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§ 1 Tor and Ext

Notations and Conventions:
1. R is a commutative Noetherian ring, and M and N are finitely generated

R-modules.
2. The unique maximal ideal and the residue field of a local ring R are respectively

denoted by m and R/m = k.
3. Unless otherwise specified, all Homs and ⊗s are over R.

Definition 1 Let P• and Q• be projective resolutions of M and N respectively over
R. (It is actually enough to consider flat resolutions.) One defines

TorR
i (M, N)

def
= Hi(P• ⊗N)

(∗)
= Hi(M ⊗Q•)

i.e., Tor is the left derived functor of the right exact functors ⊗N and M ⊗ .

Proof of (∗): Consider the following maps of double complexes:

P• ⊗Q•
f //

g
��

P• ⊗N

M ⊗Q•

where P• ⊗Q• is

�� ��
P0 ⊗Q1

oo

��

P1 ⊗Q1

��

oo

P0 ⊗Q0
oo P1 ⊗Q0

oo

P• ⊗N is

�� ��
0 oo

��

0

��

oo

P0 ⊗N oo P1 ⊗N oo

and M ⊗Q• is

�� ��
M ⊗Q1

oo

��

0

��

oo

M ⊗Q0
oo 0 oo
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Since each term of P• is projective, the map f induces a quasiisomorphism of the
columns of P• ⊗Q• and P• ⊗ N (i.e., an isomorphism of their homologies), and so
the map on the corresponding total complexes is also a quasi-isomorphism. Similarly,
g induces a quasiisomorphism of the total complexes of P• ⊗Q• and M ⊗Q• since
it does so on the rows. Hence we have

Hi(P• ⊗N)
∼=←−
f

Hi(P• ⊗Q•)
∼=−→
g

Hi(M ⊗Q•)

which proves ∗. �

Note that:
(a) Tor is a functor of either variable, and
(b) TorR

i (M, N) ∼= TorR
i (N, M) (use (∗) and the fact that ⊗ is symmetric).

Definition 2 Let P• be a projective resolution of M and I• be an injective resolution
of N over R. One defines

Exti
R(M, N)

def
= H i(Hom(P•, N))

(∗)
= H i(Hom(M, I•))

i.e., Ext is the right derived functor of the left exact functors Hom( , N) and Hom(M, ).

Long Exact Sequences of Ext and Tor

1. Consider the short exact sequence 0→M1 →M2 →M3 → 0.
(a) Applying ⊗Q• gives a short exact sequence of complexes which induces the
following long exact sequence on Tors:

· · · → TorR
i (M3, N)

∂→ TorR
i−1(M1, N)→ TorR

i−1(M2, N)→ TorR
i−1(M3, N)

∂→

· · · → TorR
1 (M3, N)

∂→M1 ⊗N →M2 ⊗N →M3 ⊗N → 0

(b) Applying Hom( , I•) gives a short exact sequence of complexes which induces
the following long exact sequence on Exts:

0→ Hom(M3, N)→ Hom(M2, N)→ Hom(M1, N)
∂→ Ext1

R(M3, N)→ · · ·

∂→ Exti
R(M3, N)→ Exti

R(M2, N)→ Exti
R(M1, N)

∂→ Exti+1
R (M3, N)→ · · ·

2. Similarly the short exact sequence 0 → N1 → N2 → N3 → 0 induces long exact
sequences on Tors and Exts respectively by applying (a) P•⊗ and (b) Hom(P•, ).
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Some Consequences:
(a) Tori(M, ) = 0 for all i ⇐⇒ M ⊗ is exact ⇐⇒ M is flat.
(b) Exti(M, ) = 0 for all i ⇐⇒ Hom(M, ) is exact ⇐⇒ M is projective.
(c) Exti( , N) = 0 for all i ⇐⇒ Hom( , N) is exact ⇐⇒ N is injective.

Remarks:
1. It is enough to check the vanishing of Tor and Ext for i = 1.
2. If M, N are finitely generated and R is local, then it is enough to check the vanishing
of the Tor and Ext against the residue field k.

Applications of Tor and Ext

We give three “examples” to illustrate some uses of Tor and Ext.

1. Depth Recall that depthIM is defined to be the length of a maximal M -regular
sequence in I. Then

depthIM = min{i : Exti
R(R/I,M) 6= 0}

i.e., depthIM ≥ t ⇐⇒ Exti
R(R/I,M) = 0 for all i < t.

Proof: Induct on t = depthIM . We will use the fact that for any finitely generated
R-module N one has

Hom(N, M) = 0 ⇐⇒ depthannRNM > 0

If t = 0, then the above fact yields Hom(R/I,M) 6= 0. Hence depthIM = 0 =
min{i : Exti

R(R/I,M) 6= 0} as desired.
Now suppose t > 0. Let x be a non-zerodivisor on M . Applying HomR(R/I, ) to

the short exact sequence 0→M
x→M →M/xM → 0 , yields a long exact sequence

that breaks up into exact sequences

0→ Hom(R/I,M/xM)→ Ext1
R(R/I,M)→ 0

(by the fact above again) and, for i > 0,

0→ Exti
R(R/I,M)→ Exti

R(R/I,M/xM)→ Exti+1
R (R/I,M)→ 0

By induction, for i < t − 1, Exti
R(R/I,M/xM) = 0 and Extt−1

R (R/I,M/xM) 6= 0.
This forces Exti

R(R/I,M) = 0 for i < t and Extt
R(R/I,M) 6= 0, proving the result. �

2. Betti numbers Let (R,m, k) be a local ring. Recall that a free resolution of an
R-module M

F• : . . .→ Fi
∂i→ Fi−1 → . . .

∂1→ F0
ε→ 0
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is said to be minimal if im(∂i) ⊆ mFi−1 for each i. The ith Betti number of M is

defined to be bi(M)
def
= rank(Fi). Then

bi(M) = dimkTorR
i (M, k)

Proof: Since ∂i ⊗ k = 0 for each i > 0, we have

TorR
i (M, k) = Hi(F• ⊗ k) = Fi ⊗ k

But Fi ⊗ k ∼= krankFi , which proves the required equality. �

Note that for any M , TorR
i (M, k) = 0 forces bj(M) = 0 for j > i. This gives us

TorR
j (M, k) = 0 for j > i. We say that k is rigid.

3. Koszul (co)homology Suppose that x = x1, . . . , xn is an R-regular sequence.
In this case, the Koszul complex K• is a free resolution of R/(x), and so the Koszul
homologies (and cohomologies) are:

Hi(x, M) = Hi(K• ⊗M) = TorR
i (R/x, M)

H i(x, M) = Hi(Hom(K•, M)) = Exti
R(R/x, M)

Change of Rings

Let S be a ring, M and N be S-modules. Let x ∈ S be an S-regular and M -regular
element such that xN = 0. Let M = M/xM and R = S/xS. Then

1. Extn
S(M, N) ∼= Extn

R(M,N)

2. TorS
n(M, N) ∼= TorR

n (M,N)

3. Extn+1
S (N, M) ∼= Extn

R(N, M)

Idea of Proof: The first two isomorphisms follow from the fact that if F• is a free
resolution of M over S, then F• ⊗S R is a free resolution of M ∼= M ⊗S R over R.
(To see this, resolve R using the Koszul complex 0 → S

x→ S → R → 0 and thus
compute that TorS

i (M, R) = Hi(F• ⊗S R) = 0 for all i > 0.) The third isomorphism
follows from the following more general result which can be proven using a spectral
sequence argument.

Proposition 1 Let S be a ring, and let M and N be S-modules. Let x be an S-regular
element with xM=0. Set R = S/xS. Then there is a long exact sequence

· · · → Exti
R(M, (0 : x)N)→ Exti

S(M, N)→ Exti−1
R (M, N)→

→ Exti+1
R (M, (0 : x)N)→ Exti+1

S (M, N)→ Exti
R(M, N)→ · · · .
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Corollary 2 Let S be a ring and x an S-regular element, and set R = S/xS. For any
R-modules M and N , there is a long exact sequence

· · · → Exti
R(M, N)→ Exti

S(M, N)→ Exti−1
R (M, N)→

→ Exti+1
R (M, N)→ Exti+1

S (M, N)→ Exti
R(M, N)→ · · ·
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§ 2 The Frobenius Endomorphism

Introduction

In this section, we assume that the (Noetherian for simplicity) ring R has positive
characteristic p. In such a case we have the Frobenius endomorphism f : R → R
defined by r 7→ rp and its compositions fn : R→ R with fn(r) = rpn

.

Note that this is a ring map since for any r, s ∈ R, (r + s)p = rp + sp in positive
characteristic p, the other binomial coefficients being divisible by p.

If I is an ideal in R, the extension ideal fn(I) is denoted by I [pn]. If I = (a1, . . . , at),
then I [pn] = (apn

1 , . . . , apn

t ), the ideal generated by the pure powers of the generators
of I.

Observe that I [pn] ⊆ Ipn
. Usually Ipn

is much larger than I [pn]; however they are the
same up to radical.

Two Functors

Restriction of scalars along fn:

Let M be an R-module. We write fn
R and fn

M for the left R-module structure
defined on R and M , respectively, by restriction of scalars via fn, that is,

for r, s ∈ fn

R,m ∈ fn

M , one has r · s = rpn

s and r ·m = rpn

m

The functor M 7→ fn
M is exact since exactness is checked on the underlying

abelian group structure (as abelian groups, M and fn
M are the same, and homomor-

phisms are unchanged under the functor).
Extension of scalars (base change) along fn:

Let M be an R-module. The “Frobenius functor” (introduced by Peskine and
Szpiro) from the category of R-modules to itself is given by base change along f :

FR(M) = M ⊗R
fR

with an R-module structure via the usual multiplication on the righthand factor, that
is,

for r, s ∈ R,m ∈M, (m⊗ s)r = m⊗ rs but rm⊗ s = m⊗ rps.

