitely generated module of finite injective dimension, then
there is a finitely generated module of finite projective dimension with the
same support.



Proof. If N has dimension zero, so has finite length, by the above remarks
there is also a module M of finite length and finite projective dimension. The
Intersection Theorem implies that the projective dimension of M is equal to
the dimension of the ring A. On the other hand, the Auslander-Buchsbaum
formula says that the projective dimension of M is equal to the depth of A,
so A is Cohen-Macaulay.

In general, the proof is by induction on the dimension of N, which we
now assume is at least 1. We know by the Bass formula that injdim(N) =
depth(A). We want a prime g such that q € Supp(N) and dim A; = dim A —
1. We may assume that the ring A is catenary, so the only way this would
not be possible is if it were true that for every q in the support of N with
dim(A/q) = 1, and for every minimal prime p of A contained in g, we had
dim(A/p) < dim(A). If this is the case, let p be a minimal prime of A with
dim(A/p) = dim(A); the assumptions now imply that A/p ® 4 N has finite
length. The Intersection Theorem then implies that the projective dimension
of a module of finite projective dimension with the same support as N has
projective dimension at least dim(A), and the Auslander-Buchsbaum formula
again implies that A is Cohen-Macaulay.

Thus we may assume that there is a prime ideal ¢ in the support of N with
dim(A4) = dim(A) — 1. Then by a lemma of Bass, depth A; = depth A — 1.
By induction on dimension A, is Cohen-Macaulay, and the above equalities
imply the A is Cohen-Macaulay.

O

The following is a conjecture(now a theorem), of Hochster that implies
the Intersection Theorem:

Theorem 6. (Homological Height Conjecture) Let M be a finitely generated
A-module of finite projective dimension, and let [ = ann M. Further, suppose

that f : A — B is a homomorphism of rings and p a minimal prime over
IB. Then htp < pd M.

A more general theorem was conjectured that is related to the intersection
theorem and even implies the homological height conjecture.

Theorem 7. (New Intersection Theorem) Let A be a local Ting of dimension
d, and
F..0—-F, —---—>F—0



be a complex of free modules with [(H;(F.)) < oo for all i. Then if k < d,
the complex is exact.

To see the connection to the original intersection theorem, consider an
A-module M with minimal free resolution

F..0—-F —- - — Fy—0.
Set N = A/p and assume [(M ® A/p) < oo. Then
FAPp: 0> FA/p— - = F®A/p—0

is a complex of free A/p-modules satisfying [(H;(F. ® A/p)) < oo for all i.
But the complex F. ® A/p is not exact, hence by the contrapositive of the
New Intersection Theorem, we must have that k& > dim A/p, as desired.

Now we prove the New Intersection Theorem in positive characteristic.
Before we do so, we need a lemma, which we will assume:

Lemma 8. Let A be a local ring that is a homomorphic image of a Gorenstein
ring, and suppose dim A = d. Then there are ideals aq,...,aq such that
ht a; > ¢ and whenever

0—=Fy—--—=F—0
is a complez of free modules with [(H;(F.)) < oo, then a; annihilates H;(F.).

Proof. A counterexample to the New Intersection Theorem would look like

0—>Fd—>Fd,1—>---(ﬂ)Fl—>0

where the complex is not exact and we may take the a;; € m. Note that
a; has height at least 1. Now, tensoring the above complex with the eth
iteration of the Frobenius gives

e

0—>Fd—>Fd,1—>---—>FQ(Lﬁ>)F1—>O.

Therefore, Coker(af;) is annihilated by a;, and so a; € m? for all e. Since
e was arbitrary, we deduce that a; = 0 by Krull’s intersection theorem,
contradicting that it has height at least 1. 0



A proof of this theorem in mixed characterisitc can be found in Roberts
[7].

