Previous: cgeql2 Up: ../lapack-c.html Next: cgeqpf

NAME CGEQLF - compute a QL factorization of a complex M-by-N matrix A SYNOPSIS SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER INFO, LDA, LWORK, M, N COMPLEX A( LDA, * ), TAU( * ), WORK( LWORK ) PURPOSE CGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L. ARGUMENTS M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th super- diagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of ele- mentary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value FURTHER DETAILS The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).