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2 C-M modules, and the Vanishing Conjecture
on Maps of Tor

Throughout these lectures, all C-M modules are assumed to be maximal C-M
modules.

Definition. Let (R,m) be a local ring. An R-module, M , is a big C-M
module if mM 6= M and every s.o.p. is a regular M -sequence. M is a small
C-M module if it is finitely generated, as well.

Note that in the above definition, it is enough for one s.o.p. to be a regular
M -sequence, as this implies that every s.o.p is a regular M -sequence.

Conjecture 1 (Hochster). (∃ small C-M modules) If R is an excellent, local
ring, then R has a small C-M module.

It is the opinion of the lecturer that this conjecture is generally false, though
it has a chance of holding in char p > 0.

Example: If R is a complete local domain with dimension less than 3, then
the normalization of R is a small C-M module.

Theorem 1. [Hartshorne, Peskine-Szpiro, Hochster] Let R be a finitely gener-
ated N-graded domain where R0 = K, a perfect field of char p > 0, and Rp is
C-M for all prime p except for where p = m, the homogeneous maximal ideal.
Then R has a small, graded C-M module.

Proof. Regard R as a module over itself via the eth iteration of the Frobenius
map, F e : R→ eR (which is a module-finite map). For M , a finitely generated
R-module, the first non-vanishing Hi

m(M) occurs for i = depthm(M). Thus M
is a small C-M module if and only if H i

m(M) = 0, for all i < d := dim(R). Also,
we have that Hi

m(eM) = eHi
m(M). When M is such that Mp is C-M for all

p ∈ Spec(R) − {m}, local duality gives that H i
m(M) has finite length.

Now let n :=
∑
i<d l(H

i
m(R)). (Note that the above comment and our as-

sumption on R gives that n <∞.) For r, 0 ≤ r < pe, letMr :=
⊕

i≡r(mod pe)Ri.

Thus we have that eR ≃
⊕

0≤r<pe Mr. We may choose e so that there are more

Mr 6= 0 than n. Now
⊕

i<dH
i
m(eR) =

⊕
i<d

eHi
m(R) is a n-dimensional vector

space. Since also

⊕

i<d

Hi
m(eR) =

⊕

0≤r<pe

(
⊕

i<d

Hi
m(Mr)),

a dimension argument and the choice of e gives that
⊕

i<dH
i
m(Mr′) = 0 for

some Mr′ 6= 0. Thus Mr′ is a small C-M R-module.

From the above we get the following Corollary:

Corollary 2. If R is a 3-dimensional, graded domain with char p > 0, then R
has a small C-M module.
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We may consider the conjecture in another way. Let R be a complete local
domain, where A ⊆ R is a module-finite extension with A regular. Let M be
an R-module. We have that

M is a small C-M R-module ⇔ M is a small C-M A-module
⇔ depthA(M) = dim(A) = depthA(A)
⇔ pdA(M) = 0
⇔ M is A-free.

Hence a small C-M R-module exists if and only if R embeds into MN(A),
N >> 0, extending the natural embedding of A into MN (A) (as scalar diagonal
matrices).

Proposition 3. Conjecture 1 implies Serre’s M2 Conjecture (χ > 0).

Proof. Let R be regular, local and M , N be finitely generated R-modules with
dim(M) + dim(N) = dim(R) and l(M ⊗N) <∞. Given a filtration

0 →M1 →M →M2 → 0

for M , we have that χ(M,N) = χ(M1, N) + χ(M2, N). By filtering M and
N by prime cyclic modules, we get that χ(M,N) =

∑
i,j χ(R/pi, R/qj), where

pi, qj ∈ Spec(R). Thus it’s enough to prove that χ(R/p, R/q) > 0, for p, q ∈
Spec(R).

In assuming the validity of Conjecture 1, we have that R/p has a small C-M
module M ′ and R/q has a small C-M module N ′. M ′ will have a filtration with
r copies, say, of R/p (all other modules being of the form R/p′, p′ ) p) and N ′

will have a filtration with s copies of R/q. Then χ(M ′, N ′) = rs · χ(R/p, R/q),
as all other terms vanish. From Serre, we have that χ(M ′, N ′) = l(M ′⊗N ′) > 0,
which completes the proof.

The following is more obviously a consequence of Conjecture 1.

Conjecture 2. (∃ big C-M modules) If R is a local ring, then R has a big C-M
module. (Via a reduction, we can assume that R is a complete domain.)

Conjecture 2 has been proved in equal characteristic by Hochster in 1973.
(See [Hoc75] for a proof.)

Conjecture 3. (∃ weakly functorial big C-M algebras) Given a local map of
complete local domains R → S, there exists a commutative diagram:

B // C

R //

OO

S

OO

where B, C are quasi-local big C-M algebras and the maps are local.
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Conjecture 3 holds in equal characteristic (Hochster and Huneke [HH92])
and in mixed characteristic if dim(R), dim(S) ≤ 3. (Hochster [Hoc02], using
Heitmann [Hei02].)

