
PROBABILITYIn recent years there has been a marked increase in the number of graduate studentsspecializing in probability as well as an increase in the number of professors who work in thisarea. This recent boom in the interest in the subject of probability makes it essential that�rst year graduate students become aware of the basic concepts and interesting problemssurrounding this area. On March 30th, April 6th, and April 13th lectures were given byprofessors Mohammud Foondun, Firas Rassoul-Agha, Davar Khoshnevisan, and graduatestudent Karim Khader in order to impart the importance and power of probability for theEarly Reasearch Directions class. Transcribing these lectures were Matthew Housley, WilliamMalone, and Joshua Shrader.Mohammud FoondunStochastic Processes and Brownian Motion: The �rst real work in this area was done byLouis Bachelier around 1900.De�nition 1. A real valued stochastic process fB(t) : t > 0g, x 2 R is a Brownian motionif it satis�es(1) B(0) = x (x is the starting point.)(2) The process has independent increments0 < t0 < x1 < � � � < tnsuch that B(tn)�B(tn�1); B(tn�1)�B(tn�2); : : : ; B(t1)�B(t0)are independent.(3) For each h > 0, the function B(t+ h)�B(t)is a normal distribution with mean 0 and variance h.(4) The map t 7! B(t) is continuous a.s. (almost surely).Almost surely is equivalent to measure theoretic de�nition of almost everywhere in an eventspace.Properties of Brownian motion:(1) Nowhere di�erentiable (almost surely).(2) Total variation is in�nite.Markov Property : The function B(t + s) � B(t) does not depend on what happens beforetime t. 1



2 PROBABILITY
Figure 1. A graph of typical one-dimensional Brownian motion.Technical De�nition:If [f(B(t+ s)) j F0s ] = E

B(s)f(BL);then F0s = #(BL; t � s)does not depend on what happened before time t. (F0s is �ltration).Levy Process: (generalization of above)Xt is a Levy process if for all s; t � 0 the increment Xt+s �Xt is independent of (XL : 0 �L � t) and it has the same law as Xs.Levy-Khintchine:
Eeiz�t = et	(z);where E is the expectation and 	(z) is the characteristic exponent, which is given by	(z) = �12z � Az| {z }continuous +i� � z + Z

Rd(eiz�x � 1� uz � x) � (dx)| {z }jump part :Drift is given by � and A is a matrix.Z
Rd jxj2^ j � d(x) <1:The symbol ^ indicates the minimum of two quantities and (A; r; �) is a Levy Triplet.Generation of a Levy Process PtF (x) = E[F (X + tX)]:The generator L of the process is de�ned asLF (x) = limt!0 PtF � Ft ; F 2 C20 ;i.e.,



PROBABILITY 3LF (x) = 12XAi;j@i;jF (x) +X�i@iF (x)+ Z
Rd [F (x+ h)� F (x)�Xhi @F@xiIjnj�1]�(dh):(We need Fourier transforms and their inverses to derive this equation.) One notes thatLF (x) = 12@i;jF (x)if A is the identity matrix and the jump part is zero.Martingale Problem of Strouck and Varndham:Martingales: (r;Ft;P)(1) Xt is adapted to Ft.(2) EjXtj <1(3) E[Xs=Ft] = Xt.This means that the expectation at any future time is given by your current position. Aprobability measure P is a solution to the Martingale problem of L started at x if P(x0 =x) = 1 and F (xt)� F (x0)� R t0 LF (xs)ds is a P
x (local Martingale). Therefore,LF (x) = ai;j(x)@i;jF (x) + bi(x)@iF (x)LF (x) = Z [F (x+ h)� F (x)]n(x; h)dh:L is the generator of this process (via handwaviness). If L is a third derivative, then there isno process.Ito's Lemma:Let F 2 C20 (Rd), and B� a Brownian motion.F (B� )� F (B0) = Z t0 F (Bs)dBs + 12 Z t0 F 00(Bs)dshBis:hBit is the quadratic variation of B, i.e. B2t � hBit whould be a Martingale.Dirichlet Problem:Let D be a ball, Lu = 0 in D, u = F on @D, u 2 C2. Then,u(x) = EF (X�D);L = 12�u;ID = infft > 0;Xt =2 Dg:Proof. Let Sn = infft > 0;dist(xt; @D) < 1ng:u(xt ^ Sn) = u(x0) +Mt + Z t^Sn0 Lu(xs)ds:



4 PROBABILITYTake the expectation
E
xu(xt^Sn) = u(x):Letting t and n go to in�nity we get u(x) = E(x�0):The solution is the average along the boundary. ˜Firas Rassoul-AghaA random walk may be thought of as a sequence of independent identically distributed (iid)random variables (Xi) de�ned on the d-dimensional lattice of integers Z

d. The probability ofmoving from one point to any adjacent point is 12d , since there are 2d adjacent points. Theprobability of moving from a point to any non-adjacent point is 0. De�ne a random walk,Sn = X1 +X2 + � � � +Xn for n � 1, and S0 = 0. For any arbitrary function f : Z
d ! R, wede�ne u(n; x) = E [f(x+ Sn)]as a function in time and space which returns the expected value of f . Sn is a random walkwhich starts at the origin, and so x+ Sn is the walk Sn starting at x. We may re-write theabove equation as u(n; x) = Xjej=1E [f(x+ Sn�1 + eI fxn = eg];where I is the indicator function, or characteristic function, and is de�ned to be 1 if xn = eand 0 otherwise. Since the probability that Xn = e is 12d , we haveu(n; x) = 12d Xjej=1E [f(x+ e+ Sn�1)] = 12d Xjej=1u(n� 1; x+ e):From this, we can compute the time di�erential, @tu.@tu = u(n; x)� u(n� 1; x) = 12d Xjej=1 (u(n� 1; x+ e)� u(n� 1; x)) = 12d�u:This is the discrete version of the derivative.If we restrict our attention to the 1 dimensional case and resale time and space, Brownianmotion will result. Scaling time by 1=n and space by 1=pn, we haveu(t; x) = E

�f �x+ S[nt]pn ��which follows from the Central Limit Theorem. This theorem says that X1+X2+���+Xnpn followsthe normal distribution N(0; dI). Thus,limn!1u(t; x) = E

hf(x+ptdZi = pdZ � 1p2�td�d�1 Z f(y)e�jy�1j22td dyand so u(t; x) exhibits Brownian motion.



PROBABILITY 5Consider the following question concerning random walks. Let D be the annulus givenby D = fx : r1 < jxj < r2g. Given a random walk starting at some x 2 D, what is theprobability that the random walk will intersect the outer boundary of the annulus, Br2(0),before intersecting the inner boundary, Rr1(0)?To answer this question, de�ne �r2 to be the time at which the random walk reaches theboundary at r2, and de�ne �r1 similarly. Let �u = 0 and u = Ijxj=R if jxj 2 fr1; r2g. De�neu(x) = '(jxj)� '(r)'(R)� '(r) ;where '(s) = 8<: s d = 1log(s) d = 2s2�d d � 3:Now, de�ne �x = inf fn � 0 : Sn + x 2 @Dg, and so
Ex �IjB� j=R� = Px (�r2 < �r1) :Px (�r2 < �r1) = '(jxj)�'(r)'(R)�'(r) , and so in the 1-dimensional case, we have Px (�r2 < �0) =jxj =r2. Thus, as r2 !1, we see that Px(�0 =1) = 0 and so for all y, P0(�y =1) = 0. Inother words, this tells us that 1-dimensional Brownian motion hits all points with probability1. If we consider the same question in dimension 2, we see thatPx (�r2 < �r1) = log jxj � log r1log r2 � log r1 :As r2 !1, Px (�r1=1) = 0, and so 2-dimensional Brownian motion will hit any open regionwith probability 1, but �xing a single point, with probability 1, the Brownian motion willnot hit it.As the �nal case, consider when d = 3. We then havePx(�r2 < �r1) = jxj2�d � r2�d1r2�d2 � r2�d1 :As r2 ! 1, Px(�r2 < �r1) = 1 � jxj2�d =r2�d < 1, and so we can propagate the estimateP0(jB� j ! 1) = 1. This says that 3-dimensional Brownian motion always wanders o� toin�nity. In other words, a drunken sailor will always wander back home; however, withpositive probability, the drunken parrot will never make it back.To add a new level of complexity to our random walks, consider the case where the prob-ability of moving to one point instead of another is based on your current position. In onedimension, this can be thought of as laying down coins at all the integer points. Starting atthe origin, pick up the coin and 
ip it. If it lands with heads facing up, move to the left.If it lands with tails facing up, move to the right. If all of the coins are fair, then you havea 50% chance of moving left, and a 50% chance of moving right. However, what if we havetwo di�erent coins, one red and one blue, each biased in their own way. These red and bluecoins are randomly distributed along all of the integer points. If we start at 0, we may askwhat the probability is that we will wander to in�nity. This question has a physical analog.If one considers an electron jumping from atom to atom in a pure crystal, this will represent



