
CHAPTER 11

Conics and Polar Coordinates

x11.1. Quadratic Relations

We will see that a curve defined by a quadratic relation between the variablesx; y is one of these three
curves: a) parabola, b) ellipse, c) hyperbola. There are other possibilities, considered degenerate. For
example the graph of the equationx2+ y2 = a we know to be a circle, ifa > 0. But if a = 0, the graph
is just the point(0;0), and if a < 0, there is no graph. Similarly the equationx2� y2 = a describes a
hyperbola ifa 6= 0, but if a = 0, we get the two linesx =�y.

First we list thestandard forms of the basic curves. These are standard in the sense that any other
curve given by a quadratic equation is obtained from one of these by moving the curve in the plane by
translating and/or rotating.

The Parabola. The standard form is one of these:

(11.1) y = ax2 ; x = ay2

The sign ofa determines the orientation of the parabola. We have these four possibilities:

y = ax2;a > 0 y = ax2;a < 0 x = ay2;a > 0 x = ay2;a < 0
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The magnitude ofa determines the spread of the parabola: forjaj very small, the curve is narrow, and
asjaj gets large, the parabola broadens. The origin is thevertex of the parabola. In the first two cases,
they-axis is theaxisof the parabola, in the second two cases it is thex-axis. The parabola is symmetric
about its axis.

The Ellipse The standard form is

(11.2)
x2

a2 + y2

b2 = 1

The valuesx can take lie between�a anda and the valuesy can take lie between�b andb. If a > b
(as shown in figure 11.5), themajor axis of the ellipse is thex-axis, theminor axis is they-axis and the
points(�a;0) are itsvertices.

Figure 11.5
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If a < b (as shown in figure 11.6), the major axis of the ellipse is they-axis,x = 0 is the minor axis,
and the points(0;�b) are itsvertices.

Of course, ifa = b, the curve is the circle of radiusa, and there are no special vertices or axes.

The Hyperbola. The standard form is one of these:

(11.3)
x2

a2 � y2

b2 = 1
y2

b2 � x2

a2 = 1 ;
corresponding to figures 11.7 and 11.8.
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Figure 11.7
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Thex-axis is theaxisof the first hyperbola. The points(�a;0) are the vertices of the hyperbola; forx
between these values, there corresponds no point on the curve. We similarly define the axis and vertices
of the hyperbola of figure 11.8.

The lines

(11.4) y =�b
a

x

are theasymptotesof the hyperbola, in the sense that, asx!∞, the curve gets closer and closer to these
lines. We see this by dividing the defining equation byx2, and consider what happens asx ! ∞. For
example, using the first equation, we get

(11.5)
1
a2 � 1

b2

y2

x2 = 1
x2

Figure 11.9
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which we can rewrite as

(11.6)
a2

b2

y2

x2 = 1� 1
x2 ;

so that, asjxj gets large, the hyperbola approaches the graph of

(11.7)
a2

b2

y2

x2 = 1

which amounts to the two equationsy =�(b=a)x. Figure 11.9 shows these asymptotes.
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Now, the general quadratic relation betweenx andy is

(11.8) Ax2+By2+Cxy+Dx+Ey+F = 0

If C = 0, then by completing the square in bothx andy we are led to an equation which looks much like
one of the standard forms, but with the center removed to a newpoint (x0;y0). If C 6= 0, the situation is
more difficult: a rotation of the figure is also required to getit into standard form. We will discuss this
no further, and consider only the caseC = 0. First, some examples:
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Figure 11.10

Example 11.1 Graph the curve 3x2�30x� y+73= 0:
We have to complete the square inx. We get

(11.9) 3(x2�10x+25)� y+73�75= 0

which gives the standard form

(11.10) y+2= 3(x�5)2 :
�6 �6
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Figure 11.11

Example 11.2 Graph the curve 9x2+4y2�18x�16y�11= 0
Completing the squares:

(11.11) 9(x2�2x+1)+4(y2�4y+4) = 11+9+16= 36 ;
(11.12)

(x�1)2
22 + (y�2)2

32 = 1 :
�8
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Figure 11.12

Example 11.3 Graph the curve�5x2+ y2+30x+4y�46= 0: Completing
the squares:

(11.13) �5(x2�6x+9)+(y2+4y+4) = 46�45+4= 5 ;
(11.14)

(y+2)2(p5)2 � (x�3)2 = 1 :
Proposition 11.1 The equation

(11.15) Ax2+By2+Dx+Ey+F = 0

can be put into one of the following forms by completing the square:
a) (parabola):y� y0= A(x� x0)2; if B = 0: The vertex of the parabola is at (x0;y0), and the axis is the
line x = x0.
b) (parabola): x� x0 =C(y� y0)2 if A = 0: The vertex of the parabola is at (x0;y0), and the axis is the
line y = y0.
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c) (ellipse)
(x� x0)2

a2 + (y� y0)2
b2 = 1 if A and B are of the same sign The center of the ellipse is at(x0;y0), and its axes are the lines x = x0; y = y0.

d) (hyperbola):
(x� x0)2

a2 � (y� y0)2
b2 = 1 or

(y� y0)2
b2 � (x� x0)2

a2 = 1 if A and B are of different

signs. The center of the hyperbola is (x0;y0), and its axes are the lines x = x0; y = y0.
e) If both A and B are zero, the curve is a line. The following degenerate cases may also result:

(11.16) A(x� x0)2+B(y� y0)2 � 0 : no graph or just the point(x0;y0):
(11.17) A(x� x0)2�B(y� y0)2 = 0 : two lines crossing at(x0;y0):
Example 11.4 Finally, just to illustrate the situation of a quadratic whose coefficient ofxy is nonzero,
we consider the curvexy�1= 0. This curve is symmetric about the linesy=�x, and has the asymptotes
x= 0; y= 0. This appears to be a hyperbola with major axis the linex = y. In fact, if we make the linear
change of variablesx = u+ v; y = u� v, this becomes the curveu2� v2 = 1 in the new variables. (This
change of variables represents a rotation by 45Æ, with a slight change of scale.)

x11.2. Eccentricity and Foci

These curves are called theconic sectionsbecause they can be visualized as the intersection of a cone
with a plane. We shall now consider another definition, dating from the ancient Greeks, which leads to
important properties of the conics.

Fix a pointF and a lineL in the plane such thatL does not go throughF . Pick a positive numbere.
We consider the locusC of all pointsX in the plane such that

(11.18) jXF j= ejXLj
wherejXY j means the distance fromX to Y . e is theeccentricity of C; F the focusandL thedirectrix .
Note that the curveC is symmetric about the line through the focus and perpendicular to the directrix.
This is theaxisof the curve. There is one point betweenF andL onC which is on this axis; this point is
thevertex of C.

We now show that ife = 1, C is a parabola, ife < 1, C is an ellipse and ife > 1, C is a hyperbola.
Let’s take the axis ofC to be thex axis, and place the vertex at the origin,O. Then the focus is some
point (p;0); we takep > 0. SincejOF j= p, from 11.18 we find that the directrix is the linex =�p=e
(see figure 11.14).
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Now, for a pointX = (x;y) on the curve, we have

(11.19) jXLj= x+ p=e and jXFj=p(x� p)2+ y2

and so equation 11.18 in coordinates is given by

(11.20)
p(x� p)2+ y2 = e(x+ p=e) = ex+ p :

Casee = 1. Squaring both sides we get

(11.21) x2�2px+ p2+ y2 = x2+2px+ p2 simplifying to y2 = 4px :
This of course is the standard form of a parabola. It also locates the focus and the directrix of a parabola.

Proposition 11.2 The focus of the parabola y2 = ax is a=4 units on one side of the vertex of the parabola
along the axis, and and the directrix intersects the axis a=4 units on the other side.

Example 11.5 Find the vertex, focus and directrix of the parabola given bythe equation 2x2+6x�y+
4= 0:

First we put the equation in standard form. Completing the square, we have

(11.22) 2

�
x2+3x+ 9

4

�� 9
2
= y�4 ; or

�
x+ 3

2

�2 = 1
2

�
y+ 1

2

� :
Thus the vertex is at(�3=2;1=2), the axis of the parabola is the linex=�3=2 and we have 4p= 1=2, so
p = 1=8. Thus the focus is at(�3=2;(1=2)+(1=8))= (�3=2;5=8) and the directrix is the liney= 3=8.