Conjecture 4. (Vanishing Conjecture on Maps of Tor) For R → S → T , let
R be regular, S be module-finite over R, and T be regular. If M is an R-module
(not necessarily finitely generated), then TorRi (M,S) → TorRi (M,T ) is 0 for
i ≥ 1.

The validity of the Vanishing Conjecture on Maps of Tor would imply that:
i.) direct summands of regular rings are C-M, and
ii.) a regular ring is a direct summand of every module-finite extension.

Proposition 4. (∃ weakly functorial big C-M algebras) =⇒ (Vanishing Con-
jecture on Maps of Tor).

Before proceeding with the proof, we first need a lemma.

Lemma 5. Let R be a regular local ring. An R-module, B, is a big C-M module
if and only if B is faithfully flat over R.

Proof. (⇐=) Suppose B is faithfully flat. Let x1, . . . , xk be part of a system
of parameters. Thus x1, . . . , xk is a regular R-sequence, i.e. K.(x1, . . . , xk;R)
is acyclic. Since B is flat, K.(x1, . . . , xk;B) = K.(x1, . . . , xk;R) ⊗ B is acyclic.
Thus x1, . . . , xk is a regular B-sequence. By hypothesis, B/mB = R/m⊗RB 6=
0, thus B 6= mB.

(=⇒) We want to show that forM , a finitely generatedR-module, TorRi (M,B) =
0 for i ≥ 1. If i > dim(R), TorRi (M,B) = 0, since pdR(M) ≤ dim(R). Assume
that for some i ≥ 1, TorRi+1(M,B) = 0, for all finitely generated R-modules, M .
M has a prime cyclic filtration, so it is sufficient to consider the case M = R/p.
Choose a maximal regular R-sequence in p, x1, . . . , xk. We have a short exact
sequence:

0 → R/p → R/(x1, . . . , xk) → N → 0,

where N is the cokernel. Thus we have:

TorRi+1(N,B) → TorRi (R/p, B) → TorRi (R/(x1, . . . , xk), B).

By reverse induction, TorRi+1(N,B) = 0; and TorRi (R/(x1, . . . , xk), B) = 0, since

x1, . . . , xk is also a regular B-sequence. Hence TorRi (R/p, B) = 0. Finally, since
mB 6= B, B is a faithfully flat R-module.

We continue with the proof of Proposition 4.

Proof. (of Proposition 4) For R → S → T , let R be regular, S be module-finite
over R, T be regular, and let M be an R-module. Using easy reductions, we
may assume that M is finitely generated, R, T are complete and local, and S
is a local domain. By assumption, we get a commutative diagram:
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B // C

R

??��������
// S //

OO

T,

OO

where B and C are quasi-local big C-M algebras over S and T , respectively.
Note that we can regard B as a big C-M module over R, since an s.o.p. in R
is an s.o.p. in S. From the above lemma, B is faithfully flat over R and C is
faithfully flat over T . Consider the following commutative diagram:

TorRi (M,S) //

φ ’’OOOOOOOOOOO
TorRi (M,B) // TorRi (M,T )

TorRi (M,T ).

ψ

77ooooooooooo

Since B is faithfully flat over R, TorRi (M,B) = 0. Also, since C is faithfully flat
over T , the map ψ is injective. Hence φ is the zero map, which completes the
proof.

3 Direct summands of regular rings, the Direct

Summand Conjecture, and the Monomial Con-
jecture

Consider a field K having char 0. Let G := GL(t,K) and consider T :=
K[xij , yjk], where X = [xij ], Y = [yjk] are r × t, t × s matrices, respectively.
For α ∈ G, the assignments X 7→ Xα−1, Y 7→ αY give an action of G on T .

Let TG = K[Z], where Z = XY , but the entries of Z are not algebraically
independent. So TG = K[U ]/It+1(U), where U = [uik] is an r × s matrix.

Theorem 6. TG is a direct summand of T as a TG-module.

This example serves to motivate the next conjecture.

Conjecture 5. (Direct summands of regular rings are C-M) For R → T , if R
is a direct summand of T as an R-module and T is regular, then R is C-M.

This conjecture is open for mixed characteristic. As was mentioned in the
previous lecture, the conjecture is implied by the Vanishing Conjecture on Maps
of Tor.

Proposition 7. (Vanishing Conjecture on Maps of Tor) =⇒ (Direct summands
of regular rings are C-M).

Proof. Via an easy reduction, we may assume that R is local and complete.
Choose A ⊆ R, where R is module-finite over A, A regular. Choose an s.o.p.
x1, . . . , xd in A; let M := A/(x1, . . . , xd). The Vanishing Conjecture gives that
the maps TorAi (M,R) → TorAi (M,T ) are 0 for i ≥ 1. But T = R ⊕A ♥. Thus
TorAi (M,R) = 0, for i ≥ 1. So x1, . . . , xd is a regular R-sequence, hence R is
C-M.
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Conjecture 6. (Direct Summand Conjecture) For A ⊆ R, if R is module-finite
over A and A is regular, then A is a direct summand of R as an A-module.