Note: One can check that the compositions of the Frobenius functor are given by
base change along the compositions fn of f F n

R(M) ∼= M ⊗R
fn

R.
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Remark: To make the Frobenius functor easier to understand, one can write the

(iterated) Frobenius endomorphism as R
fn

→ S, where S = R, in order to distinguish
between the two domain and target rings R. As an R-module S = fn

R:

for r ∈ R, s ∈ S(= R), one has r · s = fn(r)s = rpn

s

Similarly we can think of fn
M as the R-module structure on the S-module M by

restriction of scalars. With this notation, it is now clearer that

F n
R(M) = M ⊗R S

with its natural S(=R)-module structure being via the usual multiplication on the
righthand factor.

To illustrate how this notation can help, we justify the note above in the case of

n = 2. Consider R = S = T with maps R
f→ S

f→ T . By the remark above, the
R-module structures on S and T are the same as those of fR and f2

R, respectively.
Thus

F 2
R(M) = FS(M ⊗R S) = (M ⊗R S)⊗S T ∼= M ⊗R T = M ⊗R

f2

R

Properties of the Frobenius Functor

We begin with a list of the basic properties of the Frobenius functor each followed
by a brief justification using the alternate notation introduced in the remark above,

namely R
fn

→ S, where S = R, for the nth iteration of the Frobenius endomorphism.

1) The functor F is right exact (since tensor product is right exact).

2) F n
R(R) = R ⊗R

fn
R ∼= R as R-modules. This is easier to see in the alternate

notation: F n
R(R) = R⊗R S ∼= S as S-modules.

3) F n
R(Rt) ∼= Rt. (This follows from (2) since the tensor product commutes with finite

direct sums).

4) F n
R(R/I) = R/I⊗R

fn
R ∼= R/fn(I)R = R/I [pn]R for an ideal I in R. To see this, we

compute in the alternate notation: As S-modules, F n
R(R/I) = R/I⊗R S ∼= S/fn(I)S.

5) Let r be an element of R. Consider the map R
r→ R given by multiplication by r.

Then F n
R(R

r→ R) = R
rpn

→ R, that is, multiplication by rpn
.

Indeed, again using the alternate notation, we see that

F n(R
·r→ R) = (R⊗R S

r⊗1−→ R⊗R S) = (S
fn(r)→ S)
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5′) As a consequence of (5) and (3), we can describe the effect of F n on a map between
finitely generated free modules, say given by and s× t matrix [rij] with rij ∈ R:

F n(Rt [rij ]−→ Rs) = Rt
[rpn

ij ]
−→ Rs

5′′) In particular, this gives an explicit description of F n(M): if

Rt [rij ]−→ Rs →M → 0

is a presentation of an R-module M , then applying F n yields a presentation

Rt
[rpn

ij ]
−→ Rs → F n(M)→ 0

of F n(M) since F n is right exact.
Note that this gives another proof of (4). For an ideal I = (r1, . . . , rt),

Rt [r1,...,rt]−→ R→ R/I → 0

is a presentation of R/I. So, a presentation of F n(R/I) is

Rt [rpn

1 ,...,rpn

t ]
−→ R→ F n(R/I)→ 0

5′′′) From (5) we see that if M is a finitely generated R-module, then so is F n(M).

6) For any prime p in SpecR,

F n
R(M)p

∼= F n
Rp

(Mp)

To see this, first note that

(fn)−1(p) = {r ∈ R : fn(r) = rpn ∈ p} = p

Hence, in the alternate notation, we have

F n
R(M)p = (M ⊗R S)p

∼= M ⊗R Sp
∼= M(fn)−1(p)⊗R(fn)−1(p)

Sp = Mp⊗Rp Sp = F n
Rp

(Mp)

7) Let M be a finitely generated R-module. If M is nonzero, then so is F n
R(M).

Indeed, using a prime filtration of M one can obtain a surjective map M −→→ R/p
for some prime ideal p. Since F n

R is right exact, we get a surjection F n
R(M) −→→

F n
R(R/p) ∼= R/p[pn] 6= 0 . Therefore, F n

R(M) is nonzero.

8) As an immediate consequence of (6) and (7), we see that SuppF nR(M) = SuppM
for a finitely generated R-module M .
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9) Even if M is finitely generated, the associated primes of F n(M) are not predictable
in general. On a related note, there are even examples of modules over local rings for
which the depth of F n(M) can be higher or lower than that of M itself.

However, if pdRM < ∞, then in fact AssRF n(M) = AssRM , as we will see later
(refer Cor. 3).

Left Derived Functors of F n: Since the functor F n is simply the tensor product
with fn

R, its left derived functors are given by the Tors: If P• is a projective resolution
of M over R, then

Hi(F
n(P•)) = Hi(P• ⊗R

fn

R) = TorR
i (M, fn

R)

This homology group inherits its R-module structure from the structure on Pi⊗R
fn

R
via multiplication on the righthand factor. The R-module TorR

i (M, fn
R) is finitely

generated if M is, localises well and satisfies Supp(TorR
i (M, fn

R)) ⊆ SuppM .