Example 11.6 Find the equation of the parabola whose vertex is at(4;2) and whose directrix is the line
x =�1. Find the focus of this parabola.

Since the directrix is a vertical line, the axis is horizontal, so the equation has the form

(11.23) (y�2)2 = 4p(x�4) ;
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since the vertex is at(4;2). Now p is the distance between the vertex and the directrix, so p= 2�(�1)=
5. Thus the equation of the parabola is

(11.24) (y�2)2 = 20(x�4) :
The focus is 5 units to the right of the vertex, so is at(9;2).
Example 11.7 Find the equation of the parabola whose focus is the origin and whose vertex is at the
point(a;0) with a > 0.

The parabola has its axis thex-axis, and since the vertex is to the right of the focus, the parabola
opens to the left. Thus the equation has the form

(11.25) y2 =�4p(x�a) ;
wherep is the distance between focus and vertex. But that isa, so the equation is

(11.26) y2 =�4a(x�a) :
Casee 6= 1.Squaring both sides of 11.20 gives us

(11.27) x2�2px+ p2+ y2 = e2(x2+2px+ p2)
which simplifies to

(11.28) (1� e2)x2+ y2�2p(1+ e)x= 0

Thus, if e < 1, this is an ellipse, and ife > 1 this is a hyperbola. Notice, because of symmetry in the
minor axis, ellipses and hyperbolas have two foci; one on each side of the minor axis.

We now want show how to locate the foci of an ellipse given in standard form. Thus we start by
putting 11.28 in standard form, and then compare it to the formula of proposition 11.1c. Dividing equa-
tion 11.28 by the coefficient ofx2 gives us

(11.29) x2� 2p
1� e

x+ y2

1� e2 = 0

Now completing the square, we come to

(11.30)

�
x� p

1� e

�2+ y2

1� e2 = p2(1� e)2
Comparing this to

(11.31)
(x� x0)2

a2 + (y� y0)2
b2 = 1

we see that the center of the ellipse is at(p=(1� e);0) anda = p=(1� e); b2 = (1� e2)a2. Let c be the
distance of the center from the focus. Then

(11.32) c = p
1� e

� p = e
p

1� e
= ea
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andc2 = e2a2 = a2�b2. Summarizing

Proposition 11.3 If an ellipse is in standard form (11.31), with a > b, then the foci of the ellipse are on
the major axis, c units away from the center where

(11.33) c2 = a2�b2

The eccentricity of the ellipse is given by the equations

(11.34) b2 = (1� e2)a2 or c = ea

The same arguments for the casee > 1, the hyperbola, lead to

Proposition 11.4 If a hyperbola is in standard form

(11.35)
(x� x0)2

a2 � (y� y0)2
b2 = 1

then the foci of the hyperbola are on the major axis, c units away from the center where

(11.36) c2 = a2+b2

The eccentricity of the hyperbola is given by the equations

(11.37) b2 = (e2�1)a2 or c = ea

Example 11.8 Find the foci of the conic given by the equationx2+4y2�2x= 8 :
First, we complete the square to get the equation in standardform:

(11.38)
(x�1)2

32 + y2(3=2)2 = 1 :
This conic is an ellipse centered at (1,0), with major axis the x-axis, anda2 = 9; b2 = 9=4. Thus
c2 = a2�b2 = 9(3=4), soc= (3=2)p3. This is the distance of the foci from the center (along the major
axis), so the foci are at(1� (3=2)p3;0).
Example 11.9 Find the foci of the conic given by the equationy2� x2+4x= 13 :

Complete the squares, and get the standard form

(11.39)
y2

32 � (x�2)2
32 = 1 :

This is a hyperbola with center at(2;0), and major axis the linex = 2. We havec2 = a2+ b2 = 18, so
c = 3

p
2 is the distance of the foci from the center along the linex = 2. Thus the foci are at(2;�3

p
2).