6 PROBABILITYa truly random walk; however, if there are impurities in the crystal, then the decisions thatthe electron makes will be based on its current position. This is analogous to the situationwhere we have two biased coins.To solve this problem, we �rst �x the set of coins on the integers, (Px). Let a and b betwo integers, and de�ne V (x) = Px (�b < �a) :Then (Px + 1� Px) V (x) = PxV (x+ 1) + (1� Px)V (x� 1)and so V (x+ 1)� V (x) = 1� PxPx (V (x)� V (x� 1)) = RxI;where Rx = �xy=a+1 1�PyPy , and I is some constant. From the above equation, it becomesapparent why V , R, and I were chosen as they were, as this is simply an expression of Ohm'sLaw { The voltage drop between two points is equal to the resistance between those pointstimes the current. Since 1 = V (b)� V (a) = RI;we have that I = 1=R and V (x+ 1)� V (x) = �xy=a+1 1�PyPyPb�1z=a�zy=1 Py1�Py :This gives Px(�b < �a) = Px�1z=a �zy=a Py1�PyPb�az=a�zy=a Py1�Py :Now, letting b!1, we may ask what the probability is that we hit a. We havePx(�a =1) = Px�1z=a �zy=a Py1�PyP1z=a�zy=a Py1�Py ;where the denominator is either almost surely in�nite for all (Px) or �nite for all (Px). Takingthe logarithm of the denominator, we getzXy=a log Py1� Py � (z � a)E

�log P1� P � :Now, the law of large numbers tells us that the expected value of log P1�P is less than 0 if andonly if P (Sn !1) = 1 for almost every (Px).As an example of a random walk in a non-random environment, consider the followingcase. There are two coins, red and blue. The red coin tells you to move left 40% of the time,and tells you to move right 60% of the time. The blue coin tells you to move left 80% of thetime, and tells you to move right 20% of the time. You begin your walk at the origin, andeach time you reach a new vertex, you 
ip a decision coin. The decision coin tells you to 
ip



PROBABILITY 7the red coin 90% of the time, and to 
ip the blue coin 10% of the time. The expected valueof log P1�P is thus
E

�log P1� P � = :9 log 32 + :1 log 14 � :2263 :Since this expected value is positive, we will eventually walk to positive in�nity. If the valuewere negative, we would walk to negative in�nity, and if this expected value were zero, wecould conclude that the walk would be recurrent { we would come back to the origin in�nitelyoften.Karim KhaderLet (
; A; P ) be a measure space satisfying P (
) = 1. Let 
 = [0; 1). The collection A isthe Borel �-algebra on 
 and P is Lebesgue measure. A real valued random variable is ameasurable function F : 
! R, E[F ] = R
 F (!)P (d!). Let X be a measurable subset of 
.Then, P (F 2 X) = P (! : F (!) 2 X):Rademacher Functions: (Figures 2 and 3)

Figure 2 Figure 3For n = 1; 2; : : :, rn(!) = 2mXk=1(�1)k+11[ k�12n ; k2n )(w):Note that P (rn = 1) = 12 = P (rn = �1). Let 1 represent heads and �1 represent tails. Wenow have a model for 
ipping coins. E[rn] = 0.Independence:Formally, independence means that P (rn1 = e1 j rn2 = e2) = P (rn1 = e1). That is, theprobability that rn1 = e1 when we know that rn2 = e2 is the same as the probability thatrn1 = e1 in the absence of additional information. We may assume that e1 and e2 are elementsof f�1; 1g. (Events outside this space have 0 probability automatically.) With this condition,



8 PROBABILITYwe see that P (rn1 = e1; rn2 = e2; : : : ; rnk = ek) = kYi=1P (rni = ei):We use commas here to denote the probability of several events happening simultaneously.
E
� kYi=1 rni� = kYi=1 E[rni ] = 0:

E[rirj] = �i;j (orthonormal):Rn(w) = nXi=1 ri(w) (random walks).Theorem 1. limn!1 Rnn = 0 (almost surely).Proof. E[(Rn)4] = n+ 3n(n� 1). Therefore,1Xn=1E

h�Rnn �4i <1;which implies
E

� 1Xn=1�Rnn �4� <1:Hence 1Xn=1�Rnn �4 <1 (almost surely),and therefore limn!1 Rnn = 0 (almost surely).
˜Now instead of having our random variables take values in f�1; 1g we would like them totake values in f0; 1g which is more useful for counting the number of heads occurs when you
ip a coin. So the following construction toward that end is due to Steinhaus. Renormalizeso that the range of our random variables is in f0; 1gXk(w) = 1� rk(w)2 ;and then take the nth partial sum Sn(w) = nXk=1Xk(w):Now we see that limn!1 Snn = 12 (almost surely);



