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Probability Thermodynamics Information Applications

Toss a fair coin n times.

Not much math at n small (say n = 3)!

Patterns emerge and math kicks in when n is large.

E.g. Fraction of heads should be about 0.5.

E.g. Histogram gives the Bell curve.
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Probability Thermodynamics Information Applications

Most likely outcome: fraction of heads is 0.5.

Q. Odds of fraction of heads being p 6= 0.5?

A. P(all heads) = P(all tails) = 0.5n = e−n log 2.

Similarly, P(pn heads) ∼ e−h(p)n,

h(p) > 0 iff p 6= 0.5 and h(0) = h(1) = log 2.

Talking about P(rare events).

Probability: Large Deviations Theory.
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Probability Thermodynamics Information Applications

Q. Why even care?!

A. Rare events that come at large cost:

E.g. Will it rain today?

E.g. An earthquake.

E.g. Premium on insurance policies.

E.g. Rare but bad side effect.

E.g. Two rare events with one good and one bad:

Pentium floating point bug

Another hardware bug that fixes things if it happens first!

Which one will happen first (i.e. is less rare)??
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Probability Thermodynamics Information Applications

P(pn heads) ∼ e−h(p)n

h(p) has a formula: h(p) = p log p + (1− p) log(1− p) + log 2

0 0.5 1
0  

log 2

p

h(p)

Q. Does it have a meaning?

A. Yes!
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Probability Thermodynamics Information Applications

Say we have a system with n independent identical components.

E

Each component can be at energy E0 or E1.

Can assume E0 = 0 and E1 = 1.

System is submitted to a “heat bath”: total energy E .

Each component picks an energy (0 or 1) at random.

Probability of picking energy 1 is p = E
n .

Same as coin flipping.

−h(p) is precisely the Thermodynamic Entropy of the System!!
Thermodynamic entropy ⇔ Amount of disorder
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Probability Thermodynamics Information Applications

0 1 1 1 0 · · · 0 1

How many bits does one need when compressing this “sentence”?

How much information is there?

How much uncertainty is there?

p = 1: 1 1 1 1 · · · 1 requires 0 bits!
(No uncertainty: can predict the next coin toss exactly)

p = 0.5: fair coin requires 1 bit (per character)
(Complete uncertainty: cannot predict the next coin toss at all)

0.5 < p < 1 requires less than 1 bit (per character)
(Partial uncertainty: the next coin toss is more likely to be a 1)
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Probability Thermodynamics Information Applications

Number of bits per character is Shannon’s Entropy:

0 0.5 1
0

1

p

# bits

which is equal to 1− h(p)
log 2 .

i.e. n tosses cannot be compressed into fewer than n(1− h(p)
log 2) bits

without loss of information.

Shannon’s entropy ⇔ Amount of information needed to describe
. “the system”

(That’s why compressed data looks random!)
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Probability Thermodynamics Information Applications

Linked: Rare Events to Statistical Mechanics.
(Thermodynamic entropy prevents air from staying in one half of
the room!)

Linked: Rare Events to Information Theory.

Byproduct: link b/w Statistical Mechanics and Information Theory!

Thermodynamic Entropy (the amount of disorder in the system) is
the amount of information needed to fully describe the system.

Roughly speaking: both answer the question
“how hard is it to describe the system.”

New car,..., car with a scratch on the bumper,..., car with a
scratch on the bumper and a chip on the wind shield,..., car in
good condition,..., piece of junk
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Probability Thermodynamics Information Applications

Shannon built entropy tables for English.

Treating letters as random and equally-likely:
uzlpcbizdmddk njsdzyyvfgxbgjjgbtsak rqvpgnsbyputvqqdtmgltz

Taking entropy of English letters into account:
saade ve mw hc n entt da k eethetocusosselalwo gx

More involved tables looking at 4-letter entropy:
(http://barnyard.syr.edu/monkey.html)

Exactly he very glad trouble, and by Hopkins! That it on of the
who difficentralia.

More involved tables looking at 4-word entropy:
A Quicksort would be quite efficient for the main-memory sorts,
and it requires only a few distinct values in this particular problem,
we can write them all down in the program, and they were making
progress towards a solution at a snail’s pace.
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(http://barnyard.syr.edu/monkey.html)

Exactly he very glad trouble, and by Hopkins! That it on of the
who difficentralia.

More involved tables looking at 4-word entropy:
A Quicksort would be quite efficient for the main-memory sorts,
and it requires only a few distinct values in this particular problem,
we can write them all down in the program, and they were making
progress towards a solution at a snail’s pace.
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If we build an entropy table out of Shakespeare’s novels, we would
be able to fake one by creating a random text with the same
entropy!

The more novels we use and the more involved the table is, the
better the fake would be.
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Similarly, can paint, compose music, etc.

http://www.krizka.net/2010/03/09/generating-random-music/
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Probability Thermodynamics Information Applications

Entropy measures distance of observed tosses from fair coin tosses.

I explained how to use this to forge counterfeits.

Can we use it for a good cause?!

YES!!
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Probability Thermodynamics Information Applications

We are given 12 coins that look identical.

We are told that exactly one is fake: either heavier or lighter.

We can use a two-pan equal-arm balance to compare the coins.

Only tells us: heavier, lighter, or same.

Can use it at most three times.

Can we determine the fake coin and whether it is heavier or lighter?
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We have 2× 12 = 24 possible cases.

We have 3× 3× 3 = 27 possible outcomes from 3 weighings.

So the weighings give (barely) enough information.

Say we pick 3 coins and another 3 and compare weights.

If they balance, we are reduced to the same problem with 6 coins
and 2 weighings.

2× 6 = 12 cases and 3× 3 = 9 weighting outcomes.

NOT good!!
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Instead, compare 4 and 4.

If match, then left with 4 coins and 2 weighings.

2× 4 = 8 cases and 3× 3 = 9 weighting outcomes.

Good!

If don’t match, then left with 8 coins and 2 weighings.

BUT: 1× 8 = 8 cases and 3× 3 = 9 weighting outcomes.

Still good!

Rest left as an exercise :)
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Probability Thermodynamics Information Applications

Punchline: compare amount of uncertainty with amount of
information given.

In terms of entropy: compare entropy of given system relative to
the original.

Roughly speaking: compare entropy table of Shakespeare novels
with the entropy table of the piece at hand to detect forgery.

Firas Rassoul-Agha, University of Utah What is entropy and why is it useful? or: Copying Beethoven 17/22



Probability Thermodynamics Information Applications

Punchline: compare amount of uncertainty with amount of
information given.

In terms of entropy: compare entropy of given system relative to
the original.

Roughly speaking: compare entropy table of Shakespeare novels
with the entropy table of the piece at hand to detect forgery.

Firas Rassoul-Agha, University of Utah What is entropy and why is it useful? or: Copying Beethoven 17/22



Probability Thermodynamics Information Applications

Punchline: compare amount of uncertainty with amount of
information given.

In terms of entropy: compare entropy of given system relative to
the original.

Roughly speaking: compare entropy table of Shakespeare novels
with the entropy table of the piece at hand to detect forgery.

Firas Rassoul-Agha, University of Utah What is entropy and why is it useful? or: Copying Beethoven 17/22



Probability Thermodynamics Information Applications

If a code is made by giving each letter a symbol (or mapping it
into another letter)

can match the language entropy table with the text’s entropy table
to break the code.

Used to break the Enigma during World War II !
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Probability Thermodynamics Information Applications

Can use entropy to fight spam: distinguish natural text from an
artificially generated one.

Or even better!

Get back at them!
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Using http://pdos.csail.mit.edu/scigen/

Contrasting B-Trees and the Lookaside Buffer
Anita Shower

ABSTRACT

Cache coherence [21] must work. Given the current status
of secure epistemologies, electrical engineers compellingly
desire the improvement of expert systems, which embodies the
confirmed principles of “fuzzy” secure electrical engineering.
In order to address this grand challenge, we present an analysis
of Lamport clocks (Award), which we use to show that sensor
networks can be made scalable, semantic, and secure.

I. I NTRODUCTION

The cyberinformatics method to extreme programming is
defined not only by the refinement of von Neumann machines,
but also by the confirmed need for superpages. The lack
of influence on robotics of this result has been considered
extensive. The notion that analysts collude with the exploration
of superblocks is continuously considered confusing. The
deployment of expert systems would minimally degrade linear-
time methodologies.

