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Throughout (R,P ) is an excellent local domain and R+ is the integral closure of R in an
algebraic closure K of the quotient field of R. If x1, . . . , xn ∈ R generate an ideal of height
n, then x1, . . . , xn is called a set of parameters in R. As usual, the set is called a complete
system of parameters if n is the dimension of R.

Definition. An extended valuation v on (R,P ) is a rank one valuation on the quotient
field of R+/Q for some prime ideal Q of R+ satisfying v(x) > 0 for all x ∈ P .

Definition. Let (R,P ) → (S, Q) be a local homomorphism of complete local domains. We
may extend this map to an R-algebra homomorphism θ from R+ to S+ by mapping the
roots of a monic polynomial over R to the roots of the image polynomial over S. The choice
of θ is not unique but we fix a choice once and for all. Now let v be any extended valuation
on (S, Q). By restriction, v induces an extended valuation on (R,P ). We will call both
extended valuations v and say v is a compatible valuation on R and S.

In the quest for a mixed characteristic analog of tight closure, the precise definition for
the closure seems unclear. We would like theorems which assert that if our closure has
the colon-capturing property, other good results follow. To circumvent the vagueness, it
seems beneficial to define a comparatively large closure operation - one that will have the
colon-capturing property if other reasonable choices do. If we can show that demonstrating
the colon-capturing property for this larger closure implies the desired results, we can also
obtain the results for smaller closures.

Definition. Let I be an ideal in R, x ∈ R and let v be an extended valuation on R. Then
x is in the v-augmented closure of I (denoted Iv) provided that, for every ε > 0, t ∈ Z+,
there exists d ∈ R+ with v(d) < ε such that dx ∈ (I, P t)R+.

Definition. We say that the v-augmented closure satisfies the colon-capturing property for
R provided that if S is a finite integral extension of R, x1, . . . , xk+1 is a set of parameters
in S, and u ∈ ((x1, . . . , xk) :S xk+1), then u ∈ ((x1, . . . , xk)S)v

The basic goal of this section is to show that the colon-capturing property implies the ex-
istence of weakly functorial Cohen-Macaulay algebras. In [Ho], Hochster demonstrated the
existence of weakly functorial Cohen-Macaulay algebras for mixed characteristic domains
of dimension at most three. Since the colon-capturing property is not known at this time
for any of the potential closures for higher dimensions, we cannot improve upon Hochster’s
result at this time. However, should colon-capturing be demonstrated, our results here will
allow us to get weakly functorial Cohen-Macaulay algebras more generally. The methods
are heavily based on Hochster’s original proof.

We must first discuss the notion of partial algebra modifications developed by Hochster
and used in [Ho]. We must revamp the notation in order to get our proofs to work, but the
underlying concept remains the same. Let X1, . . . , Xk be indeterminates and let R[X] =
R[X1, . . . , Xk]. By R[X]≤N , we mean the R-submodule of R[X] spanned by all monomials
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of total degree at most N . We will refer to R[X]≤N as a partial algebra over R. Likewise,
any finite tensor product of such objects will be called a partial algebra. So if T is a partial
algebra over R, so is T [X]≤N = T ⊗R R[X]≤N . Thus a partial algebra is a submodule of
a polynomial ring over R defined by some perhaps complicated bound on the degrees of
the monomials which appear. Of course, to any partial algebra over R, there is naturally
associated a polynomial ring over R.

Definition. Let T be a partial algebra over R, A the associated polynomial ring, and
F1, . . . , Fn ∈ T . Then

∑n
i=1 FiT is called a pseudo-ideal of (A, T ).

It should be noted that a pseudo-ideal is just an R-submodule of A. While the definition
depends upon T and the multiplicative structure of A, a pseudoideal will typically not be
a subset of T and will not have a multiplicative structure.

Definition. If T is a partial algebra over R, A the associated polynomial ring, and J a
pseudo-ideal of (A, T ), then (A, T, J) is called an algebra triple over R.

Next we recall the definition of an algebra modification. Let A be an R-algebra. Assume
x1, . . . , xk+1 is a set of parameters in R with k ≥ 0 and suppose u ∈ ((x1, . . . , xk)A :A xk+1).
Letting F = u −

∑k
i=1 xiXi, A′ = A[X1, . . . , Xk]/(FA[X1, . . . , Xk]) is called an algebra

modification of M .

Definition. Let (A, T, J) be an algebra triple over R and let M = T/(J ∩ T ). Assume
x1, . . . , xk+1 is a set of parameters in R with k ≥ 0 and suppose u ∈ T with its image
ū ∈ ((x1, . . . , xk)M :M xk+1). Let A′ = A[X1, . . . , Xk], F = u −

∑k
i=1 xiXi, N be a fixed

positive integer, T ′ = T [X1, . . . , Xk]≤N , and J ′ = J [X1, . . . , Xk]≤N +FT ′. Then (A′, T ′, J ′)
is called an algebra triple modification of (A, T, J).