The vertices are at(2;�3).
Example 11.10 Find the equation of the ellipse centered at the origin, witha focus at(2;0) and a vertex
at (3;0).
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The equation of an ellipse centered at the origin is

(11.40)
x2

a2 + y2

b2 = 1:
We are givena = 3; c = 2. Thusb2 = a2� c2 = 5, and the equation is

(11.41)
x2

9
+ y2

5
= 1

x11.3. String and Optical Properties of the Conics

We have seen that the parabola can be defined as the locus of pointsX equidistant from a given pointF
and a given lineL. The ellipse and the hyperbola have similar definitions.

Proposition 11.5 Given two points F1 and F2 and a number a greater than the distance between F1 and
F2, the locus of points X such that

(11.42) jXF1j+ jXF2j= 2a

is an ellipse with foci at F1 and F2 and major axis of length 2a.

Given an ellipse in standard form, we can verify 11.42 by a lengthy algebraic computation. To show
that 11.42 leads to the equation of an ellipse is another algebraic computation beginning this way. Choose
coordinates so that the pointsF1 andF2 lie on thex-axis, and the origin is midway between the points.
ThenF1 has coordinates(�c;0), andF2 has coordinates(c;0) for somec < a. LetX have the coordinates(x;y). Then 11.42 becomes

(11.43)
p(x+ c)2+ y2+p(x� c)2+ y2 = 2a

Eliminate the radicals to verify that we end up with a quadratic equation which is that of an ellipse. We
have a similar description of the hyperbola:

Proposition 11.6 Given two points F1 and F2 and a positive number a, the locus of points X such that

(11.44) jXF1j� jXF2j= 2a

is a hyperbola with foci at F1 and F2.

Actually, this is just the branch of the hyperbola which wraps around the focusF2; the other branch
is given by the equation

(11.45) jXF2j� jXF1j= 2a

The optical properties of the conics follow from these string characterizations. Let’s start with the
parabola. Suppose that the parabola is coated with a light-reflecting material. The rays of a beam of
light originating far away along the axis of the parabola will approach the parabola along lines parallel to
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Figure 11.15
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its axis. According to the physics of the situation, the angle of reflection off the parabola is equal to the
angle of incidence. The optical property of the parabola is that these reflected rays all meet at the focus.

Proposition 11.7 Let X be a point on the parabola, and T the tangent line to the parabola at X. Let LF
be the line from the focus to X, and L the line through X parallel to the axis of the parabola. Then the
angle between T and LF is equal to the angle between T and L.

What we want to show, referring to figure 11.15, is thatγ = α. From the figure we see that this
amounts to showing thatβ�α = α. Let us think of the parabola as being traced out by a particlemoving
to the right at constant velocity 1. This expresses the coordinates(x;y) of the pointX as functions of arc
lengths. The string property of the parabola tells us that

(11.46)
p(x� c)2+ y2 = x+ c

Differentiating with respect to arc length gives us

(11.47)
2(x� c) dx

ds +2y dy
ds

2
p(x� c)2+ y2

= dx
ds

which simplifies to

(11.48)
x� cp(x� c)2+ y2

dx
ds

+ yp(x� c)2+ y2

dy
ds

= dx
ds

Now we do a little trigonometry:

(11.49) cosβ = x� cp(x� c)2+ y2
sinβ = yp(x� c)2+ y2

cosα = dx
ds

sinα = dy
ds
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Figure 11.16
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so (10) becomes

(11.50) cosβ cosα +sinβ sinα = cosα

or cos(β �α) = cosα, from which we concludeβ �α = α as desired.
The optical property of the ellipse is that a ray of light emanating from one focus reflects off the

ellipse so as to pass through the other focus.

Proposition 11.8 Let X be a point on the ellipse, and T the tangent line to the ellipse at X. Let L1 be the
line from the focus F1 to X, and L2 the line from the other focus F2 to X. Then the angle between T and
L1 is equal to the angle between T and L2.