Notes. i.) Kill a minimal prime, p, in R disjoint from A − {0}. Consider the
diagram:

A
ffl � f //
“ p

g !!B
BB

BB
BB

B R

››››
R/p

If g splits, so does f , hence we may assume that R is a domain.

ii.) If Q ⊆ A, then when you consider a diagram:

K ⊆ L

A

OO

⊆ S,

we have that L/K is a finite field extension, say [L : K] = h. So the map
1
hTrL/K : R → A is a splitting (values are in A when A is normal).

iii.) Notice that:

A
j
→֒ R splits ⇔ HomA(R,A) → HomA(A,A) is onto

⇔ ∃f : R → A such thatf ◦ j = idA.

iv.) Since for finitely generated modules, localization commutes with Hom,
and Hom commutes with ⊗M for M flat, we may assume that our rings are
complete regular local.

v.) If A →֒ R splits (R = A ⊕ ♥), then every ideal of A is contracted from R.
For I ⊆ A, IR = IA⊕ I♥, so I = (IA⊕ I♥) ∩ (A⊕ 0).

vi.) Given a sequence of m-primary irreducible ideals In, cofinal with powers
of m, A →֒ R splits if and only if InR ∩ A = In for all n. So if x1, . . . , xd is
an s.o.p. for A, it is sufficient to show that In := (xn1 , . . . , x

n
d ) is contractible

for all n. So in A, if x1, . . . , xd are generators of mA, the socle element in A/In
is represented by xn−1

1 · · ·xn−1
d . Hence In is contracted from R if and only if

xn−1
1 · · ·xn−1

d /∈ InR. This leads to the following conjecture.

Conjecture 7. (Monomial Conjecture) Let R be local. If x1, . . . , xd is an s.o.p.,
then xn−1

1 · · ·xn−1
d /∈ (xn1 , . . . , x

n
d )R for all n.

This conjecture is open in mixed characteristic where dim ≥ 4. The note
above gives that:

(Monomial Conjecture) =⇒ (Direct Summand Conjecture)
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Proposition 8. (Vanishing Conjecture on Maps of Tor) =⇒ (Direct Summand
Conjecture).

Proof. (Proceed by proving contrapositive.) Let A →֒ R be a module-finite
extension, where A is a complete regular local ring, and R is a complete local
domain. Let x1, . . . , xd be a minimal generating set of mA. Suppose there exist
ri ∈ R such that xn−1

1 · · ·xn−1
d −

∑d
i=1 rix

n
i = 0. Setting T := R/mR, we have

maps A →֒ R→ T . Let M := A/(xn1 , . . . , x
n
d , x

n−1
1 · · ·xn−1

d ). Now

TorA1 (M,R) =
{relations on xn1 , . . . , x

n
d , x

n−1
1 · · ·xn−1

d in R}

{relations on xn1 , . . . , x
n
d , x

n−1
1 · · ·xn−1

d in A}
.

From the above, (1,−r1, . . . ,−rd) represents a relation in R. So under the map
TorA1 (M,R) → TorA1 (M,T ), (1,−r1, . . . ,−rd) 7→ (1, 0, . . . , 0) 6= 0, hence the
map is non-zero.

Conjecture 8. (Strong Direct Summand Conjecture) For A ⊆ R, suppose R
is a module-finite domain over A, where A is regular local. Let x be a regular
parameter (x ∈ mA − m2

A) and q be a height 1 prime in R lying over xA. Then
xA is a direct summand of q as an A-module.

As one should expect, this implies the Direct Summand Conjecture. xA ⊂
xR ⊂ q gives that xA is a direct summand of xR, thus A is a direct summand
of R.

Conjecture 9. (Syzygy Conjecture) Suppose that R is regular and M is a
finitely generated R-module (or that R is C-M and pd(M) < ∞). If any kth

syzygy of M is not free, then it has rank ≥ k.

This is known in equal characteristic (Evans-Griffith [EG82]), and uses the
existence of big C-M modules. In fact, it is enough to know the Improved New
Intersection Theorem.

4 The Canonical Element Conjecture

1

Let (R,m, k) be local, dim(R) = d, and consider a free resolution of k:

· · · → Rbd → Rbd−1 → · · · → Rb0 → k → 0.

So this yields an exact sequence:

ε : 0 → syzd(k) → Rbd−1 → · · · → Rb0 → k → 0.

Using Yoneda’s definition of Ext, ExtiR(A,B) can be identified with the set of
equivalence classes of exact sequences,

0 → B →Mi−1 → · · · →M0 → A→ 0,

1All material in this Section may be found in the lecturer’s paper [Hoc83].
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joining B to A.
We have an element ε ∈ ExtdR(k, syzd(k)) representing the equivalence class

of the exact sequence above. Since

lim
→

t

ExtdR(R/m
t, syzd(k)) = Hd

m(syzd(k)),

ε 7→ η ∈ Hd
m(syzd(k)). η is called the canonical element in Hd

m(syzd(k)).