Concurrent frameworks are particularly robust when it
comes to highly-available communication. Existing symbiotic
and collaborative systems use local-area networks to synthe-
size the theoretical unification of Web services and redundancy
[13]. Two properties make this method optimal: our approach
is Turing complete, and also we allow massive multiplayer
online role-playing games to allow client-server theory without
the simulation of Scheme. Existing real-time and ambimorphic
algorithms use optimal configurations to develop adaptive
archetypes. Unfortunately, constant-time models might not
be the panacea that biologists expected [25]. Existing real-
time and metamorphic applications use symbiotic models to
construct permutable epistemologies.

We consider how the lookaside buffer can be applied to
the exploration of spreadsheets. The drawback of this type
of approach, however, is that model checking can be made
wireless, psychoacoustic, and wearable. This follows from
the evaluation of SCSI disks. Unfortunately, this method is
continuously significant. We skip these algorithms until future
work. We emphasize that our framework is built on the
understanding of the Ethernet. Indeed, scatter/gather I/Oand
wide-area networks have a long history of agreeing in this
manner. The basic tenet of this method is the simulation of
agents.

Our contributions are twofold. Primarily, we confirm not
only that checksums and gigabit switches can interfere to
answer this quandary, but that the same is true for IPv7.
Similarly, we prove that the acclaimed psychoacoustic algo-
rithm for the evaluation of the World Wide Web by Smith is
recursively enumerable.

C % 2
== 0

B > G

yes

Z < N

yes

no

Fig. 1. The architectural layout used by Award.

The rest of this paper is organized as follows. We motivate
the need for Markov models. Next, we place our work in
context with the previous work in this area. We place our
work in context with the related work in this area. Similarly, to
achieve this aim, we motivate new robust archetypes (Award),
demonstrating that the much-touted ubiquitous algorithm for
the improvement of multi-processors that paved the way for
the development of the location-identity split by John Kubi-
atowicz et al. [15] is recursively enumerable. In the end, we
conclude.

II. A RCHITECTURE

The properties of our application depend greatly on the
assumptions inherent in our model; in this section, we outline
those assumptions. Though cyberneticists largely assume the
exact opposite, Award depends on this property for correct
behavior. The methodology for Award consists of four inde-
pendent components: the visualization of neural networks,ras-
terization, signed symmetries, and the evaluation of telephony.
Continuing with this rationale, we instrumented a 1-week-long
trace arguing that our methodology is not feasible. Clearly, the
framework that our system uses is solidly grounded in reality.

Our algorithm relies on the robust design outlined in the re-
cent seminal work by Li in the field of “smart” cryptoanalysis
[22]. Despite the results by Taylor and Ito, we can disprove
that congestion control and telephony can interact to fulfill this
objective. We assume that the seminal homogeneous algorithm
for the understanding of neural networks by D. Wang et al.

Fig. 2. A peer-to-peer tool for enabling von Neumann machines
[11].

is NP-complete. This may or may not actually hold in reality.
See our prior technical report [21] for details.

Our system relies on the structured design outlined in the
recent well-known work by Kobayashi et al. in the field of
programming languages. This seems to hold in most cases. We
hypothesize that the producer-consumer problem can provide
relational configurations without needing to locate semantic
technology. Despite the fact that experts never assume the
exact opposite, Award depends on this property for correct
behavior. Along these same lines, rather than harnessing link-
level acknowledgements, Award chooses to harness 802.11b.
although leading analysts generally assume the exact opposite,
Award depends on this property for correct behavior. See our
related technical report [9] for details.

III. I MPLEMENTATION

Our framework is composed of a homegrown database,
a codebase of 71 Perl files, and a server daemon [3], [4].
Researchers have complete control over the hacked operating
system, which of course is necessary so that lambda calculus
and congestion control are usually incompatible. Along these
same lines, the hacked operating system contains about 601 in-
structions of Lisp. Even though we have not yet optimized for
simplicity, this should be simple once we finish programming
the client-side library.

IV. RESULTS

Building a system as ambitious as our would be for naught
without a generous evaluation. We did not take any shortcuts
here. Our overall performance analysis seeks to prove three
hypotheses: (1) that average interrupt rate is a bad way to
measure expected bandwidth; (2) that expected bandwidth is
an outmoded way to measure latency; and finally (3) that hit
ratio stayed constant across successive generations of Apple
][es. Our evaluation strives to make these points clear.

