Previous: hybrd1 Up: ../minpack.html Next: hybrj1


HYBRJ.

                                                                 Page 1

               Documentation for MINPACK subroutine HYBRJ

                        Double precision version

                      Argonne National Laboratory

         Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

                               March 1980


 1. Purpose.

       The purpose of HYBRJ is to find a zero of a system of N non-
       linear functions in N variables by a modification of the Powell
       hybrid method.  The user must provide a subroutine which calcu-
       lates the functions and the Jacobian.


 2. Subroutine and type statements.

       SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
      *                 MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
      *                 WA1,WA2,WA3,WA4)
       INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR
       DOUBLE PRECISION XTOL,FACTOR
       DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N
      *                 WA1(N),WA2(N),WA3(N),WA4(N)


 3. Parameters.

       Parameters designated as input parameters must be specified on
       entry to HYBRJ and are not changed on exit, while parameters
       designated as output parameters need not be specified on entry
       and are set to appropriate values on exit from HYBRJ.

       FCN is the name of the user-supplied subroutine which calculates
         the functions and the Jacobian.  FCN must be declared in an
         EXTERNAL statement in the user calling program, and should be
         written as follows.

         SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
         INTEGER N,LDFJAC,IFLAG
         DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
         ----------
         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
         RETURN THIS VECTOR IN FVEC.  DO NOT ALTER FJAC.
         IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
         RETURN THIS MATRIX IN FJAC.  DO NOT ALTER FVEC.
         ----------
         RETURN
         END


                                                                 Page 2

         The value of IFLAG should not be changed by FCN unless the
         user wants to terminate execution of HYBRJ.  In this case set
         IFLAG to a negative integer.

       N is a positive integer input variable set to the number of
         functions and variables.

       X is an array of length N.  On input X must contain an initial
         estimate of the solution vector.  On output X contains the
         final estimate of the solution vector.

       FVEC is an output array of length N which contains the functions
         evaluated at the output X.

       FJAC is an output N by N array which contains the orthogonal
         matrix Q produced by the QR factorization of the final approx-
         imate Jacobian.  Section 6 contains more details about the
         approximation to the Jacobian.

       LDFJAC is a positive integer input variable not less than N
         which specifies the leading dimension of the array FJAC.

       XTOL is a nonnegative input variable.  Termination occurs when
         the relative error between two consecutive iterates is at most
         XTOL.  Therefore, XTOL measures the relative error desired in
         the approximate solution.  Section 4 contains more details
         about XTOL.

       MAXFEV is a positive integer input variable.  Termination occurs
         when the number of calls to FCN with IFLAG = 1 has reached
         MAXFEV.

       DIAG is an array of length N.  If MODE = 1 (see below), DIAG is
         internally set.  If MODE = 2, DIAG must contain positive
         entries that serve as multiplicative scale factors for the
         variables.

       MODE is an integer input variable.  If MODE = 1, the variables
         will be scaled internally.  If MODE = 2, the scaling is speci-
         fied by the input DIAG.  Other values of MODE are equivalent
         to MODE = 1.

       FACTOR is a positive input variable used in determining the ini-
         tial step bound.  This bound is set to the product of FACTOR
         and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
         itself.  In most cases FACTOR should lie in the interval
         (.1,100.).  100. is a generally recommended value.

       NPRINT is an integer input variable that enables controlled
         printing of iterates if it is positive.  In this case, FCN is
         called with IFLAG = 0 at the beginning of the first iteration
         and every NPRINT iterations thereafter and immediately prior
         to return, with X and FVEC available for printing.  FVEC and
         FJAC should not be altered.  If NPRINT is not positive, no


                                                                 Page 3

         special calls of FCN with IFLAG = 0 are made.

       INFO is an integer output variable.  If the user has terminated
         execution, INFO is set to the (negative) value of IFLAG.  See
         description of FCN.  Otherwise, INFO is set as follows.

         INFO = 0  Improper input parameters.

         INFO = 1  Relative error between two consecutive iterates is
                   at most XTOL.

         INFO = 2  Number of calls to FCN with IFLAG = 1 has reached
                   MAXFEV.

         INFO = 3  XTOL is too small.  No further improvement in the
                   approximate solution X is possible.

         INFO = 4  Iteration is not making good progress, as measured
                   by the improvement from the last five Jacobian eval-
                   uations.

         INFO = 5  Iteration is not making good progress, as measured
                   by the improvement from the last ten iterations.

         Sections 4 and 5 contain more details about INFO.

       NFEV is an integer output variable set to the number of calls to
         FCN with IFLAG = 1.