So where do the a; come from? A dualizing complex for A (with dimension
of A equal to d) is a complex

0—=D"—= .- D*—=0

such that H;(D-) is finitely generated for all i and D’ 2 @@y 4 p—g ; F(A/P)
where E(A/p) denotes the injective hull of A/p. In the example of a Goren-
stein ring, the above is just given by a minimal injective resolution of the
ring itself. Define a; = ann H;(D"), hence htd; > i. Set a; = a;-- - dy. Note
that the above complex is exact everwhere except at degree 0 if and only if
A is Cohen-Macaulay. Hence, the a; give a measure of how far the ring is
from being Cohen-Macaulay.

To end this lecture, we give another conjecture (proven in equicharacter-
istic, still open in mixed characteristic) that is of a similar flavor to the New
Intersection Theorem. Appropriately, Hochster coined it the Improved New
Intersection Theorem:

Conjecture 1. (Improved New Intersection Conjecture) Let (R, m) be a local
ring and let
0=ty —=Frq1—--—=>F—=0

be a complez of free R-modules. Assume now that {(H;(F.)) < oo for alli > 0
and that Fy has a minimal generator whose image in Hy(F.) is annihilated
by a power of m. Then F. is exact.

Paul Roberts - Lecture 11
Local Chern Characters

Throughout this section, let (A, m) denote a local ring of dimension d.
Recall that the component of dimension ¢ of the Chow group of a local
ring A is
cycles

CH;(A) =

rational equivalence’



The cycles form the free abelian group on [f] where p is a prime ideal of A

with dim(A/p) = i. We define rational equivalence by killing elements of the

form P
divie,a) = {(q,m)]i

for all prime ideals q of A with dim(A/q) =i+ 1 and all elements z € A —q.

Also recall that
A A A
IR
(@) ]y e \@a) /), La

We define the Chow group of A to be the direct sum of the components

CH.(A) = @ CHi(A)

We call the group CH,(A) ®z Q the rational Chow group of A.

Local Chern characters are operations on the Chow group defined by
perfect complexes (bounded complexes of free modules). Let F. be a perfect
complex. Now define Supp(F.) to be the set of prime ideals p of A such
that (F.), is not exact. Note that since localization is exact we have that
Supp(F.) = U, Supp(H;(F.)).

Let Z = Supp(F.). The local Chern character defined by F., denoted
ch(F.), defines for each closed set Y C Spec(A), a map

CH,(Y) — CH,(Y N Z)

The local Chern character defined by F. is actually a sum of the local Chern
characters in each degree:

ch(F.) = cho(F.) + chy(F.) + - - - + chy(F.)

where
chi(F.): CH(Y) — CHy (Y N Z)

For a description of the construction of local Chern characters, see Fulton
[3] or Roberts [8].

Examples



. The map chy(F.) : CH(Y) — CHy(Y') is multiplication by °.(—1)7 rank(F).

.Let F.=0— A% A — 0. Then ch(F.) acts on CH,(A) as intersection
with the divisor defined by x. That is,

0, TEDP
{(Pf‘l’)}ifl’ TEP

The higher local Chern characters vanish and chy vanishes by the pre-
vious example.

chy(F.) : [?]Z —

. Let K.(zy,...,2;) denote the Koszul complex on zq,...,z;. Then
ch;(K.(z1,...,2;)) acts as the composition of the intersections with
each of the z;, 1 <1 < j.

Properties of local Chern characters

. Given an exact sequence
0—>F' —-F —-F"—0

of complexes (exact in each degree) we have that
ch(F.) = ch(F.") + ch(F.")

on the union of the supports of F., F." and F.".

. Given two complexes F. and G,

ch(F.® G.) = ch(F.) - ch(G.)

That is,
chi(F.®G.) = Y chy(F.) - chy(G.).
i+j=k
Note that Supp(F. ® G.) = Supp(F.) N Supp(G.).

Suppose that Supp(F.) = Z and Supp(G.) = Z'. Then geometrically,
this property translates as

ch(F.® G):CH,(Y)—>CH,(YNZ')—CH,(YNZNZ)



3. Local Chern characters commute with the intersection with divisors.

4. Given complexes F. and G,

ch;(F.) - chj(G.) = ch;(G.) - ch,;(F.)

Local Riemann-Roch Formula

Given a bounded complex M. there is a class 7(M.) € CH,(Supp(M.))
satisfying the following properties.

1. If M. is a module M of dimension at most i then 7(M) = [M]; +
terms of lower degree.

2. If M. has homology of finite length then

T(M.) = x(M.) = Y (=1)"¢(H,(M.))

i

3. (Local Riemann-Roch Formula) Given a perfect complex F. and M. an
arbitrary bounded complex,

T(F.® M.) = ch(F.)T(M.)

The Serre Vanishing Theorem

Let A be a local domain of dimension d. From the properties above,
7(A) = [A]4 + terms of lower degree. It can be shown that if A is a com-
plete intersection then 7(A) = [A];. The following theorem thus gives the
vanishing Theorem for complete intersections.

Theorem 9. Suppose that for a local ring (A,m) of dimension d, 7(A) =
[A]lyg. Let M and N be A-modules, each of finite projective dimension, such
that {(M ® N) < oo. Then dim(M) + dim(N) < dim(A) implies that
X(M,N)=0.



Proof. Let F. — M and G. — N be free resolutions of M and N, respectively.
Note that this implies that F. and G. are both perfect complexes. Further-
more, Supp(F.) = Supp(M) and Supp(G.) = Supp(N). Since {(MRN) < o0
we have from property 2 above that

X(MN)=x(F.9G)=> (-1)I(H(F.8G)) =7(F.®G)
Now by the local Riemann-Roch Theorem and since the lower terms vanish,
this is equal to
ch(F.® G)7(A) = chy(F. ® G.)[Alg = Y chi(F.) ch;(G.)[A]4 =0

itj=d

The last equality deserves an explanation. Suppose that j < dim(A) —
dim(N). Then Supp(G.) has dimension strictly less than d — j because
ch;(G.)[A]s € CHy_j(Supp(N)) = 0. Similarly (using the commutativity
described above) we see that if i < dim(A)—dim (M), Supp(F.) has dimension
strictly less that d—i. Now if i > dim(A)—dim(M) and j > dim(A)—dim(V)
then d =i+ j > 2dim(A) — dim(M) — dim(N), a contradiction. Thus we
must be in one of the first two cases and the final equality is justified. O

Paul Roberts - Lecture 111
Multiplicity Conjectures

Throughout, assume that R is a local ring, that M and N are finitely
generated R-modules such that M has finite projective dimension and /(M ®
N) < oco. Recall that

X(M,N) = "(=1)"¢(Tor;(M, N))

Conjectures
M, dim(M) + dim(N) < dim(R)
M, If dim(M) + dim(N) < dim(R) then x(M,N) =0

9



e Y\(M,N)>0
M, If dim(M) + dim(N) = dim(R) then x(M,N) >0

conjecture R regular pd(M),pd(N) < oo pd(M) < o0

M, true (Serre) open open (true for k[[z]]/(f))
M, true (Roberts, Gillet-Soule) open (true for C.I.’s) false

o true (Gabber) open false

Ms open open false

Recall that .
Xi(M,N) = " (=1)/¢(Torf ;(M, N))

7=0
Conjecture 2. e \;(M,N)>0
e \i(M,N) =0 only if Tor;(M,N) = Tor; (M, N) =---=0.

This conjecture is open for ramified local rings but is false in general (cf.
S. Dutta’s Lecture II).

Theorem 10. (de Jong’s Theorem on Regular Alterations, de Jong [2]) Let
X be a scheme, reduced and irreducible, essentially of finite type over a field
or a discrete valuation ring. Then there exists a projective generically finite
map Y — X whereY is reqular (i.e. the extension of function fields K(X) —
K(Y) is finite in the sense of field extensions).

Using this result, Gabber was able to prove the non-negativity theorem.

Theorem 11. (Gabber) Let R be a regular local ring, M and N finitely
generated R-modules with (M ® N) < oo. Then x(M,N) > 0.

