Previous: ztrexc Up: ../lapack-z.html Next: ztrsen

NAME ZTRRFS - provide error bounds and backward error estimates for the solution to a system of linear equations with a tri- angular coefficient matrix SYNOPSIS SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER DIAG, TRANS, UPLO INTEGER INFO, LDA, LDB, LDX, N, NRHS DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), X( LDX, * ) PURPOSE ZTRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a tri- angular coefficient matrix. The solution matrix X must be computed by ZTRTRS or some other means before entering this routine. ZTRRFS does not do iterative refinement because doing so cannot improve the backward error. ARGUMENTS UPLO (input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) DIAG (input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input) COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bounds for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution, FERR(j) bounds the magnitude of the largest entry in (X(j) - XTRUE) divided by the magnitude of the largest entry in X(j). The quality of the error bound depends on the quality of the estimate of norm(inv(A)) computed in the code; if the estimate of norm(inv(A)) is accu- rate, the error bound is guaranteed. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any entry of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value