Ramsey numbers

• K_N is the complete graph on *n* vertices. It is defined as a collection of points $\{x_1, x_2, ..., x_N\}$ with an edge labeled $\overline{x_i x_j}$ for each distinct pair of vertices x_i and x_j .

• A red/blue coloring of K_N is a choice of color — either red or blue — made for each edge in K_N .

• A red/blue coloring of K_N contains a red K_m if there are m vertices of K_N such that each edge connecting pairs of the distinguished m vertices is red.

• K_N has property (m, n) if any red/blue coloring of K_N contains either a red K_m or a blue K_n .

• R(m, n) is the smallest of all the numbers N with K_N having property (m, n).

• For arbitrary numbers m and n, it is not clear that there should be any number N as in the previous sentence, let alone a smallest one.

• Goal: Given numbers m and n, find R(m, n).

- R(m,n) = R(n,m)
- $R(m,n) \le R(m-1,n) + R(m,n-1)$
- $R(m,n) \le \binom{m+n-2}{m-1}$
- For $k \ge 4$, $2^{\frac{k}{2}} \le R(k,k) \le 2^{2k-3}$
- All known Ramsey numbers: R(2, k) = k; R(3, 3) = 6; R(3, 4) = 9; R(3, 5) = 14; R(3, 6) = 18; R(3, 7) = 23; R(3, 8) = 28; R(3, 9) = 36; R(4, 4) = 18; and R(4, 5) = 25.
- $43 \le R(5,5) \le 52$
- $102 \le R(6,6) \le 169$
- Paul Erdos on finding Ramsey numbers:

Suppose an evil alien would tell mankind "Either you tell me [the value of R(5,5)] or I will exterminate the human race". ... It would be best in this case to try to compute it, both by mathematics and with a computer.

If he would ask [for the value of R(6,6)], the best thing would be to destroy him before he destroys us, because we couldn't [determine R(6,6)].