Conjecture 10. (Canonical Element Conjecture) η 6= 0.

Notes. i.) Theorem. If R has a big C-M module, then η 6= 0.

ii.) For a ring R such that R maps to a local ring R1 where s.o.p.’s map to
s.o.p.’s, if ηR1

6= 0 then ηR 6= 0.

iii.) We may assume that R is a complete normal local domain.

The Canonical Element Conjecture affords an alternative formulation. Con-
sider a resolution of k, F., and an s.o.p. x1, . . . , xd. We have a diagram:

· · · // Rbd+1 // Rbd // Rbd−1 // · · · // Rb0 // k // 0

0 // R

φ

OOffl
ffl

ffl

// Rd

OOffl
ffl

ffl

// · · · // R

OOffl
ffl

ffl

// R/(x1, . . . , xd)

OO

// 0
Since the top row is exact and free modules are projective, there exist maps

which makes the diagram commute. Notice that φ induces a map R→ syzd(k).
The element in syzd(k) that is the image of 1 is only determined modulo
(x1, . . . , xd)syzd(k), since we may shift up to homotopy. Hence we get a well-
defined element η1 ∈ syzd(k)/(x1, . . . , xd)syzd(k). Since xt1, . . . , x

t
d is also an

s.o.p., we can repeat the process to get an element ηt ∈ syzd(k)/(xt1, . . . , x
t
d)syzd(k).

We get a map

syzd(k)

(x1, . . . , xd)syzd(k)

xt−1

1
···xt−1

d−→
syzd(k)

(xt1, . . . , x
t
d)syzd(k)

,

where η1 7→ ηt. Taking direct limits, we have

lim
→

t

syzd(k)

(xt1, . . . , x
t
d)syzd(k)

= Hd
m(syzd(k)),

giving an element η ∈ Hd
m(syzd(k)). This η is the same element found previously.

Note. An equivalent conjecture is that the map φ is never zero for any choice
of complex maps or system of parameters.

Theorem 9. The Direct Summand Conjecture implies the Monomial Conjec-
ture.
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First, we may assume that we are in the domain case, so each xi is a nonze-
rodivisor. Hence, although the Koszul complex is a priori defined by the second
line in the following commutative diagram, we may as well define it by the first
line.

K.(x;R) ∼=
⊗

i

(
0 // xiR // R // 0

0 // R

xi ∼=

OO

xi // R // 0

)

Moreover, with this identification, xiR ⊗ xjR maps to xixjR, so the Koszul
complex is of the form

K.(x;R) = 0 → x1 · · ·xdR→
⊕

j

x1 · · · x̂j · · ·xdR → · · · →
⊕

j

Rxj → R → 0.

(1)
Now, let R+ be the biggest integral domain that is integral over R. This is
unique, up to non-unique isomorphism, and may alternately be defined as the
integral closure of R in an algebraic closure of the fraction field. For any positive

integer p, the sequence x1/p = x
1/p
1 , . . . , x

1/p
d exists in R[x

1/p
1 , . . . , x

1/p
d ] ⊆ R+,

so since R+ is an integral domain, we get from (1) the following inclusion of
K.(x;R+) as a subcomplex of K.(x

1/p;R+):

0 // x1 · · ·xdR
+

�

››

//
⊕

j x1 · · · x̂j · · ·xdR
+

�

››

// · · · //
⊕

j R
+xj
�

››

// R+
�

››

// 0

0 // (x1 · · ·xd)
1/pR+ // ⊕

j x
1/p
1 · · · x̂

1/p
j · · ·x

1/p
d R+ // · · · // ⊕

j R
+x

1/p
j

// R+ // 0

(2)
Now assume further that the residue field of R has positive prime characteristic
p. With the above diagram in mind, for x ∈ R+ write

(x∞) :=
⋃

n

x1/pn

R+.

Taking the union (really a direct limit) of containments of Koszul complexes as
in (2), we get the following flat, though no longer free, complex over R+:

Kd :=


0 → ((x1 · · ·xd)

∞) →
⊕

j

((x1 · · · x̂j · · ·xd)
∞) → · · · →

⊕

j

R+(x∞j ) → R+ → 0


 .

(3)
Note that none of this depends on x1, . . . , xd being a full system of param-

eters. Now we come to the following important

Lemma 10. If x1, . . . , xd is part of a system of parameters for R, then Kd is
acyclic in characteristic p, and also in mixed characteristic if x1 = p.
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Proof in mixed characteristic. We have Kd =
⊗

i (0 → (x∞i ) → R+ → 0) . We
proceed by induction on d, noting that the case d = 1 is obvious.

By induction, then, Kd−1 =
⊗d−1

i=1 (0 → (x∞i ) → R+ → 0) is acyclic, with
augmentation R+/(x∞1 , . . . , x

∞
d−1).