Proof. We give here an outline of the proof of this theorem. For more details,
see Berthelot [1], Hochster,[4], or Roberts [9].

We'll prove the result for complete regular local rings. In fact, there
are assumptions on R that are needed to apply de Jong’s theorem, but the
theorem can be reduced to the case in which they hold.

Since y is additive on short exact sequences, it suffices to prove the result
for M = R/p and N = R/q by taking a filtration of M and N respectively.

10



We first assume that R/p is regular. In this case the result follows imme-
diately from results of Serre, but we present an discussion of this case that
parallels the general proof. The last steps are not necessary to prove the
result in this case, but this case is easier to understand, and it is hoped that
this discussion makes it easier to follow the general case.

Since R/p is regular, p is generated by part of a regular s.o.p, say p =
(1,...,x). In this case, by a theorem of Serre, we have

X(R/p, R/q) = €@, ,..) (1R]04, k),

where the right hand side denotes k! times the degree k coefficient of the
Hilbert-Samuel polynomial of (x). (This quantity is clearly nonnegative; the
remainder of this construction gives another interpretation that will be used
in the general case.)

Let S = gry) = R/(x) ® (x)/(x)? @ -+ be the associated graded ring of
(x) on R. We next show that x(R/p, R/q) can be computed as a multiplicity
on S. Define two ideals of S, I = @;°,(x)"/(x)""" the irrelevant ideal of
S and J = ker(S — gr) R/q) where the map is induced by the surjection
R — R/q. Now, it is a fairly easy exercise using computations with the
gradings to show that e, . .,)(R/q.k), and hence x(R/p, R/q), is equal to
XS(S/]J S/J)

Note that S/.J is a graded ring with (S/J)y = R/(p+q). Since R/(p+q)
has finite length, the ring S/J is annihilated by some power of the max-
imal ideal m of R. Hence, using a filtration on S/.J, one can show that
xs(S/I,S/J) > 0 by showing that xs(S/I, M) > 0 fo all S-modules annihi-
lated by m.

Finally, one can map S into the associated graded ring of m on R by
sending each of the z; to its image in m/m?. Denote the graded ring of m on
R by T, and denote the ideal of elements of positive degree by K. It is then
easy to show that if M is a graded S-module annihilated by m, we have

xs(S/I, M) = xp(T/K, M ®sT).

Thus the original problem is expressed in terms of intersection multiplicities
of graded module over a graded polynomial ring over a field.

If R/p is not regular, then we must use the theorem of de Jong on regular
alterations.

Indeed, take R, R/p and R/q as above, where R/p is not necessarily
regular. Take a regular alteration of R/p. Hence, you have an n and a graded

11



ideal I of A = R[xy,...,z,] such that Proj(A/I) is regular, I N R = p, and
¢ : Proj(A/I) — Spec(R/p) is a generically finite map. Now set Sy = gr,(A),
a bigraded ring, and .Jy be the irrelevant ideal with respect to the grading
from I of Sy. Let A = R/q[zo,-..,x,], and let I be the image of I in A. Let
Sy = gry A. So, we have a surjection Sy — Sy. Let K; be the kernel of this
surjection. So now, by a generalization of the theorem of Serre used above,
we can reduce to computing xs,(So/Jo, So/Ko).

In the case in which R/p was regular, the associated graded ring S was
a nice polynomial ring over the component of degree zero. In this case,
since A/I is only regular locally, the situation is not so nice. However, we
have a surjection S = Sym ,(I/I?) — Sy, and this defines an isomorphism
locally. Let J and K be the inverse images of Jy and K, respectively. The
computation can then be reduced to computing xs(S/J, S/K).

As in the previous case, the question can be reduced to the case of graded
modules annihilated by the maximal ideal of R. And as in that case, we wish
to reduce to an intersection in a graded polynomial ring over a field. However,
since we do not know [ explicitly, the definition is not as simple.

We wish to define a map S — (A/I®k)[s1,..., 84, 1o, ..., T,], where the
s; are in degree 0 and the 7; are in degree 1. This amounts to defining a
map ¢: I[/I? — (AJI®k)® (A/I@k)[—1]""" = F. R is assumed ramified,
hence R/m? = R/m[Y:,...,Yy|/(Y3,...,Yy)? Let ty,...,tq be a regular s.o.p
in R. One can define a%— : R — R/m in terms of the Y; that we get since R is
ramified. Extend this map to a%- : A — A/mA. Note that I C A, and since,
by the Leibniz rule, we have that I? C ker a% for all 7, we get an induced
map from I/I? to A/I ® k for all i. So, the ¢ above is given component-
wise by ((,%, . 8%1’ 8%0, . %). Now, as Proj(A/I) is regular, the mapfzﬁ
above is a locally split injection. So, let (A/I®k)[s1,...,Sq, To, ..., T, =5,
J = (s1,...,54¢,Ty,..., ). and K the image of K in S. Now compute
x3(S/J,8/K), and show that this is nonnegative. O

Paul Roberts - Lecture IV
Local Chern Characters

Assume now that (R, m) is a local ring, that M and N are finitely gener-

12



ated R-modules with M having finite projective dimension. Suppose further
that dim(M) + dim(NV) < dim(R) and that x(M, N) # 0.
Let
F=0—=F—-—=F—=M=0

be a free resolution of M. Now
ch(F.): CH,(R) —» CHy(R/m) = Q
Recall that for any module N we have
X(F.® N) = ch(F.)T(N)

In particular, x(F.) = ch(F.)7(R) where 7(R) = [R]4+ terms of lower degree
This means that

X(F) = Chd(F)[R]d + Chdfl(F-)Tdfl(R) 4+ .-

The Dutta multiplicity is x(F.) = chy(F.)[R]4. In positive characteristic

. . . fn
this is equal to lim,,_,. %

Question: Is Dutta multiplicity equal to the ordinary multiplicity for
Gorenstein rings? Note that there are two issues here, one is whether 7(A) =
[A]4, and the other is the existence of a module of finite length and finite
projective dimension whose local Chern character does not vanish on a term
of degree lower than d.

Note that if R is a complete intersection, 7(R) = [R],.

Note that for Gorenstein rings, 7;(R) need not be zero for i < d as is
evidenced by the following two examples.

1. (Kurano) Let

klzij] o<i<n
R 0Zj<m

I((24))
Then 74(R) = 0 but 73(R) # 0.

2. (C. Miller, A. Singh) A complex for which Dutta and ordinary multi[licity
are not equal over a finite Gorenstein extension of

klxz,y, z, w, u, v

(zu + yv + zw)

13



We now make the following assumptions: A is a localization at the graded
maximal ideal of a standard graded ring R and @) = Proj(R) is smooth.

For a projective scheme () = Proj(R) the rational Chow group of @ is
a free Q-module on [R/p| (where p is a graded prime ideal of R) modulo
the rational equivalence relations generated by the relations [R/(q,x)]; —
[R/(q,y)]; where x and y are homogeneous elements of the same degree not
in q. Let h be a hyperplane section acting on CH,(()) via the map

CH;(Q) — CH; 1(Q)

defined by
[R/pli = [R/(p, x)]i1
where x is an element of degree one not in p.
Note: h does not depend on the choice of the element .

Paul Roberts - Lecture V
Chow Groups of Projective Schemes

Throughout, let R be a standard graded ring R = Ry ® Ry ® Ry & - --
where Ry is a field and let @) = Proj(R). Recall that in this case the rational
Chow group of () is defined as the direct sum CH,(Q) = @, CH;(Q) where

cycles _ free Q — module on [R/p] with p graded
rational equivalence ((R/(q,2)], — [R/(q,y)];

C'Hz'(Q) = >

for homogeneous elements x, y of the same degree not in q a graded prime of
R and such that dim(R/q) =i+ 1
Define a hyperplane section to be

. @l

where z is a homogeneous element of degree one.
Examples

1. Let R = k[xy,...,z,] be the coordinate ring of projective n-space PJ.
Let a denote a generic hyperplane H. Then

CH.(Py) = Qla]/(a"*")

14



We now list the correspondence between the basis elements of C H, (P})
and subvarieties of P}.

1 <+ pr

a < H
a> +— HNH
a” +— *

where H and H denote hyperplanes in P" and * denotes a single point
in P".

. Now consider the space P" x P™ and hyperplanes H C P" and K C [P™.
Letting a = H x P™ and b = P" x K we have that

CH,(P" x P™) = QJa, b]/(a™*", 5™)
Note that the coordinate ring of P” x P™ is isomorphic to the ring

k[wi;] o<i<n
0<j<m

Iy((wi5))

. (Continuation of 2) Recall that one can embed P™ x P™ into P"™ via
the Segre embedding

R=

aob[] . aobm

((ag, ... an), (boy---,bm)) —

apbo ... apb,

Let h be the hyperplane associated to (xg) and let a and b be as in
the previous example. It is an easy exercise to check that

(z00) = (%00, - - -, Tom) N (To0, - - -, Tno)

and thus that h = a+b in C H,(P" xP™), identified with Q[a, b]/(a™*t, o™ 1)
as above.

15



Theorem 12. (Kurano) Let R and Q be as above. Then

CH.(Q)

CH.(Rw) = 5 ot Oy

Corollary 13. CH,(k[xg,...x,]) = Q in dimension n + 1.
Corollary 14.

k[xz] 0<i<n
C’H*(M) > Qa, b]/(a™*", ™ a + b) = Q[a]/(a™n it lm+1})
Iy ((2i5))

In particular,

CH,(klz,y, 2, w]/(zvy — zw)) = Qla]/ (a?)

Counterexamples to Vanishing

Let R be a standard graded ring, A = R, where m is the graded maximal
ideal, and let M be a module of finite length and finite projective dimension.
Let

O0—=Fy—-—=Fp—>M-=0

be a finite free resolution of M. We now consider ch(F.) acting on the Chow
group as

ch(F.): CH,(A) — CH,(A/m) = Q

Note that this map is defined for any bounded complex of free modules
with homologies of finite length. The function is also additive on short (split
in each degree) exact sequences of complexes and is independent of quasi-
isomorphisms.

Thus there exists a homomorphism

Ko(C) — CH.(A)*

where * denotes homg(—, Q) and C denotes the category of all perfect com-

plexes.
Assume that @ is smooth. Since CH,(A) = CH.(Q)/hCH.(Q) we have

the following diagram:
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0 — ker(h) — CH,(Q) —~ CH,(Q)

P

0—— CH.(A)* —> CH.(Q) '~ CH.(Q)

Theorem 15. (Roberts, Srinivas) The image of Ko(C) — CH,(A)* is the
image of ¢ in the above diagram.

This theorem allows one to construct many counterexamples to vanishing.

1. Let
A= (k[’I," Y, z, ’U)]/(.Ty o ZU}))(w,y,z,w)

and let Q = P' x P'. Then

CH,(Q) = Qla, b]/(a?, b%)

The set {1, a,b,ab} is a Q-basis for CH,(Q) as a Q-vector space. Con-
sider the hyperplane associated to a + b. The kernel of multiplication
by a + b has basis {a — b, ab}.

Thus there exists a module M of finite projective dimension and of
finite length with x(M, A/(x,2)) = —1 but with x(M, A/(x,u)) = 1.

2. Let
T T2 T3

Tor T T3
Zr31 32 T33

Iy(zj:)

(@35)
and let @ = P2 x P{. Then CH,(Q) = Q[a,b]/(a, b*). In this case
the kernel has basis {a* — ab + b?, a?b — ab? a*b*}. There are lots of
examples like this one.

From the second example we see also that there are modules for which
the Dutta multiplicity does not equal the ordinary multiplicity.

Note: If the intersection pairing is perfect, then the map Ky(C) —
CH,(A)* is surjective.
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