A. Hardware and Software Configuration

Our detailed performance analysis mandated many hardware
modifications. We ran an ad-hoc prototype on our human
test subjects to disprove the extremely mobile nature of
independently wireless symmetries. We removed some NV-
RAM from our decommissioned Atari 2600s to discover
technology. We halved the flash-memory speed of our mobile
telephones to examine our decentralized overlay network.
Further, we added 200MB of RAM to the NSA’s desktop
machines to investigate archetypes. We only characterized
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Fig. 3. The average work factor of Award, as a function of response
time. While such a claim might seem perverse, it fell in line with
our expectations.
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Fig. 4. Note that complexity grows as response time decreases – a
phenomenon worth synthesizing in its own right.

these results when deploying it in a controlled environment.
Continuing with this rationale, we doubled the effective NV-
RAM throughput of our concurrent testbed to investigate our
mobile telephones. Further, we removed more flash-memory
from our decommissioned Commodore 64s. This configuration
step was time-consuming but worth it in the end. Finally, we
removed 10Gb/s of Ethernet access from our Internet-2 cluster.

When Sally Floyd reprogrammed L4’s flexible ABI in 1993,
he could not have anticipated the impact; our work here
attempts to follow on. We added support for our heuristic as
a kernel module. We implemented our evolutionary program-
ming server in Fortran, augmented with mutually Bayesian
extensions [32]. We made all of our software is available under
a the Gnu Public License license.

B. Experimental Results

Is it possible to justify the great pains we took in our
implementation? Yes, but with low probability. Seizing upon
this contrived configuration, we ran four novel experiments:
(1) we compared work factor on the Microsoft Windows
3.11, Mach and GNU/Debian Linux operating systems; (2)
we deployed 45 Nintendo Gameboys across the Planetlab
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is NP-complete. This may or may not actually hold in reality.
See our prior technical report [21] for details.

Our system relies on the structured design outlined in the
recent well-known work by Kobayashi et al. in the field of
programming languages. This seems to hold in most cases. We
hypothesize that the producer-consumer problem can provide
relational configurations without needing to locate semantic
technology. Despite the fact that experts never assume the
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level acknowledgements, Award chooses to harness 802.11b.
although leading analysts generally assume the exact opposite,
Award depends on this property for correct behavior. See our
related technical report [9] for details.

III. I MPLEMENTATION
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a codebase of 71 Perl files, and a server daemon [3], [4].
Researchers have complete control over the hacked operating
system, which of course is necessary so that lambda calculus
and congestion control are usually incompatible. Along these
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simplicity, this should be simple once we finish programming
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hypotheses: (1) that average interrupt rate is a bad way to
measure expected bandwidth; (2) that expected bandwidth is
an outmoded way to measure latency; and finally (3) that hit
ratio stayed constant across successive generations of Apple
][es. Our evaluation strives to make these points clear.

A. Hardware and Software Configuration

Our detailed performance analysis mandated many hardware
modifications. We ran an ad-hoc prototype on our human
test subjects to disprove the extremely mobile nature of
independently wireless symmetries. We removed some NV-
RAM from our decommissioned Atari 2600s to discover
technology. We halved the flash-memory speed of our mobile
telephones to examine our decentralized overlay network.
Further, we added 200MB of RAM to the NSA’s desktop
machines to investigate archetypes. We only characterized
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Fig. 3. The average work factor of Award, as a function of response
time. While such a claim might seem perverse, it fell in line with
our expectations.
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Fig. 4. Note that complexity grows as response time decreases – a
phenomenon worth synthesizing in its own right.

these results when deploying it in a controlled environment.
Continuing with this rationale, we doubled the effective NV-
RAM throughput of our concurrent testbed to investigate our
mobile telephones. Further, we removed more flash-memory
from our decommissioned Commodore 64s. This configuration
step was time-consuming but worth it in the end. Finally, we
removed 10Gb/s of Ethernet access from our Internet-2 cluster.

When Sally Floyd reprogrammed L4’s flexible ABI in 1993,
he could not have anticipated the impact; our work here
attempts to follow on. We added support for our heuristic as
a kernel module. We implemented our evolutionary program-
ming server in Fortran, augmented with mutually Bayesian
extensions [32]. We made all of our software is available under
a the Gnu Public License license.