Roles of the Frobenius Endomorphism in Commutative Algebra

The Frobenius endomorphism plays two, initially somewhat intertwined, roles in
commutative algebra. Its central place in the investigation of problems in the field
was introduced and cemented by the fundamental papers of Kunz in 1969 and of
Peskine and Szpiro a few years later.

Its main role is as a tool for proving results in positive characteristic p, as the
Frobenius can be used to “twist” a given situation and until it provides the desired
conclusion or contradiction. This method was introduced by Peskine and Szpiro to
prove the Intersection Theorem in characteristic p. We will not discuss this aspect of
the Frobenius although it is behind the proof of many of the homological conjectures
that will be discussed in the second week. However, similar ideas come up in some of
the proofs below.

In the same paper Peskine and Szpiro introduced the method of reduction to
characteristic p to obtain their result for (many) rings of equicharacteristic zero from
their result in characteristic p. Hochster refined this technique to work for all such
rings; we give a brief discussion at the end of the section.

Another role that the Frobenius plays is in providing a test module: fn
R can be

used to detect certain properties of R or an R-module M in the same way that the
residue field k does. As the discussion of this aspect both involves the early history
mentioned above and provides some useful properties of the Frobenius endomorphism
and functor, we spend most of the section on this topic.

We begin with Kunz’s surprising and fundamental result. Kunz was initially
interested in obtaining new numerical invariants (from condition (3) below) other
than the usual multiplicity for studying resolution of singularities in characteristic
p, and indeed the study of Hilbert-Kunz multiplicities (which has close relations to
tight closure - see the talks by F. Enescu) grew from this. However, Kunz’s Theorem

10



produced an unexpected direction (via condition (2)) of research, which we discuss
further below.

Theorem 1 (Kunz) Let R be a local ring of characteristic p and dimension d. The
following are equivalent:
1. R is regular. (i.e., flatdimRk <∞).
2. fn is flat for some (all) n > 0. (i.e., flatdimR

fn
R = 0).

3. `(FR
n (k)) = pnd for some (all) n > 0.

Partial Proof of (1) ⇔ (2): For (1) ⇒ (2), we may assume that R is complete

since R ↪→ R̂ is faithfully flat. Then Cohen’s Structure Theorem implies that R ∼=
k[[X1, . . . , Xd]] (where k is a coefficient field of R).

We have

k[[X1, . . . , Xd]]
fn

//

∼=
��

k[[X1, . . . , Xd]]OO
free

kpn
[[Xpn

1 , . . . , Xpn

d ]] // k[[Xpn

1 , . . . , Xpn

d ]]

It is enough to show that the map A
def
= kpn

[[Xpn

1 , . . . , Xpn

d ]]→ B
def
= k[[Xpn

1 , . . . , Xpn

d ]]
is flat. One can use the local criterion for flatness to prove this: To prove that B
is flat over A, it is enough to show that TorA

i (kA, B) = 0 for all i > 0, which is a
straightforward computation using the Koszul complex to resolve kA over A.

For the proof (2) ⇒ (1) Kunz begins by proving that (2) implies the condition

(∗) `(F n(k)) = pne, where e = µ(m), the embedding dimension of R

using results of Lech. We assume this part and resume with the rest of the proof.
Since fn is flat, its compositions with itself are flat. Hence we may assume that fn

is flat for infinitely many values of n and so that condition (2), and hence condition
(∗), actually hold for infinitely many values of n. Furthermore, we may assume that
R is complete. Hence by Cohen’s Structure Theorem, R ∼= k[[X1, . . . , Xe]]/I for some

ideal I. Note that m = (X1, . . . , Xe) and so that m[pn] = (X
pn

1 , . . . , X
pn

e ).
Note that

F n(k) = R/m[pn] ∼= k[[X1, . . . , Xe]]/(I + m[pn])

So, (∗) yields
dimkk[[X1, . . . , Xe]]/(I + m[pn]) = pne

for infinitely many values of n. On the other hand, by counting an obvious basis, one
obtains

dimkk[[X1, . . . , Xe]]/m
[pn] = pne

as well. Since one is a quotient of the other and both have the same k-dimensions,

k[[X1, . . . , Xe]]/m
[pn] = k[[X1, . . . , Xe]]/(I + m[pn]),
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i.e., I ⊆ mpn
, for infinitely many values of n. Hence Krull Intersection Theorem forces

I to be zero. Thus R ∼= k[[X1, . . . , Xe]] and hence is regular. �

The translation in parentheses of condition (1) in Kunz’s Theorem is the celebrated
Auslander-Buchsbaum-Serre Theorem; it shows how the residue field k functions as
a test module for the regularity of R. The (immediate) translation in parentheses of
condition (2) in Kunz’s Theorem make it clear that the R-module fn

R performs the
same role.

With the next theorem, a generalization to modules, the parallel between k and
fn

R as test modules is continued since pdRM < ∞ if and only if TorR
i (M, k) = 0

for all i > 0. Note also that, applying the result to all R-modules M at once, one
retrieves Kunz’s Theorem.

Theorem 2 (Peskine-Szpiro; Herzog) Let R be a local ring of characteristic p.
For any finitely generated R-module M , the following are equivalent:
1. pdRM <∞.
2. TorR

i (M, fn
R) = 0 for all i > 0 and all (infinitely many) n > 0.

Peskine and Szpiro proved that (1) implies (2) to use as a major ingredient in their
proof of the Intersection theorem. The converse was proved by Herzog.

Corollary 3 Let R be a regular local ring. If M is an R-module with (minimal) free
resolution F•, then F n(F•) is a (minimal) free resolution of F n(M).

Remark: The corollary implies that if pdRM <∞,

pdRM = pdRF n(M)

Hence, in case R is local, the Auslander-Buchsbaum Formula yields further that

depthF n(M) = depthM

In particular, m ∈ AssR(F n(M)) ⇐⇒ m ∈ AssR(M). By localising and using the
previous argument, we see that if pdRM <∞,

AssR(F n(M)) = AssR(M)

Definition 1 If L• is a complex such that Hi(L•) = 0 for all i > 0, then we say that
L• is acyclic.

Note that a complex L• of projective modules is acyclic if and only if it is a resolution
of H0(L•).
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Sketch of Proof of (1)⇒ (2) in Theorem 2: Note that Hi(F
n(F•)) = TorR

i (M, fn
R).

Suppose that for some i > 0 TorR
i (M, fn

R) 6= 0. Choose a minimal prime p in
∪

i>0
Supp(TorR

i (M, fn
R)) (this set is not empty). Then for each i > 0 we have that

`(Tor
Rp

i (Mp,
fn

Rp)) = `((TorR
i (M, fn

R))p) <∞. So, replacing R by Rp and M by Mp,
we may assume that (R,m, k) is local and that `(TorR

i (M, fn
R)) < ∞ for each i > 0

and at least one is nonzero.
Let F• be a minimal free resolution of M over R of length s = pdRM . By

the Auslander-Buchsbaum formula, s ≤ depthR. So, the complex L• = F n(F•) =
F• ⊗ fn

R satisfies `(Hi(L•)) < ∞ for all i > 0 and has length less than depthR, but
is not acyclic. This contradicts the following result which is a special case of the
Acyclicity Lemma proved by Peskine and Szpiro which states:

Lemma 4 (A version of the Acyclicity Lemma) Let 0 → Ls → Ls−1 → · · · →
L0 → 0 be a complex of free finitely generated R-modules with s ≤ depthR. If
`(Hi(L•)) <∞ for all i > 0, then Hi(L•) = 0 for all i > 0.

In the more general version of the Acyclicity Lemma given by Peskine and Szpiro it is
enough to assume that the Li are finitely generated R-modules such that depthLi ≥ i
and for each i > 0 either depthHi(L•) = 0 or Hi(L•) = 0.

Before continuing with the Frobenius, we review some other acyclicity lemmas. The
most complete answer is given by the following result. We first set some notation.
Let

L• : 0 −→ Ls
∂s−→ Ls−1

∂s−1−→ · · · ∂1−→ L0 → 0

be a complex of finitely generated free R-modules. Set ri = Σs
j=i(−1)j−irankLj; this

is the expected rank of im(∂i) if L• were acyclic. Let Iri
(∂i) is the ideal of ri × ri

minors of the matrix of ∂i.

Theorem 5 (Buchsbaum-Eisenbud Acyclicity Criterion) With the notation above,
we have that

L• is acyclic ⇐⇒ depthIri (∂i)
R ≥ i for all i > 0

The following lemma is used in proving the acyclicity criterion, and will be used in
the example of reduction to characteristic p given at the end of this section.
A complex L• is said to be split acyclic if it is acyclic and (im∂i)p is a direct summand
of Li−1, that is, if the complex splits all the way along from the left except that the
last differential may not be surjective.

Lemma 6 With notation as before, for a prime ideal p in R,

(L•)p is split acyclic ⇐⇒ Iri
(∂i) 6⊆ p for all i > 0
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Reduction to Characteristic p

Since the Frobenius endomorphism is an effective tool for proving theorems in
positive characteristic, it becomes important to have a way of reducing results in
characteristic zero case to this case. The first such method in commutative algebra
was introduced by Peskine and Szpiro in [4]. They proved the Intersection Theorem,
Auslander’s Conjecture and Bass’s Conjecture in characteristic p and then used Artin
Approximation Theory to deduce these results for rings that are essentially finite
over fields of characteristic zero from the positive characteristic case. Hochster then
refined the technique to apply to all rings of equicharacteristic zero, and this is what
we present here.

The exposition in this section and the example below are directly from [1], but
are included here for completeness as they have shown to be an important method
for establishing the characteristic zero cases of many of the homological conjectures.

The key idea is to be able to describe the existence of a counterexample to a
statement one wishes to prove in terms of polynomial equations over the integers Z,
and then to apply the result below.

Definition 2 A subset E ⊆ Z[X, Y ] is called a system of equations over Z. We say
that E has a solution of height n in R if there exist x = x1, . . . , xn and y = y1, . . . , ym

in R such that
(i) p(x, y) = 0 for all p ∈ E, and
(ii) ht(x) = n.

Theorem 7 (Hochster) Let E be a system of equations over Z. If E has a solution
x = x1, . . . , xn and y = y1, . . . , ym of height n in a Noetherian ring R containing a
field, then

a) E has a solution x′, y′ of height n in an affine domain R′ containing a finite field and

b) E has a solution x′, y′ in a local ring R′ containing a field of positive characteristic
p such that x′ is a system of parameters for R′.

Note that (b) is obtained by localising (a) at a minimal prime over x′.
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Strategy:
1. Prove the result in characteristic p. (By (b) it suffices to prove it for local rings.)

2. Show that there is a family (Ei)i∈I of systems of equations over Z such that, for
any ring R, the statement holds for R if and only if none of the systems Ei has a
solution of the appropriate height in R. In other words, one wants that

There is a counterexample over R
m

One of the systems Ei has a solution of the appropriate height in R

3. The theorem then applies to give the result in equicharacteristic zero.

Hochster used this strategy to show that every Noetherian local ring R of equal
characteristic (i.e., containing a field) has a big Cohen-Macaulay module and used
that result to solve some homological conjectures.

An Example of Reduction to Characteristic p

We now give an example, taken from [1], of the reduction (Step 2 above), namely of
the reduction of the New Intersection Theorem to characteristic p. This theorem was
proved independently by Peskine and Szpiro and by Roberts in the equal characteristic
case. Later Roberts proved it in the mixed case as well.

Theorem 8 (The New Intersection Theorem) Consider a complex

F• : 0 −→ Fs
∂s−→ Fs−1

∂s−1−→ · · · ∂1−→ F0 → 0

of finitely generated free R-modules with the property that `(Hi(F•)) <∞ for each i.
If s < dimR, then F• is (split) exact.

First note that may assume that R is local. For the reduction to the positive charac-
teristic p case, we need to express the existence of a counterexample over a local ring
R as the existence of a solution x, y in R (where x is a system of parameters for R)
of one of a family of systems Ei of polynomial equations over Z.

With this intent, we note that a counterexample would consist of maps

F• : 0→ Fs

[y
(s)
ij ]
−→ Fs−1 −→ · · ·

[y(1)]ij−→ F0 → 0

of free R-modules with s < dimR that satisfy the following conditions:

a) To ensure that F• is a complex, one requires the products of consecutive differen-
tials to be zero:

[y
(k)
ij ][y

(k+1)
ij ] = 0 (1)
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Setting the entries in the product of the matrices equal to zero yields polynomial
equations in the variables y

(k)
ij .

b) Since a counterexample is not split exact, one may assume (splitting off F0 if
necessary and renumbering, and repeating as needed) that F0 does not split off at the
righthand end and so that H0(F•) 6= 0.

This is equivalent to requiring that im(∂1) ⊆ mF0, or equivalently that each

y
(1)
ij ∈ m. Since x is an s.o.p. for R, this is equivalent to requiring that for some t ∈ N

one has (y
(1)
ij )t ∈ (x) for all i and j, that is, that

(y
(1)
ij )t = Σkaijkxk for some aijk ∈ R. (2)

c) Next we seek equations that ensure that `(Hi(F•)) < ∞ for all i, in other words,
that (F•)p is exact (and thus split) for all p 6= m. We break this condition up into
the two conditions

(i) (F•)p is split acyclic for all p 6= m, and

(ii) Σ(−1)irankFi = 0

By Lemma 6, condition (i) holds if and only if Irk
([y

(k)
ij ]) 6⊆ p for all p 6= m, or

equivalently, Irk
([y

(k)
ij ]) is m-primary. Since x is an s.o.p. for R, this is equivalent to

requiring that for some u ∈ N one has (x)u ∈ Irk
([y

(k)
ij ]) for all k. This is equivalent

to writing each monomial mh = xi1h
1 · · ·xinh

n in the x’s of degree u as an R-linear

combination of the minors of [y
(k)
ij ], that is,

xi1h
1 · · ·xinh

n = Σlb
(k)
hl M

(k)
l (3)

where b
(k)
hl ∈ R and M

(k)
l are the rk × rk minors of [y

(k)
ij ].

Condition (ii), on the other hand, is simply a restriction on the ranks of the Fi

which determines F0, thus restricting the dimensions of the system Ei.

Conditions (1), (2), and (3) are polynomial conditions on x, yij, aijk and b
(k)
hl .