What we want to show, referring to figure 11.16, is thatβ2+α = β1�α. We start with the string
property, written in the coordinates as shown in the figure:

(11.51)
p(x+ c)2+ y2+p(x� c)2+ y2 = 2a

We now differentiate with respect to arc length, and arrive at

(11.52)
x+ cp(x+ c)2+ y2

dx
ds

+ yp(x+ c)2+ y2

dy
ds

+ x� cp(x� c)2+ y2

dx
ds

+ yp(x� c)2+ y2

dy
ds

= 0

We now make the substitutions with the trigonometric functions, but here we have to be careful: in our
picturedy andx� c are negative, so since the sine and cosine are ratios oflengths, we have

(11.53) cosβ1 =� x� cp(x� c)2+ y2
sinα = ���dy

ds

���=�dy
ds

:
Thus our equation becomes

(11.54) cosβ2cosα +sinβ2(�cosα)+(�cosβ1)cosα +sinβ1(�sinα) = 0

or

(11.55) (cosβ2cosα�sinβ2cosα)� (cosβ1cosα +sinβ1sinα) = 0
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which is cos(β2+α)�cos(β1�α) = 0, soβ2+α = β1�α as desired
The optical property of the hyperbola is that a ray of light emanating from one focus reflects off the

opposite branch of the hyperbola so as to appear to have come from the other focus.

Proposition 11.9 Let X be a point on the hyperbola, and T the tangent line to the ellipse at X. Let L1
be the line from the focus F1 to X, and L2 the line from the other focus F2 to X. Then the exterior angles
between T and L1 and between T and L2 are equal

Figure 11.17:
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α
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L1 L2
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x11.4. Polar Coordinates

x

y

r

θ

Figure 11.18

Often a problem can be seen as that of understanding the motion of
a particle in the plane relative to a fixed point. In such a situation it is
desirable to be able to describe a position in terms of the length and the
direction of the line between the two points. These are thepolar coor-
dinates of the point. We consider the fixed point as the origin of these
coordinates, and take the positivex-axis as the “zero” direction. Then any
other direction is described by the angle between it and the positivex axis,
which we denote asθ . The distance of a point on this line from the origin
is denotedr. These equations relate the cartesian coordinates(x;y) with
the polar coordinatesr;θ :

(11.56) x = rcosθ ; y = rsinθ ; r =p
x2+ y2 ; θ = arctan

y
x

See figure 11.18
Polar coordinates have two pecularities which we need to getused to. Every value of(r;θ ) determines

a point in the plane. However, ifr = 0, the point is the origin, andθ doesn’t make sense. Secondly, the
values(r;θ ) and(r;θ +2π), and in fact,(r;θ +2nπ) for anyn give the same point. This ambiguity is
sometimes of value: for example, when discussing the motionof a particle,n tells us how many times
the particle has wound around the origin in the counterclockwise sense. Finally, it is also of convenience
to let r take negative values, meaning a distance ofjrj in the opposite direction of the rayθ . Thus(r;θ )
and(�r;θ +π) determine the same point. We now consider the graphs of equations in polar coordinates.

Example 11.11 The equationr = a, for a > 0 is satisfied by all points of distancea from the origin, so
is polar equation of the circle of radiusa centered at the origin.
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Figure 11.19

θaθ

Figure 11.20

Example 11.12 The equationθ = θ0 is the line which makes an angle ofθ0 with thex-axis.

Example 11.13 r = aθ describes the motion of a point which rotates around the origin at angular
velocity 1 while moving out along the ray at velocitya. This is theArchimedean spiral and is shown in
figure 11.19.

Example 11.14 r= eaθ is another spiral, however, the point moves out along the rayat a rate exponential
in the rate of rotation. This is thelogarithmic spiral and is shown in figure 11.20.

Example 11.15 The equationr = acosθ is the circle of diametera with center on thex-axis which goes
through the origin. For, if we multiply byr we getr2 = arcosθ , which can now be written in cartesian
coordinates (using (11.56)) as

(11.57) x2+ y2 = ax or
�

x� a
2

�2+ y2 = a2

4
:

Given an equation of the formr= r(θ ), we can often trace out the graph by just studying the behavior
of the functionr(θ ). Let’s redo example 11.15 this way. We have this table

θ 0 π
2 π 3π

2 2π
r 1 0 �1 0 1

Figure 11.21p +
a

( ; )
θ

Figure 11.22
p +
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r θ
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d L
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It will be useful for you to follow the following discussion along the curve in figure 11.21. Between 0
andπ=2 the point is in the first quadrant, and as the angle increasesit moves toward the origin, reaching
there atθ = π=2. Then forθ betweenπ=2 andπ , the point is in the fourth quadrant (becauser < 0),
steadily moving away from the origin until we reach the pointwe’ve started with. This looks like a circle,
and the argument above (in example 11.15) shows that it is. Note that asθ moves fromπ to 2π the circle
is retraced.

Example 11.16 Similarly, the equationr = acos(θ � θ0) is the circle through the origin of radiusa
with center on the ray of angleθ0. This amounts to the assertion that any equation of the form

(11.58) r = acosθ +bsinθ

is a circle with the origin the endpoint of one of its diameters (see practice problem 12.1).

Example 11.17 If we are given the equation of a curve in cartesian coordinates, we can find its equation
in polar coordinates through the substitutionx = rcosθ ; y = rsinθ . For example

(11.59) Equation of a line: r = c
acosθ +bsinθ

:
For, the general equation of a line isax+by= c. After substitution this becomes

(11.60) arcosθ +brcosθ = c;
which becomes the above when we solve forr.

Example 11.18 The polar equation of a conic of eccentricitye, focus at the origin and directrix the line
x =�d is

(11.61) Equation of a Conic: r = ed
1� ecosθ

:
To show 11.61, we start with the defining relationjXFj = ejXLj, referring to figure 11.22. In polar

coordinates this gives us

(11.62) r = e(d+ x) = e(d+ rcosθ )
Solving forr brings us to (11.61). If the figure is rotated byθ0, we just replaceθ with θ �θ0

Example 11.19 r = acos2θ . We first construct the table:

θ 0 π
4

π
2

3π
4 π

r a 0 �a 0 a

Follow this discussion along the graph shown in figure 11.23.This time the curve starts (atθ = 0) at
r = a, and decreases to zero byθ = π=4. Betweenπ=4 andπ=2; r is negative, so the curve is in the third
quadrant, and asθ rotates counterclockwise,r moves away from the origin finally tor =�a for θ = π=2.
As θ increases fromπ=2 the point continues to move toward the origin (in the fourthquadrant), arriving
there atθ = 3π=2. Moving on,r becomes positive, so we enter the second quadrant with the distance
from the origin steadily increasing until, atθ = π we are atr = a. Since cosθ is an even function, as
we move fromπ to 2π (or what is the same, from�π to 0), we just get the same curve, reflected in the
x-axis. This is thefour-petalled roseshown in figure 11.24.
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Figure 11.23 Figure 11.24

Example 11.20 r = acos3θ is a three-petalled rose. Construct the table of important values between 0
andπ and argue as in example 11.19. The table is

θ 0 π
6

π
3

π
2

2π
3

5π
6 π

r a 0 �a 0 a 0 �a

That completes the rose; as we proceed fromπ to 2π we traverse the rose again. See figure 11.25.

Figure 11.25
Figure 11.26

We conclude

Proposition 11.10 The graph of the equation r = acos(nθ ) or r = asin(nθ ) is a 2n-petalled rose if n is
even, and an n petalled rose if n is odd (traversed twice).

Limaçons. These are the curves defined by the equationr = a+bcosθ .
First, we consider the case:a > b. We have the table

θ 0 pi
2 π 3π

2 2π
r a+b a a�b a a+b

leading to the graph shown in figure 11.26.
As b gets closer and closer toa, the value ofr for θ = π goes to zero. Thus whena = b, we get the

graph shown in figure 11.27, called thecardioid.
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Figure 11.27 Figure 11.28

Then asb goes beyonda, r becomes negative asθ gets nearπ , and there is an inner loop of the
limaçon

Example 11.21 r = 2+4cosθ . Our table is this:

θ 0 pi
2 π 3π

2 2π
r 6 2 �2 2 6

When cosθ = �1=2, that is, forθ = �2π=3, the value ofr is zero, and between these two valuesr
is negative. We get the graph shown in figure 11.28. We have drawn the curve so that it is tangent to
θ =�π=3 for those values ofθ . This is correct, as we will show in the next section.

Finally, it is important to note that if the function cosθ is replaced by�cosθ the curve is reflected
in they-axis, and if it is replaced by�sinθ , it is rotated by a right angle.x11.5. Calculus in polar coordinates

Arc length
Consider the curve given in polar coordinates by the equation r = r(θ ). We can calculate the differ-

entialds of arc length by the differential triangle in polar coordinates using this diagram.

Figure 11.29

dr
ds

rdt

r = r (t)dt r

The length of the arc of the circle of radiusr subtended by the angledθ is rdθ . The differential
triangle is thus a right triangle with side lengthsdr andrdθ . By the pythagorean theorem

(11.63) ds2 = dr2+ r2dθ 2
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Example 11.22 Find the length of the curver = θ 2 from 0 to 2π .
This curve is a spiral whose distance from the origin increases as the square of the angle. We have

dr = 2θdθ , so

(11.64) ds2 = dr2+ r2dθ 2 = 4θ 2dθ 2+θ 4dθ 2 = θ 2(4+θ 2)dθ 2

and thus the length is

(11.65)
Z 2π

0
ds = Z 2π

0
θ
p

4+θ 2dθ = 1
3

�
4+θ 2�3=2

���2π

0
= 1

3

��
4+4π2�3=2�43=2

�
Area
To caculate the area enclosed by a curve given, in polar coordinates, byr = r(θ ), we calculate the
differential of area, using figure 11.30.

rdθ

r
dθ

r = r (θ )
Figure 11.30

The area of the wedge given by the incrementdθ is (1=2)r2dθ .
To see this, we start with the area of the circle of radiusr : A =
πr2. Now an angleα subtends a segment of the circle which is
the (α=2π)th part of the full circle, thus the area of that segment is(1=2)r2α. Thus, forα = dθ , we get

(11.66) dA = 1
2

r2dθ :
Example 11.23 Find the area enclosed by the cardioidr = 3(1+
sinθ ).

The area is

(11.67) Area = 1
2

Z 2π

0

�
3(1+sinθ )2�dθ = 9

2

Z 2π

0
(1+2sinθ +sin2 θ )dθ :

Now, we know that the integral of sinθ over an entire period is zero, so we can neglect the middle term.
We now use the double angle formula for the last term, and dropthe integral of cos(2θ ) for the same
reason:

(11.68) Area = 9
2

Z 2π

0

�
1+ 1�cos(2θ )

2

�
dθ = 9

2

Z 2π

0

3
2

dθ = 27
2

π :
Example 11.24 Find the area inside one petal of the roser = sin3θ .

At θ = 0 we haver = 0, but then as the angle rotates,r increases to its maximum at 3θ = π=2, and
then decreases back to zero for 3θ = π . Thus one petal is spanned asθ ranges from 0 toπ=3. We now
calculate;

(11.69) Area = 1
2

Z π=3

0
sin2 (3θ )dθ = 1

2

Z π=3

0

�
1�cos(6θ )

2

�
dθ = 1

2

�
θ
2
� cos(6θ )

12

����π=3

0
= π

12
:
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Figure 11.31

r = r (θ )
φ

α
θ

θ

dθ

tan line

TangentsGiven the polar equationr = r(θ ) of a curve, we can find the tangent at any point as follows.
First of all, the cartesian coordinates are given byx = r(θ )cosθ ; y = r(θ )sinθ . If m is the slope of the
tangent line, we have, by the chain rule

(11.70) m = dy
dx

= dy=dθ
dx=dθ

= rcosθ +sinθ dr
dθ�rsinθ +cosθ dr

dθ

Notice that, asr ! 0, the right hand side approaches tanθ . Thus, ifθ0 is a value for whichr = 0, then
the curve approaches the origin along the rayθ = θ0.

Example 11.25 What is the slope of the tangent to the inner loop of the limacon

(11.71) r = 2+5cosθ

at the origin?
We find the values ofθ for which r = 0:

(11.72) 2+5cosθ = 0 or cosθ =�2
5

so thatθ =�0:63π radians or 113:6Æ.


