Previous: clags2 Up: ../lapack-c.html Next: clahef

# clagtm

```
NAME
CLAGTM - perform a matrix-vector product of the form   B :=
alpha * A * X + beta * B  where A is a tridiagonal matrix of
order N, B and X are N by NRHS matrices, and alpha and beta
are real scalars, each of which may be 0., 1., or -1

SYNOPSIS
SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX,
BETA, B, LDB )

CHARACTER      TRANS

INTEGER        LDB, LDX, N, NRHS

REAL           ALPHA, BETA

COMPLEX        B( LDB, * ), D( * ), DL( * ), DU( * ), X(
LDX, * )

PURPOSE
CLAGTM performs a matrix-vector product of the form

ARGUMENTS
TRANS   (input) CHARACTER
Specifies the operation applied to A.  = 'N':  No
transpose, B := alpha * A * X + beta * B
= 'T':  Transpose,    B := alpha * A**T * X + beta *
B
= 'C':  Conjugate transpose, B := alpha * A**H * X +
beta * B

N       (input) INTEGER
The order of the matrix A.  N >= 0.

NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices X and B.

ALPHA   (input) REAL
The scalar alpha.  ALPHA must be 0., 1., or -1.;
otherwise, it is assumed to be 0.

DL      (input) COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal elements of T.

D       (input) COMPLEX array, dimension (N)
The diagonal elements of T.

DU      (input) COMPLEX array, dimension (N-1)
The (n-1) super-diagonal elements of T.

X       (input) COMPLEX array, dimension (LDX,NRHS)
The N by NRHS matrix X.  LDX     (input) INTEGER The
leading dimension of the array X.  LDX >= max(N,1).

BETA    (input) REAL
The scalar beta.  BETA must be 0., 1., or -1.; oth-
erwise, it is assumed to be 1.

B       (input/output) COMPLEX array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.  On exit, B is
overwritten by the matrix expression B := alpha * A
* X + beta * B.

LDB     (input) INTEGER
The leading dimension of the array B.  LDB >=
max(N,1).
```