Thus they can be expressed as the existence of solutions to a system Ei of polynomial
equations over Z on variables X representing the x and variables Y representing the

yij, aijk and b
(k)
hl . The equations in Ei depend on t, u and rank Fi, i = 0, . . . , s.

So, Hochster’s Theorem of reduction to positive characteristic p applies to this
problem. Hence it is enough to solve it in the positive characteristic case.
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§ 3 Smoothness

Module of (Kähler) Differentials

Definition 1: Let A→ B be a homomorphism of rings. Consider the homomorphism
B ⊗A B

µ→ B given by b⊗ b′ 7→ bb′. Then

I
def
= ker(µ) = the ideal generated by b⊗ 1− 1⊗ b, b ∈ B

= the ideal of the diagonal ∆ in Y ×X Y

where Y = SpecB and X = SpecA. The module of (Kähler) differentials of B over
A is defined as

ΩB/A
def
= I/I2

In geometric terms, since I/I2 ∼= I ⊗R R/I where R = B ⊗A B and I is the ideal of
the diagonal, the sheaf on ∆ given by the module ΩB/A is the restriction of the ideal
sheaf of the diagonal back to the diagonal, that is, letting i : ∆→ Y ×X Y , we have

Ω̃B/A = i∗(Ĩ)

Remarks:
(a) ΩB/A is a B-module via the left factor.

(b) The map B
d→ ΩB/A defined by b 7→ b⊗1−1⊗b is a homomorphism of B-modules.

We shall use the symbol db to stand for b⊗ 1− 1⊗ b from now on.

(c) By definition, ΩB/A is generated by the set {db | b ∈ B}.

Example 1: ΩR[X1,...,Xn]/R is a free R[X1, . . . , Xn]-module with basis dX1, . . . , dXn.
Furthermore, one can show that, for any polynomial f ∈ R[X1, . . . , Xn], one has
d̄(f) = Σj

∂f
∂Xj

dXj.

The First Fundamental Sequence: Consider three rings A, B and C with homo-
morphisms A

u→ B
v→ C. There is an exact sequence

ΩB/A ⊗B C
ṽ→ ΩC/A

π→ ΩC/B → 0

of C-modules, where ṽ(db⊗ c) = cd(v(b)) and π(dc) = dc.
Moreover ṽ is injective and split if and only if every A-derivation B → T extends

to an A-derivation C → T for a C-module T .
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The Second Fundamental Sequence: Consider three rings A, B and C = B/J
with homomorphisms A→ B → C. There is an exact sequence

J/J2 d̄→ ΩB/A ⊗B C
ṽ→ ΩC/A → 0

of C-modules, where d̄(b̄) = db⊗ 1.
Moreover d̄ is injective and split if and only if the the map B/J2 −→→ B/J splits

as a map of A-algebras.

Note that since B/J ⊗B B/J
µ−→ B/J is an isomorphism, ker(µ) = 0 and so

ΩC/B = 0. Thus we see that the 2nd fundamental sequence is an extension to the left
of the 1st fundamental exact sequence in the case C = B/J .

Relation to the Geometers’ Definition: We apply the 2nd fundamental se-
quence in order to compute ΩS/R for any finitely generated R-algebra S. Write S
as S ∼= R[X1, . . . , Xn]/J for some ideal J . Let R[X] denote R[X1, . . . , Xn. The
second fundamental sequence gives

J/J2 d̄→ ΩR[X]/R ⊗R[X] S → ΩS/R → 0

Since ΩR[X]/R is a free R[X]-module with basis dX1, . . . , dXn (see Example 1), the
S-module ΩR[X]/R ⊗R[X] S is free with basis dX1 ⊗ 1, . . . , dXn ⊗ 1 which we denote
again by dX1, . . . , dXn. If J = (f1, . . . , fg), then together with Example 1 this yields

ΩS/R
∼=

⊕
SdXi

〈d̄(fi)〉
=

⊕
SdXi

〈Σj
∂fi

∂Xj
dXj〉

= coker(Sg
[ ∂fi

∂Xj
]

−→ Sn)

Smoothness

Note that the notion of smoothness considered here is equivalent to the notion of
0-smoothness in [2], that is, smoothness with respect to the discrete topology.

Definition 2: We say that a ring homomorphism R → S is formally smooth if for
every R-algebra T , with an ideal J ⊆ T , we have that

HomR−alg(S, T/J2)→ HomR−alg(S, T/J)

is surjective, that is, any diagram of the form

R //

��

S

��
T/J2 // T/J

18



has a lift S → T/J2. One can think of this as saying that any map to T/J can be
extended to an infintesimal neighborhood of J . If, furthermore, S is essentially finite
over R (i.e., S is a localisation of a finitely generated R-algebra), we say that S is
smooth over R.

Remark: Replacing T by T/J2, in order to verify that R → S is smooth (or for-
mally smooth), it is enough to check that for every R-algebra T with an ideal J such
that J2 = 0, the map HomR−alg(S, T )→ HomR−alg(S, T/J) is surjective. This is the
definition usually given in books.