PROBABILITY 9and we have a random variable that takes values in f0; 1g and which has expectation 12 .Suppose that w 2 [0; 1). Then, xn(w) gives the nth digit of the binary expansion of w. Itfollows that w = 1Xn=1 Xn(w)2n :
Davar KhoshnevisanLet fxng be sequence of indepedent random variables with xn = 0 or 1 with probability 12 .We can do the same thing for a larger set of possible outcomes, i.e. let fxng be a sequenceof random integers chosen from the set f0; 1; 2; : : : ; kg with probability 1k for each element ofthe set. Now, suppose that we choose a random real number from the interval [0; 1]. What isthe probability that this random number lies in [0; 1=3]? It will be one third. Once we knowthat our number lies in [0; 1=3], we can subdivide this interval in three parts. What are theodds that our number lies in [1=9; 2=9]? The probability is again one third. This suggeststhat we choose a random integer sequence as described before with k = 3. Then,X = 1Xn=1 xn3ngives us a random number in [0; 1]. Let F (x) = PfX < xg. Then we have the graph shownin Figure 4.

Figure 4We can also play this game on Cantor sets. Recall the construction of the Cantor set:Begin with the interval [0; 1]. Remove the open middle third. We are now left with twointervals and we remove the open middle third of each of these. Repeat this ad in�nitum.Figure 5 illustrates the process.
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Figure 5Note that elements of the Cantor set have ternary expansions containing only 0's and 2's.In addition, any number in [0; 1] with such a ternary expansion is in the Cantor set. Cantorobserved that elements of the Cantor set are in one to one correspondence with elementsof [0; 1] by converting 0 and 2 in a ternary expansion to 0 and 1 in a binary expansion ofa number in [0; 1]. How do we sample uniformly from the Cantor set? Choose a randomsequence consisting of elements of f0; 2g. Zero and two will have equal probability, so we canconstruct a graph of F (x) = PfX � xg, where X is chosen randomly from the Cantor set.This is shown in Figure 6.
Figure 6In the fractal world, this is often known as the Devil's Staircase, although it has a longhistory in probability. This function is continuous and has derivative 0 almost everywhere.However, Z 10 F 0(x)dx = 0while F (1) � F (0) = 1. This is an example of where the fundamental theorem of calculusfails once we omit some hypothesis. In particular, F (x) is not di�erentiable at every point in[0; 1], but even more importantly F (x) is not absolutely continuous with respect to Lesbesguemeasure.Lattice Paths:Choose some n 2 N. Start at the origin and move to the right a distance 1=n. Simultaneously,move either up or down a distance 1=n. Continue this process until you reach x-coordinate1 (Figure 9). This is sometimes referred to as a lattice path. Essentially, we are randomwalking with time and distance step 1=n.
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Figure 7Scalar multiples of these paths form a dense subset of C[0; 1]. We can study average prop-erties for the family of paths with a given step size by taking up and down movements tobe equally probable. For instance, on average (root mean square), the family of paths withstep size 1=n ends a distance pn away from the x-axis. An average step then moves usa distance 1=pn away from the origin. Lattice paths give us discrete Brownian motion. Itis not surprising then that the set of all one-dimensional Brownian motions on [0; 1] is C[0; 1].Bichromatic Coloring and Ramsey Numbers: Consider the complete graph on N vertices,i.e. the graph on N vertices where a unique edge connects each pair of vertices. See �gure 8.

Figure 8: Complete Graph on 5 VerticesWe'll denote the complete graph on N vertices by KN . The Ramsey number Rn is thesmallest integer N such that any coloring of the edges ofKN yields a monochromatic subgraphon n vertices. The best known bounds on Rn are given byc1n2n=2 � Rn � C22nnc3 :The left inequality is proven by probability and the right by combinatorics. We can provethe left one without too much trouble: given a graph KN , randomly color each edge eitherred or blue with equal probability. A subgraph Kn has �n2� edges, so the probability thatthis subgraph is monochromatically colored is 2=2(n2) = 21�(n2). The number of n-vertexsubgraphs of KN is �Nn�, so the probability that KN contains an n-vertex monochromaticsubgraph is less than or equal to �Nn�21�(n2). (Here, we've used the Boolean inequality:P (A [ B) � P (A) + P (B).) Now, if we choose N such that this probability is less than 1then Rn > N . Rounding down if necessary, we can use 2n=2.



12 PROBABILITYIt was conjectured by Paul Erd�os that limn!1 lnRnn exists.