       NJEV is an integer output variable set to the number of calls to
         FCN with IFLAG = 2.

       R is an output array of length LR which contains the upper
         triangular matrix produced by the QR factorization of the
         final approximate Jacobian, stored rowwise.

       LR is a positive integer input variable not less than
         (N*(N+1))/2.

       QTF is an output array of length N which contains the vector
         (Q transpose)*FVEC.

       WA1, WA2, WA3, and WA4 are work arrays of length N.


 4. Successful completion.

       The accuracy of HYBRJ is controlled by the convergence parameter
       XTOL.  This parameter is used in a test which makes a comparison
       between the approximation X and a solution XSOL.  HYBRJ termi-
       nates when the test is satisfied.  If the convergence parameter
       is less than the machine precision (as defined by the MINPACK
       function DPMPAR(1)), then HYBRJ only attempts to satisfy the
       test defined by the machine precision.  Further progress is not


                                                                 Page 4

       usually possible.

       The test assumes that the functions and the Jacobian are coded
       consistently, and that the functions are reasonably well
       behaved.  If these conditions are not satisfied, then HYBRJ may
       incorrectly indicate convergence.  The coding of the Jacobian
       can be checked by the MINPACK subroutine CHKDER.  If the Jaco-
       bian is coded correctly, then the validity of the answer can be
       checked, for example, by rerunning HYBRJ with a tighter toler-
       ance.

       Convergence test.  If ENORM(Z) denotes the Euclidean norm of a
         vector Z and D is the diagonal matrix whose entries are
         defined by the array DIAG, then this test attempts to guaran-
         tee that

               ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

         If this condition is satisfied with XTOL = 10**(-K), then the
         larger components of D*X have K significant decimal digits and
         INFO is set to 1.  There is a danger that the smaller compo-
         nents of D*X may have large relative errors, but the fast rate
         of convergence of HYBRJ usually avoids this possibility.
         Unless high precision solutions are required, the recommended
         value for XTOL is the square root of the machine precision.


 5. Unsuccessful completion.

       Unsuccessful termination of HYBRJ can be due to improper input
       parameters, arithmetic interrupts, an excessive number of func-
       tion evaluations, or lack of good progress.

       Improper input parameters.  INFO is set to 0 if N .LE. 0, or
         LDFJAC .LT. N, or XTOL .LT. 0.D0, or MAXFEV .LE. 0, or
         FACTOR .LE. 0.D0, or LR .LT. (N*(N+1))/2.

       Arithmetic interrupts.  If these interrupts occur in the FCN
         subroutine during an early stage of the computation, they may
         be caused by an unacceptable choice of X by HYBRJ.  In this
         case, it may be possible to remedy the situation by rerunning
         HYBRJ with a smaller value of FACTOR.

       Excessive number of function evaluations.  A reasonable value
         for MAXFEV is 100*(N+1).  If the number of calls to FCN with
         IFLAG = 1 reaches MAXFEV, then this indicates that the routine
         is converging very slowly as measured by the progress of FVEC,
         and INFO is set to 2.  This situation should be unusual
         because, as indicated below, lack of good progress is usually
         diagnosed earlier by HYBRJ, causing termination with INFO = 4
         or INFO = 5.

       Lack of good progress.  HYBRJ searches for a zero of the system
         by minimizing the sum of the squares of the functions.  In so


                                                                 Page 5

         doing, it can become trapped in a region where the minimum
         does not correspond to a zero of the system and, in this situ-
         ation, the iteration eventually fails to make good progress.
         In particular, this will happen if the system does not have a
         zero.  If the system has a zero, rerunning HYBRJ from a dif-
         ferent starting point may be helpful.


 6. Characteristics of the algorithm.

       HYBRJ is a modification of the Powell hybrid method.  Two of its
       main characteristics involve the choice of the correction as a
       convex combination of the Newton and scaled gradient directions,
       and the updating of the Jacobian by the rank-1 method of Broy-
       den.  The choice of the correction guarantees (under reasonable
       conditions) global convergence for starting points far from the
       solution and a fast rate of convergence.  The Jacobian is calcu-
       lated at the starting point, but it is not recalculated until
       the rank-1 method fails to produce satisfactory progress.

       Timing.  The time required by HYBRJ to solve a given problem
         depends on N, the behavior of the functions, the accuracy
         requested, and the starting point.  The number of arithmetic
         operations needed by HYBRJ is about 11.5*(N**2) to process
         each evaluation of the functions (call to FCN with IFLAG = 1)
         and 1.3*(N**3) to process each evaluation of the Jacobian
         (call to FCN with IFLAG = 2).  Unless FCN can be evaluated
         quickly, the timing of HYBRJ will be strongly influenced by
         the time spent in FCN.