Of course, (A′, T ′, J ′) is an algebra triple. We note that in this setting, A′/J ′A′ is an
algebra modification of A/JA. With our notation, we keep track of more information and
this enables us to take advantage of both the algebra modification and the finiteness of
T/(J ∩ T ).

Definition. Let (A, T, J) be an algebra triple over R. Let v be an extended valuation
of R. We say (A, T, J) is v-good if for every ε > 0, t ∈ Z+, we can find d ∈ R+ with
v(d) < ε and an R-algebra homomorphism φ : A → R+[d−1] such that φ(T ) ⊂ d−1R+ and
φ(J) ⊂ d−1P tR+

Lemma 0.1. If the v-augmented closure satisfies the colon-capturing property for R, (A, T, J)
is v-good, and (A′, T ′, J ′) is an algebra triple modification of (A, T, J), then (A′, T ′, J ′) is
v-good.

Proof. We continue with the same notation with u,F , as above. Thus we have a relation
xk+1u =

∑k
i=1 xiui + w with each ui ∈ T and w ∈ J ∩ T . Now choose, if necessary

xk+2, . . . , xn ∈ P so that x1, . . . , xn is a complete system of parameters.
Fix ε > 0, t ∈ Z+. Choose s sufficiently large so that P s ⊆ (xt+1

1 , . . . , xt+1
n )R+. Let

ε1 = ε/2(N + 2). Since (A, T, J) is v-good, we can find d1 ∈ R+ with v(d1) < ε1 and
a suitable φ1 : A → R+[d−1

1 ] such that φ1(T ) ⊂ d−1
1 R+ and φ1(J) ⊂ d−1

1 P sR+. Since
φ1(w) ∈ d−1

1 P sR+, we get xk+1φ1(u) = x1φ1(u1)+ · · ·+xkφ1(uk)+xt+1
1 r1 + · · ·+xt+1

n rn in
d−1

1 R+. Multiplying through by d1, we get xk+1d1φ1(u) ∈ (x1, . . . , xk, x
t+1
k+1, . . . , x

t+1
n )R+.

Hence, for some b ∈ R+, xk+1(d1φ1(u) − bxt
k+1) ∈ (x1, . . . , xk, x

t+1
k+2, . . . , x

t+1
n )R+. By the



WEAKLY FUNCTORIAL STUFF 3

colon-capturing property, there exists d2 ∈ R+ with v(d2) < ε1 such that d2(d1φ1(u) −
bxt

k+1) ∈ (x1, . . . , xk, x
t+1
k+2, . . . , x

t+1
n , xt

k+1)R
+. Hence there exists b1, . . . , bk ∈ R+ such that

d2d1φ1(u)−
∑k

i=1 xibi ∈ (xt
1, . . . , x

t
n)R+ ⊆ P tR+. We set d3 = d1d2 and d = dN+2

3 ; clearly
v(d) < ε. Now we complete the diagram

R+[d−1
1 ] → R+[d−1]

φ1

x φ
x

A ⊂ A′

commutatively by taking φ(yXf1
1 · · ·Xfk

k ) = φ1(y)(d−1
3 b1)f1 · · · (d−1

3 bk)fk for any y ∈ A. It
is easy to check that φ has all the desired properties. Certainly φ(T ′) ⊂ d−1

1 d−n
3 R+ ⊂

d−1R+. Also φ(J [X1, . . . , Xk]≤N ) ⊂ d−n
3 φ1(J) ⊂ d−n−1

3 P tR+, while φ(F ) ∈ d−1
3 P tR+ and

so φ(FT ′) ⊂ d−1P tR+; hence φ(J ′) ⊂ d−1P tR+ as desired. �

Lemma 0.2. Let θ : (R,P ) → (S, Q) be a local map of local rings and let v be a compatible
valuation on R and S. Suppose (A, T, J) is an algebra triple over R which is v-good. Then
(A⊗ S, T ⊗ S, J ⊗ S) is v-good as an algebra triple over S.