B. Experimental Results

Is it possible to justify the great pains we took in our
implementation? Yes, but with low probability. Seizing upon
this contrived configuration, we ran four novel experiments:
(1) we compared work factor on the Microsoft Windows
3.11, Mach and GNU/Debian Linux operating systems; (2)
we deployed 45 Nintendo Gameboys across the Planetlab
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Fig. 5. These results were obtained by Robinson [3]; we reproduce
them here for clarity.
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Fig. 6. The expected power of our algorithm, as a function of latency.

network, and tested our B-trees accordingly; (3) we measured
RAID array and instant messenger latency on our network;
and (4) we ran 38 trials with a simulated WHOIS workload,
and compared results to our middleware simulation.

Now for the climactic analysis of the first two experiments.
These mean complexity observations contrast to those seen
in earlier work [4], such as D. Sasaki’s seminal treatise
on fiber-optic cables and observed floppy disk speed. The
many discontinuities in the graphs point to degraded average
popularity of DNS introduced with our hardware upgrades.
Similarly, the results come from only 5 trial runs, and were
not reproducible.

We next turn to all four experiments, shown in Figure 3.
Of course, all sensitive data was anonymized during our
bioware emulation. The key to Figure 6 is closing the feedback
loop; Figure 6 shows how our application’s flash-memory
throughput does not converge otherwise. Note the heavy tail
on the CDF in Figure 5, exhibiting improved power.

Lastly, we discuss the first two experiments. The results
come from only 8 trial runs, and were not reproducible. Note
how simulating object-oriented languages rather than deploy-
ing them in a chaotic spatio-temporal environment produce
smoother, more reproducible results. Along these same lines,

note how rolling out object-oriented languages rather than
emulating them in middleware produce less discretized, more
reproducible results.

V. RELATED WORK

Our methodology builds on existing work in metamorphic
epistemologies and perfect e-voting technology. We believe
there is room for both schools of thought within the field of
cyberinformatics. Erwin Schroedinger [3] developed a similar
framework, unfortunately we showed that our system runs
in Ω(n) time. Our design avoids this overhead. We had our
method in mind before Robert Tarjan published the recent
foremost work on interposable theory [2]. While we have
nothing against the previous method by Moore [6], we do
not believe that solution is applicable to steganography [10],
[31], [7], [27].

A. Multi-Processors

The improvement of trainable models has been widely
studied [8]. We had our method in mind before Sally Floyd
published the recent seminal work on peer-to-peer methodolo-
gies [23]. It remains to be seen how valuable this research isto
the e-voting technology community. Instead of controllingthe
exploration of evolutionary programming [28], we solve this
challenge simply by exploring highly-available technology.
Further, recent work by Timothy Leary et al. suggests an
algorithm for locating efficient theory, but does not offer an im-
plementation [19], [1], [18]. On a similar note, our algorithm
is broadly related to work in the field of networking [30], but
we view it from a new perspective: classical configurations.
We plan to adopt many of the ideas from this prior work in
future versions of our solution.

B. 32 Bit Architectures

Miller motivated several efficient approaches [17], and re-
ported that they have improbable lack of influence on mobile
archetypes [12], [24], [14]. Despite the fact that Miller et
al. also proposed this method, we refined it independently
and simultaneously. Award represents a significant advance
above this work. Our solution is broadly related to work in
the field of machine learning by Lee et al., but we view
it from a new perspective: empathic models. It remains to
be seen how valuable this research is to the networking
community. Therefore, the class of algorithms enabled by
Award is fundamentally different from related methods. Award
represents a significant advance above this work.

We now compare our method to existing “fuzzy” algo-
rithms methods. Similarly, instead of investigating constant-
time models, we accomplish this goal simply by visualizing
lossless information [16]. Ito and White [20] originally ar-
ticulated the need for ambimorphic archetypes. This is ar-
guably ill-conceived. Further, while Johnson also explored this
solution, we visualized it independently and simultaneously.
Thusly, the class of frameworks enabled by our application is
fundamentally different from previous solutions [26].

VI. CONCLUSION

We confirmed in this work that XML can be made authen-
ticated, modular, and replicated, and Award is no exceptionto
that rule. We also constructed a flexible tool for studying RAID
[29]. The characteristics of Award, in relation to those of more
much-touted methodologies, are famously more technical. On
a similar note, we validated that while RAID and voice-over-
IP [5] can synchronize to achieve this purpose, the foremost
mobile algorithm for the analysis of redundancy that made
deploying and possibly harnessing red-black trees a reality
by Shastri et al. is recursively enumerable. We expect to see
many cyberneticists move to improving Award in the very near
future.
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Thank You!
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