Tensoring with the complex 0 → (x∞d ) → R+ → 0, we get the double
complex

0

››
(x∞d ) ⊗Kd−1

››
Kd−1

››
0

whose total complex is Kd. Thus, the mapping cone construction provides a
short exact sequence of complexes

0 → Kd−1 → Kd →
(
(x∞d ) ⊗Kd−1

)
[−1] → 0

giving a long exact sequence in homology, a typical row of which looks like:

· · · → Hi(K
d−1) → Hi(K

d) → Hi−1((x
∞
d ) ⊗Kd−1) → · · ·

Since Kd−1 is acyclic and (x∞d ) is a flatR+-module, we always haveHi(K
d−1) =

0 for all i ≥ 1 and

Hi−1((x
∞
d ) ⊗Kd−1) ∼= (x∞d ) ⊗Hi−1(K

d−1) = 0.

for all i ≥ 2. Thus, when i ≥ 2, the long exact sequence above shows that
Hi(K

d) = 0, and when i = 1 we get the exact sequence

0 → H1(K
d) → (x∞d ) ⊗H0(K

d−1) → H0(K
d−1),

so to finish the proof of the lemma, it’s enough to show that the last map is
injective. That is, we want to show that

(x∞d ) ⊗
R+

(x∞1 , . . . , x
∞
d−1)

→
R+

(x∞1 , . . . , x
∞
d−1)

is injective. Since (x∞d ) is flat, what we need to show is:

(x∞d ) ∩ (x∞1 , . . . , x
∞
d−1) = (x∞d )(x∞1 , . . . , x

∞
d−1). (4)

So, let u ∈ (x∞d ) ∩ (x∞1 , . . . , x
∞
d−1). Recall that x1 = p. Then

u = s1p
1/q1 + s2x

1/q2
2 + s3x

1/q3
3 + · · · + sd−1x

1/qd−1

d−1 ,

11



where qj = pnj are powers of p. Then

(
u1/p − s

1/p
1 p1/pq1 − s

1/p
2 x

1/pq2
2 − · · · − sd−1x

1/pqd−1

d−1

)p

= (u − s1p
1/q1 − s2x

1/q2
2 − · · · − sd−1x

1/qd−1

d−1 ) + pv = pv

for some v ∈ R+. The reason is that when expanding out the p’th power of
a sum of monomials, whenever p is a prime, the resulting monomials in the
expanded sum are of two forms: the p’th powers of the original monomials, and
multiples of p. We have collected all the multiples of p into one term: pv.

Taking p’th roots in the displayed equation,

u1/p −

d−1∑

j=1

s
1/p
j x

1/pqj

j = p1/pv1/p,

so that

u1/p = p1/pv1/p + s
1/p
1 p1/pq1 +

d−1∑

j=2

s
1/p
j x

1/pqj

j

=
(
(p1/pq1 )q1−1v1/p + s

1/p
1

)
p1/pq1 +

d−1∑

j=2

s
1/p
j x

1/pqj

j

∈ (x∞1 , . . . , x
∞
d−1).

Since u1/p ∈ (x∞d ) and u1/p ∈ (x∞1 , . . . , x
∞
d−1), it follows that

u = u1/p(u1/p)p−1 ∈ (x∞d )(x∞1 , . . . , x
∞
d−1),

as was to be shown.

Theorem 11. The direct summand conjecture implies the canonical element
conjecture in residual characteristic p > 0.

Proof for complete mixed characteristic local domains (R,m,K). 2 Extend p to
a system of parameters x1 = p, x2, . . . , xd for R. Given a counterexample to the
CEC, there is some t such that the following diagram commutes:

0 // R

0

››

// Rd //

››

· · · //
R(d

2) //

››

Rd //

››

R //

››

R/(xt1, . . . , x
t
d)

//

››››

0

· · · // Rbd // Rbd−1 // · · · // Rb2 // Rb1 // R // K // 0,

where the top row is the Koszul complex on xt1, . . . , x
t
d, the bottom row is

the minimal free resolution of K over R, the rightmost vertical map is the

2Formally the same proof works in characteristic p.
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canonical surjection, and the other vertical maps are the liftings guaranteed
by homological algebra since (before the augmentation) the bottom complex is
acyclic and the top one is free.

On the other hand, letting K+ = R+/(x∞1 , . . . , x
∞
d ), we have an injection

K →֒ K+, which, since Kd from the Lemma is acyclic, induces a map of com-
plexes:

· · · // Rbd //

››

Rbd−1 //

››

· · · // Rb1 //

››

R //

››

K //
�

››

0

0 // (Kd)d // (Kd)d−1
// · · · // (Kd)1 // R+ // K+ // 0

from the resolution of K to this “funny” Koszul complex.
Composing the above two maps of complexes, we get a map of complexes

0 // R

0

››

ad // Rd //

››

· · · // Rd //

››

R //

››

R/(xt1, . . . , x
t
d)

//
�

››

0

0 // ((x1 · · ·xd)
∞) // (Kd)d−1

// · · · // (Kd)1 // R+ // K+ // 0

where ad =



xt1
...
xtd


 and the last vertical map is the canonical inclusion. However,

there is also the standard way to map the Koszul complex on xt1, . . . , x
t
d to the

“funny” one, as a subcomplex map:

0 // R�

xt
1···x

t
d

››

ad // Rd //
�

››

· · · // Rd //
�

››

R //
�

››

R/(xt1, . . . , x
t
d)

//
�

››

0

0 // ((x1 · · ·xd)
∞) // (Kd)d−1

// · · · // (Kd)1 // R+ // K+ // 0

Since the map from K to K+ is the same in both of the above commutative dia-
grams, the maps of complexes must be homotopic. In particular, the difference
of the first vertical maps must factor through ad, which implies that

xt1 · · ·x
t
d ∈ (xt1, . . . , x

t
d)(x1 · · ·xd)

1/q

in R+ for some large power q of p.
Note that this all happens in a module-finite extension S of R. Letting

yj = x
1/q
j , we have xj = yqj , and so

yqt1 · · · yqtd ∈ (yqt+1
1 , . . . , yqt+1

d ).

Moreover, y1, . . . , yd live in a regular subring V [[y2, . . . , yd]] of S, where mV =
(p1/q)V . This contradicts the direct summand conjecture for the regular subring
V [[y2, . . . , yd]] of S.

13



Remarks:

• Thus, we have:




Direct summand conjecture for
regular local rings of the form

V [[y2, . . . , yd]],mV = (p1/q)


 ⇒ CEC ⇒ Monomial conj. ⇒

Direct summand
conjecture.

• One can use this to show that the direct summand conjecture is equivalent
to the assertion that Hd

m(A+) 6= 0 for rings of the form A = V [[y2, . . . , yd]],
mV = (p1/q).

• In fact the DSC follows if it is true for V [[y2, . . . , yd]], where mV = (p).

• Note that for R a complete local domain of positive residual characteristic,
mR+ = (x∞1 , . . . , x

∞
d ). Hence, R+/mR+ has a finite flat resolution over

R+.

• The argument in Theorem 11 may be used to show that the existence
of a big Cohen-Macualay module implies the direct summand conjecture.
To see this, let B be a big Cohen-Macaulay R-module. In the proof of
Theorem 11, replace t with 1 and replace the “funny Koszul complex”
from Lemma 10 with the actual Koszul complex K.(x;B). Then let u ∈
B \ mRB, and arrange it so that (x1, . . . , xd)u = 0. The same homotopy
argument as before puts u ∈ (x1, . . . , xd)B ⊆ mRB, giving the required
contradiction.

5 Weak functoriality of big Cohen-Macaulay al-

gebras

If R → S is a map of Noetherian local domains, then there is a map from R+

to S+ making the following diagram commute:

R+ //___ S+

R
?

OO

// S
?

OO

That is, ( )+ is “weakly functorial” on Noetherian local domains. Here’s the
reason:

First note that any map R → S factors into an injection and a surjection,
so it suffices to fill in diagrams of the form

R+ //___ R+
1

//___ S+

R
?

OO

// // R1

?

OO

ffl // S
?

OO

14



Filling in R+
1 → S+ works, since any algebraic closure of the fraction field of

S will contain an algebraic closure of the fraction field of R1, and the restriction
of this inclusion to R+

1 certainly lands in S+.
As for R “ R1 = R/Q, Q ∈ SpecR, since R+ is integral over R, there is

a prime Q+ of R+ lying over Q, so that R/Q injects into R+/Q+. Moreover,
every prime splits over R+, so R+/Q+ ∼= (R/Q)+ ∼= R+

1 .
Since R+ is a big Cohen-Macaulay algebra in characteristic p, we immedi-

ately get weak functoriality of big Cohen-Macaulay algebras in characteristic p.
Then by “reduction to characteristic p” (11 pages!), weak functoriality of big
Cohen-Macaulay algebras in equal characteristic zero follows as well.

6 Uniform annihilation of (co)homology: “colon-
killers”

[HH93] Suppose R is pure of dimension d, local, xcellent, and Rc is Cohen-
Macaulay for some element c ∈ R. Then one can show that c has a power
cN that kills all higher Koszul homology Hi(x1, . . . , xk;R), i ≥ 1, whenever
x1, . . . , xk is part of any system of parameters for R. In consequence, cN kills
the quotient

(x1, . . . , xk) : xk+1

(x1, . . . , xk)

whenever x1, . . . , xk+1 is part of a system of parameters.
Since the N is independent of the system of parameters chosen, it works

just as well for xt1, . . . , x
t
k+1 for any t, so in fact cN kills Hi

(x1,...,xk) for all
i < d = dimR. The ideal generated by these “good” c’s has height ≥ 2.

Now, let R be a complete local domain. By Cohen structure theorems, it is
module-finite and torsion free over a regular local domain A. Letting h be the
torsion-free rank of R over A, we can pick an inclusion A⊕h ⊆ R. Then R/A⊕h

is an A-torsion module, so we can pick c ∈ A \ {0} such that cR ⊆ A⊕h. Then
c is a colon-killer for all systems of parameters for R in A.

Proof. Let x1, . . . , xd be a system of parameters for R in A and k < d. Suppose
xk+1u ∈ (x1, . . . , xk)R. We want to show that cu ∈ (x1, . . . , xk)R. We have
cu ∈ A⊕h and

xk+1(cu) ∈ (x1, . . . , xk)(cR) ⊆ (x1, . . . , xk)A
⊕h.

But the x’es are a regular sequence on A, so

cu ∈ (x1, . . . , xk)A
⊕h ⊆ (x1, . . . , xk)R.

Suppose A is a complete regular local ring. Then the direct summand con-
jecture for A is equivalent to the existence of a nonzero A-linear map A+ → A.
This is because HomA(A+, A) is Matlis-dual to Hd

m(A+).
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7 Superheight

(Reference: [Hoc81])
For a proper ideal I ⊂ R, we define the superheight of I to be

superheight I := sup{ht IS | S Noetherian , IS 6= S}.

For example, let R = k[X,Y, U, V ]/(XY −UV ) = k[x, y, u, v], letting lower-
case letters denote the image of the upper-case variables in R, and set p =
(x, u). Then the height of p is 1, since dimR = 3 and R/p ∼= k[Y, V ], so
dimR/p = 2. However, letting S = R/(y, v) ∼= k[X,U ], we have ht(pS) = 2, so
superheight p ≥ 2. On the other hand, Krull’s Principal ideal theorem can be
restated as follows: superheight (X1, . . . , Xn) = n in Z[X1, . . . , Xn]. Thus, in
our case, this shows that superheight p ≤ 2, so that superheight p = 2.

In terms of superheight, Serre’s theorem implies that in a regular ring R,
superheightP = htP for all P ∈ SpecR.

We can also state the Monomial Conjecture in terms of superheight. Namely,
let

R =
Z[X1, . . . , Xd, Y1, . . . , Yd]

(Xt
1X

t
2 · · ·X

t
d −

∑
j YjX

t+1
j )

and let P = (x1, . . . , xd) ⊆ R. Then the Monomial Conjecture states that the
superheight of P is always d− 1.

To see this, note first that the height of P inR is d−1, and P has d generators,
so the superheight must be either d−1 or d. Now, suppose that the superheight
is d. Then localize at a minimal prime over P which has height d, and the x’es
become a system of parameters which violate the monomial conjecture. On the
other hand, any counterexample to the monomial conjecture occurs as an image
of such an R and P , and the height of the image of P in the counterexample
ring is d, so the superheight of P in R must be d.

Similarly, many of the homological conjectures can be stated in terms of
superheight.

8 The vanishing conjecture for maps of Tor is

equivalent to Nandini Ranganathan’s “Strong
Direct Summand Conjecture”

Setup: Let
A ⊆ R → T

be maps of Noetherian rings such that R is module-finite and torsion-free overA,
where A is a regular local ring, and let M be a finitely generated A-module. The
Vanishing Conjecture for Maps of Tor would say that the map TorAi (M,R) →
TorAi (M,T ) is zero.

First reduction: Replace M by syz1M repeatedly, so that we may assume
that i = 1.
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Second reduction: There is a presentation of M as the quotient of a free
A-module:

M =
Au1 + · · · +Aus

Span {
∑s
j=1 aijuj | i = 1, . . . , h}

By replacing A by A[u] = A[u1, . . . , us], R by R[u], T by T [u], and M by
A[u]/({

∑
j aijuj}) = SymAM , we may assume that M is a cyclic A-module

A/I.
Third reduction: After localizing, completing, and killing a minimal prime

of R, we may assume that all three rings are complete and local and that R is
an integral domain.

Fourth reduction: We need the following theorem

Theorem 12. [AFH94] If A→ T is a local homomorphism of complete Noethe-
rian local rings, and A is regular, then there is a complete regular local ring A′

and a factorization

A′

    @
@@

@@
@@

A

>>~~~~~~~
// T

where the maps are local homomorphisms and A′ is faithfully flat over A.

Replacing A and R by A′ and R⊗AA
′ respectively, we may assume that the

map from A to T is a surjection, with kernel a prime ideal P . Note also that
P must be generated by part of a system of parameters; say P = (y1, . . . , yh),
where the y’s are part of a s.o.p. and h = htP .

We will also need the following fact about regular local rings, which holds
since ⊗AE preserves injectivity, where E is the injective hull of the residue field
of A: If Aw →֒ W is a ring map, then Aw splits from W if and only if for all
ideals I ⊆ A, IW ∩Aw = Iw.

Let Q = ker(R “ T ). Then P = Q∩A and R = A+Q, so that T = R/Q =
A/P . Consider the map

TorA1 (A/I,R) → TorA1 (A/I, T ).

A typical relation is of the form

i1(a1 + q1) + · · · + ik(ak + qk) = 0,

where aj ∈ A, qj ∈ Q, and ij ∈ I. In particular,

∑
iνaν = −

∑
iνqν .

Thus, elements of TorA1 (A/I,R) come from elements of I ∩ IQ.3 This says that
the relation (a1, . . . , ak) in A/P on i1, . . . , ik comes from a relation over A. This
says (Exercise) that

I ∩ IQ = IP

3Contrary to appearances, IQ * I.
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for all ideals I ⊆ A.
Fifth reduction:4 ReplaceA by the extended rees ring of P : A[y1t, . . . , yht, v],

where v = 1/t, replace R by R′ = R[Pt, v], Q by a prime ideal Q′ ⊆ R′ con-
taining v and lying over Q, and replace P by vA′. Then localize and complete
again, so that we may assume that T = A/xA, P = xA, Q ⊆ R lies over xA,
and R = A+Q.

What we need to show is that IQ ∩ I = xI for all ideals I ⊆ A. Moreover,
since both the conjectures at hand imply the Direct Summand Conjecture, we
may assume the Direct Summand Conjecture. Hence, we may assume that
IR ∩A = I for all ideals I ⊆ A.
Claim: IQ ∩ I = IQ ∩ P for all ideals I ⊆ A.

Then the Vanishing Conjecture for Maps of Tor holds ⇔ IQ ∩Ax = xI for
all I ⇔ Ax splits from Q as A-modules.

This last condition is the Strong Direct Summand Conjecture, so we’re done.

9 Tight closure in characteristic p > 0

Let G = R⊕h be a free R-module, where R is a ring of characteristic p > 0. For
(r1, . . . , rh) ∈ G and q = pe, set

(r1, . . . , rh)
q := (rq1 , . . . , r

q
h) ∈ G.

For a submodule N ⊆ G,

N [q] := R − span of {nq | n ∈ N}.

If R is a domain, we write u ∈ N∗
G if there is some 0 6= c ∈ R such that cuq ∈ N [q]

for all powers q > 0 of p (equivalently, for all powers q ≫ 0 of p).

Now, for a finitely generated R-module M , there is a surjection G
φ

“ M
where G is a finitely generated free R-module. For a submodule N0 ⊆ M , let
N = φ−1(N0) ⊆ G. For u ∈ M , pick u′ ∈ G such that φ(u′) = u. We say that
u ∈ (N0)

∗
M (the tight closure of N0 as a submodule of M) if u′ ∈ N∗

G. This looks
as if it depends on choices of G, φ, and u′, but in fact it doesn’t.

Recall that a ring is called weakly F -regular if every ideal is tightly closed.
It’s equivalent to say that for every finitely generated R-module M , every sub-
module of M is tightly closed. R is F -regular if Rp is weakly F -regular for all
p ∈ SpecR.

For example, all rings of the form k[{Xij}]/It(Xij), where k is a prime
characteristic field and {Xij} is a matrix of indeterminates, are F -regular.

Recall the

Theorem 13 (Tight closure Briançon-Skoda theorem). For any equichar-
acteristic Noetherian ring R,

(f1, . . . , fn)n ⊆ (f1, . . . , fn)
∗

whenever f1, . . . , fn ∈ R, where the bar notation stands for integral closure.

4From the geometers, we learn: “When in doubt, blow up.”
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The following theorem was proved by Ein, Lazarsfeld and Smith in equal
characteristic 0, and then by Hochster and Huneke (using tight closure methods)
in characteristic p > 0. It is open in mixed characteristic.

Theorem 14. If R is an equicharacteristic local ring and P is a prime ideal of
finite projective dimension, then

P (hn) ⊆ Pn,

where h = htP .

More relevant to the homological conjectures, we have:

Theorem 15 (Phantom acyclicity criterion). Let R be a Noetherian do-
main of characteristic p > 0, and let

G. : 0 → Rbd
αd→ · · ·

α1→ Rb0 → 0

be a complex of finitely generated free R-modules. Set ri = rankαi for 1 ≤ i ≤ d
and rd+1 = 0.

Suppose that bi = ri+1 + ri and ht Iri
(αi) ≥ i, i = 1, . . . , d. Then G. has

phantom homology at the i’th spot, i.e.

kerαi ⊆ (imαi+1)
∗
Rbi

,

for i = 1, . . . , d.

Proof of Vanishing Conjecture for Maps of Tor, in characteristic p > 0. Let A ⊆
R→ T and the A-module M be as in the standard setup for the Vanishing Con-
jecture, and as above we may assume that the rings are complete and local and
R is a domain. Let

F. : 0 → Abd → · · · → Ab1 → Ab0 → 0

be a minimal A-free resolution of M . The ranks and heights stay the same in
F. ⊗A R, since R is module-finite and torsion free over A, so we have phantom
homology: cycles ⊆ (boundaries)∗.

When we tensor with T , the phantom homology from F. ⊗A R will van-
ish, since every finitely generated T -submodule is tightly closed in its ambient
module. Thus,

TorAi (M,R) = Hi(F. ⊗A R)
0
→ Hi(F. ⊗A T ) = TorAi (M,T ).

Actually, all we need for this proof to work is:

• proj.dim.M <∞,

• T is weakly F -regular, and

• The map A→ R “preserves heights.”
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