Proof. It is clear that (A ⊗ S, T ⊗ S, J ⊗ S) is an algebra triple over S. Let θ : R+ → S+

be the extension of θ implicit in the definition of v. For any ε > 0, t ∈ Z+, we find
the appropriate map φ1 : A → R+[d−1]. Composing with the map which θ induces on
R+[d−1], we get a homomorphism φ : A → S+[(θ(d))−1]. Clearly φ(T ) ⊂ (θ(d))−1S+ and
φ(J) ⊂ (θ(d))−1P tS+. Since S+[(θ(d))−1], (θ(d))−1S+, and (θ(d))−1P tS+ are S-modules
and v(θ(d)) = v(d), φ induces an S-module homomorphism on A ⊗ S which has all the
desired properties. �

Theorem 0.3. Let R → S be a local homomorphism of complete local domains. Let v be
a compatible valuation on R and S. Further suppose the v-augmented closure satisfies the
colon-capturing property for R and S. Then there is a commutative diagram:

B → Cx x
R → S

where B is a balanced big Cohen-Macaulay algebra over R and C is a balanced big Cohen-
Macaulay algebra over S.

Proof. The basic idea of the proof is the same as that used in [HH9] and [Ho] and the basic
pattern dates back to the original proof of big Cohen-Macaulay modules in the equichar-
acteristic case. Suppose A is an R-algebra, x1, . . . , xn is a system of parameters in R, and
I = (x, . . . , xk)A. If xk+1u ∈ I but u /∈ I, we have a very specific obstruction to A being
Cohen-Macaulay. This obstruction can be removed by forming an algebra modification of
A. Take A′ = A[X1, . . . , Xk]/(u −

∑k
i=1 xiXi). Intuitively, one may simply construct a

long chain of algebra modifications starting from R to obtain an R-algebra in which all
of the obstructions are gone and so every system of parameters forms a regular sequence.
The limit B will be a balanced big Cohen-Macaulay algebra over R unless PB = B where
P is the maximal ideal of R. Thus, proving the existence of B comes down to showing
1 /∈ PB. Now if the identity is in PB, the offending equation involves only finitely many
elements from B and so occurs as the result of one specific modification and so the limit
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process does not really play a role. More formally, in [HH9], B is constructed as the direct
limit of finitely generated algebras constructed from finite sequences of modifications and
it is seen that if 1 ∈ PB, we actually have 1 ∈ PA where A is formed from R via a finite
sequence of algebra modifications. Likewise, C is constructed as a direct limit using algebra
modifications of B ⊗R S. Again following [HH9], the theorem is valid unless there exists a
sequence of modifications R = T0, T1, . . . , Tr, U0 = Tr ⊗R S, U1, . . . , Us with 1 ∈ QUs for Q
the maximal ideal of S where each Ti+1 (resp. Ui+1) is an algebra modification of Ti (resp.
Ui). So we simply must show such a sequence is impossible.

Assume we have such a bad double sequence of algebra modifications. Ultimately, Us is
constructed as a homomorphic image of a polynomial ring over S. The condition 1 ∈ QUr

corresponds to an equation in the polynomial ring: 1 =
∑n

i=1 xiFi +
∑m

i=1 GiHi where each
Hi maps to the zero element in Us because it played the role of F in a specific algebra
modification. Now each modification was performed because of a relation which can be
lifted to a relation in the polynomial ring of the form yk+1u =

∑k
i+1 yiui +

∑j
i=1 GliHi

where the y’s and u’s vary from modification to modification. There is clearly some bound
for the degree of the polynomials Fi, GiHi, GliHi, u, ui. and so polynomials of sufficiently
large degree add nothing to the process. Accordingly, Hochster introduced partial algebra
modifications in [Ho] and noted that it was sufficient to prove that there are no bad partial
algebra modifications.

Thus far, this is just Hochster’s proof worded differently. At this point the proofs di-
verge. Let R = T0, T1, . . . , Tr, U0 = Tr ⊗R S, U1, . . . , Us be a bad sequence of algebra
modifications. Then we have a corresponding bad sequence of algebra triple modifications
(R,R, (0)), (A11, T11, J11), . . . , (A1r, T1r, J1r), (A1r⊗S, T1r⊗J1r, J⊗S), (A21, T21, J21), . . . , (A2s, T2s, J2s).
The equation 1 =

∑n
i=1 xiFi +

∑k
i=1 GiHi immediately gives, as a relation in T2s, that

1 ∈ QT2s+J2s since each GiHi is in J2s. Next the algebra triple (R,R,(0)) is trivially v-good
and repeated application of the lemmas implies (A2s, T2s, J2s) is v-good. Choose ε = v(Q)
and t = 1. We then find d ∈ S+ with v(d) < ε and a homomorphism φA2s → S+[d−1]
such that φ(T2s) ⊂ d−1S+ and φ(J2s) ⊂ d−1QS+. Applying φ to our bad relation gives
1 ∈ Qd−1S+ + d−1QS+. Hence d ∈ QS+. But v(d) < v(Q), a contradiction which proves
the theorem. �


