Previous: cunmbr Up: ../lapack-c.html Next: cunml2
NAME
CUNMHR - overwrite the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N'
SYNOPSIS
SUBROUTINE CUNMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU,
C, LDC, WORK, LWORK, INFO )
CHARACTER SIDE, TRANS
INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK(
LWORK )
PURPOSE
CUNMHR overwrites the general complex M-by-N matrix C with
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix of order nq, with nq = m
if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the
product of IHI-ILO elementary reflectors, as returned by
CGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
ARGUMENTS
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'C': apply Q**H (Conjugate transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER ILO and IHI must have the
same values as in the previous call of CGEHRD. Q is
equal to the unit matrix except in the submatrix
Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', 1 <= ILO <=
IHI <= max(1,M); if SIDE = 'R', 1 <= ILO <= IHI <=
max(1,N);
A (input) COMPLEX array, dimension
(LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The
vectors which define the elementary reflectors, as
returned by CGEHRD.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE =
'R'.
TAU (input) COMPLEX array, dimension
(M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must
contain the scalar factor of the elementary reflec-
tor H(i), as returned by CGEHRD.
C (input/output) COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C. On exit, C is
overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >=
max(1,M).
WORK (workspace) COMPLEX array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SIDE = 'L',
LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L',
and LWORK >= M*NB if SIDE = 'R', where NB is the
optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal
value