       Storage.  HYBRJ requires (3*N**2 + 17*N)/2 double precision
         storage locations, in addition to the storage required by the
         program.  There are no internally declared storage arrays.


 7. Subprograms required.

       USER-supplied ...... FCN

       MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,
                            QFORM,QRFAC,R1MPYQ,R1UPDT

       FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MIN0,MOD


 8. References.

       M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
       Numerical Methods for Nonlinear Algebraic Equations,
       P. Rabinowitz, editor. Gordon and Breach, 1970.


 9. Example.


                                                                 Page 6

       The problem is to determine the values of x(1), x(2), ..., x(9),
       which solve the system of tridiagonal equations

       (3-2*x(1))*x(1)           -2*x(2)                   = -1
               -x(i-1) + (3-2*x(i))*x(i)         -2*x(i+1) = -1, i=2-8
                                   -x(8) + (3-2*x(9))*x(9) = -1

 C     **********
 C
 C     DRIVER FOR HYBRJ EXAMPLE.
 C     DOUBLE PRECISION VERSION
 C
 C     **********
       INTEGER J,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR,NWRITE
       DOUBLE PRECISION XTOL,FACTOR,FNORM
       DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),
      *                 WA1(9),WA2(9),WA3(9),WA4(9)
       DOUBLE PRECISION ENORM,DPMPAR
       EXTERNAL FCN
 C
 C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
 C
       DATA NWRITE /6/
 C
       N = 9
 C
 C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
 C
       DO 10 J = 1, 9
          X(J) = -1.D0
    10    CONTINUE
 C
       LDFJAC = 9
       LR = 45
 C
 C     SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
 C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
 C     THIS IS THE RECOMMENDED SETTING.
 C
       XTOL = DSQRT(DPMPAR(1))
 C
       MAXFEV = 1000
       MODE = 2
       DO 20 J = 1, 9
          DIAG(J) = 1.D0
    20    CONTINUE
       FACTOR = 1.D2
       NPRINT = 0
 C
       CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
      *           MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
      *           WA1,WA2,WA3,WA4)
       FNORM = ENORM(N,FVEC)
       WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)


                                                                 Page 7

       STOP
  1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
      *        5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
      *        5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
      *        5X,15H EXIT PARAMETER,16X,I10 //
      *        5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
 C
 C     LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
 C
       END
       SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
       INTEGER N,LDFJAC,IFLAG
       DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
 C
 C     SUBROUTINE FCN FOR HYBRJ EXAMPLE.
 C
       INTEGER J,K
       DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
       DATA ZERO,ONE,TWO,THREE,FOUR /0.D0,1.D0,2.D0,3.D0,4.D0/
 C
       IF (IFLAG .NE. 0) GO TO 5
 C
 C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
 C
       RETURN
     5 CONTINUE
       IF (IFLAG .EQ. 2) GO TO 20
       DO 10 K = 1, N
          TEMP = (THREE - TWO*X(K))*X(K)
          TEMP1 = ZERO
          IF (K .NE. 1) TEMP1 = X(K-1)
          TEMP2 = ZERO
          IF (K .NE. N) TEMP2 = X(K+1)
          FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
    10    CONTINUE
       GO TO 50
    20 CONTINUE
       DO 40 K = 1, N
          DO 30 J = 1, N
             FJAC(K,J) = ZERO
    30       CONTINUE
          FJAC(K,K) = THREE - FOUR*X(K)
          IF (K .NE. 1) FJAC(K,K-1) = -ONE
          IF (K .NE. N) FJAC(K,K+1) = -TWO
    40    CONTINUE
    50 CONTINUE
       RETURN
 C
 C     LAST CARD OF SUBROUTINE FCN.
 C
       END

       Results obtained with different compilers or machines
       may be slightly different.


                                                                 Page 8

       FINAL L2 NORM OF THE RESIDUALS  0.1192636D-07

       NUMBER OF FUNCTION EVALUATIONS        11

       NUMBER OF JACOBIAN EVALUATIONS         1

       EXIT PARAMETER                         1

       FINAL APPROXIMATE SOLUTION

       -0.5706545D+00 -0.6816283D+00 -0.7017325D+00
       -0.7042129D+00 -0.7013690D+00 -0.6918656D+00
       -0.6657920D+00 -0.5960342D+00 -0.4164121D+00