Fact: If R→ S is (formally) smooth, then it is flat.

Smoothness and the Module of Differentials

Lemma 1 Consider R → T → S = T/J and suppose that R → T is formally
smooth. Then R → S is formally smooth if and only if T/J2 → T/J → 0 splits as
R-algebras.

Note the lemma simply says that, in the case that S is a quotient T/J of a smooth
R-algebra T , instead of checking all the diagrams in the definition of smoothness for
the map R→ S, it suffices to check that the one diagram

R //

��

S

T/J2 // T/J

has a lift S → T/J2 for that specific S-algebra T .

Claim: If S is a finitely generated R-algebra and R → S is smooth, then ΩS/R is a
projective S-module.

Proof: Indeed, we simply apply Lemma 1 to R → S = T/J , where T = R[X].
By Example 1, R → T is smooth. Hence Lemma 1 says that R → S is smooth if
and only if the map T/J2 → T/J → 0 splits as an R-algebra homomorphism. As
stated earlier, this is true if and only if the 2nd fundamental sequence 0 → J/J2 →
ΩT/R ⊗T S → ΩS/R → 0 of S-modules is split exact. In particular, since ΩT/R ⊗T S
is a free S-module, we see that R → S is smooth if and only if ΩS/R is a projective
S-module and the map d̄ : J/J2 ↪→ ΩT/R ⊗T S is injective. �

In fact, we will see below that when ΩS/R is projective (i.e., locally free) and of the
expected rank (i.e., there are not too many differential directions), then R → S is
smooth (in that case d̄ : J/J2 ↪→ ΩT/R ⊗T S is forced to be injective).
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Smoothness and Regularity

In the most standard sort of geometric situation, smoothness over a coefficient
ring is equivalent to regularity.

Proposition 2 Let k be a perfect field. Let S be a finitely generated k-algebra and Q
be a maximal ideal in S. The following are equivalent.
1. k → SQ is smooth.
2. SQ is a regular local ring.
3. (ΩS/R)Q is a free SQ-module of rank dimSQ.

However, in general the condition of smoothness is stronger than that of regularity.

Proposition 3 Let k be any field and S a finitely generated k-algebra. The following
are equivalent.
1. k → SQ is smooth.
2. For any field L ⊇ k, L⊗k S is regular (i.e., S is “geometrically regular”).

The following result gives a another case showing that smoothness over the appro-
priate “nice” ring is stronger than regularity. It is a corollary of the previous result
when R is a field.

Corollary 4 Let R is a regular local ring and S be a finitely generated R-algebra. If
S is smooth over R, then S is regular.

The following result provides the full interpretation of smoothness in terms of the
sheaf of differentials.

Proposition 5 Let S be a finitely generated R-algebra. Write S ∼= R[X]/J where
X denotes a finite set of variables X1, . . . , Xn. For a maximal ideal Q in S, define
h(Q) to be the minimal number of generators of the ideal JR[X]Q̃, where Q̃ is the
contraction of Q to R[X]. The following are equivalent.
1. R→ S is smooth
2. For all maximal ideals Q ⊆ S, (ΩS/R)Q is a free S-module of rank n− h(Q).

To illustrate these results (and especially the difference between regularity and
smoothness), we now give some examples.

Example 1: [S is regular, but even the structure map is not smooth.]

Let R = Z(p), S = (Z[X,Y ]/(p −XY ))(X,Y,p). Then dimS = 2. Let x and y denote
the images of X and Y respectively in S. Since p = xy, mS = (x, y). Hence S is
regular. (Note, in fact, that S is a ramified regular local ring since p ∈ m2.)
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On the other hand, we have

ΩS/R = coker([
∂f

∂X

∂f

∂Y
]T ) = coker([−Y −X]T )

Thus ΩS/R is the quotient of the free S-module on dx and dy by the submodule
(−ydx− xdy), and hence is not projective. In particular, R→ S is not smooth.

Example 2: [S is regular and contains a field k, but the inclusion is not
smooth. Thus the extra assumptions on k in Prop. 2 are necessary.]

Let k = FFp(X), S = FFp(X
1/p) ∼= k[T ]/(T p − X), and let k → S be the inclusion.

Now, S is regular since it is a field, but it is not smooth over k. To see this, we will
contradict condition (2) in Proposition 3. Take L = S. Then

L⊗k S = S ⊗k S ∼= S[U ]/(Up −X) = S[U ]/(Up − T p) = S[U ]/((U − T )p)

This ring is not regular since its localisation at (T, U) is not reduced.

Example 3: [Projectivity of ΩS/R is not enough for smoothness.]

Consider R = Z/2Z and S = Z/2Z[X]/(X2), and let R→ S be the obvious inclusion.
Note that ΩS/R is projective, but not of the correct rank:

rankΩS/R = 1 6= 0 = dimS

Indeed we also see that, by Proposition 2, since S is not regular, R→ S is not smooth.
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