CHAPTER 11

Conics and Polar Coordinates

§11.1. Quadratic Relations

We will see that a curve defined by a quadratic relation betvikee variables, y is one of these three
curves: a) parabola, b) ellipse, ¢) hyperbola. There arerqibssibilities, considered degenerate. For
example the graph of the equatigf+ y? = a we know to be a circle, i > 0. But if a= 0, the graph
is just the point(0,0), and ifa < 0, there is no graph. Similarly the equatigh— y> = a describes a
hyperbolaifa# 0, butifa = 0, we get the two lineg = +y.

First we list thestandard forms of the basic curves. These are standard in the sense thattety o

curve given by a quadratic equation is obtained from one efatby moving the curve in the plane by
translating and/or rotating.

The Parabola The standard form is one of these:
(11.1) y=ax’, x=ay
The sign ofa determines the orientation of the parabola. We have thesefussibilities:

y=ax*,a>0 y=ax,a<0 x=a?a>0 x=ay?a<0

Figure 11.1 Figure 11.2 Figure 11.3 Figure 11.4
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Figure 11.3 Figure 11.4
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The magnitude o determines the spread of the parabola]&wery small, the curve is narrow, and
as|a| gets large, the parabola broadens. The origin isséreex of the parabola. In the first two cases,
they-axis is theaxis of the parabola, in the second two cases it is#faxis. The parabola is symmetric
about its axis.

The Ellipse The standard form is

X2 y2

(11.2) 2t =1

The value can take lie betweena anda and the valuey can take lie betweenb andb. If a>b
(as shown in figure 11.5), thmajor axis of the ellipse is the-axis, theminor axis is they-axis and the
points(+a,0) are itsvertices

Figure 11.5 Figure 11.6

b
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If a < b (as shown in figure 11.6), the major axis of the ellipse isytais,x = 0 is the minor axis,
and the point$0, £b) are itsvertices
Of course, ifa = b, the curve is the circle of radiug and there are no special vertices or axes.

The Hyperbola. The standard form is one of these:

X2 y2 y2 X2

corresponding to figures 11.7 and 11.8.
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Figure 11.7 Figure 11.8

Thex-axis is theaxis of the first hyperbola. The points-a,0) are the vertices of the hyperbola; for
between these values, there corresponds no point on the.dessimilarly define the axis and vertices

of the hyperbola of figure 11.8.
The lines

b
] — 4
(11.4) y==+ aX

are theasymptotesof the hyperbola, in the sense thatxas , the curve gets closer and closer to these
lines. We see this by dividing the defining equationxyand consider what happensass «. For

example, using the first equation, we get

1 1y 1
(11.5) Z B2l
Figure 11.9

which we can rewrite as

a?y? 1
®x2 T xR

so that, agx| gets large, the hyperbola approaches the graph of

(11.6)

a2 y2

which amounts to the two equations- +(b/a)x. Figure 11.9 shows these asymptotes.
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Now, the general quadratic relation betweesndy is
(11.8) A 4+ By? +Cxy+Dx+Ey+F =0

If C =0, then by completing the square in bathndy we are led to an equation which looks much like
one of the standard forms, but with the center removed to apuémt (x,,Y,). If C # 0, the situation is
more difficult: a rotation of the figure is also required to geémnto standard form. We will discuss this
no further, and consider only the caSe= 0. First, some examples:

701 Example 11.1 Graph the curve@ — 30x—y+ 73=0.
50 4 We have to complete the squarexinVe get
304 (11.9) 3x® —10x+25) —y+73—75=0
10+ (5,-2) which gives the standard form

02 4°6 8 10 (11.10) y+2=3(x—5)2.

Figure 11.10

Example 11.2 Graph the curveX + 4y — 18x— 16y — 11=0
Completing the squares:

(11.11) Q@ —2x+1) +4(y*—4y+4)=11+9+16=36, Faope s
—21 |
|
(x-1)*  (y—2)? 4
(11.12) 7 to g =L R
Figure 11.11
4\ //' Example 11.3 Graph the curve 5x% +y? + 30x+ 4y — 46= 0. Completing
21\ | / the squares:
468 (11.13) —5(% — 6X+9) + (Y2 + 4y +4) = 46— 45+ 4=5,
\\‘\(37_2)
\\ (y+ 2)2 2
. (11.14) —(x—3)%2=1.
\ oz "
Figure 11.12
Proposition 11.1 The equation
(11.15) A +By?>+Dx+Ey+F=0

can be put into one of the following forms by completing the square:

a) (parabola):y — y, = A(X — X,)?, if B = 0. The vertex of the parabola is at (x,,Y,), and the axisis the
line X = X,.

b) (parabola): x —x, =C(y — yo)2 if A= 0. The vertex of the parabolais at (x,,Y,), and the axis is the
liney =y,.
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-y (X=%)* (Y= ¥)?
9 (ellipse) | a;((’) 4 sz)
(Xp: Yo)» @and itsaxesaretzhelinesx:zxo, Y=Y , ,

d) (hyperbola): (X_;(O) 7(y—g/0) (y—zo) f(x_a:o) = 1if A and B are of different

signs. The center of the hyperbolais (x,,y,), and its axes are the linesx = x,, y =Y.
e) If both A and B are zero, the curveis a line. The following degenerate cases may also result:

= 1if A and B are of the same sign The center of the ellipse is at

=1or

(11.16) A(X—X0)>+B(y —Y,)> <0 : no graph or just the poiriky,Y,)-

(11.17) A(X—X0)> ~B(y—Y,)?=0 : two lines crossing &y, Y)-

Example 11.4 Finally, just to illustrate the situation of a quadratic vekacoefficient oky is nonzero,
we consider the curwey — 1= 0. This curve is symmetric about the lings: +x, and has the asymptotes
x=0, y=0. This appears to be a hyperbola with major axis thextirey. In fact, if we make the linear
change of variables = u+v, y = u— v, this becomes the curw€ — v = 1 in the new variables. (This
change of variables represents a rotation by, #&th a slight change of scale.)

§11.2. Eccentricity and Foci

These curves are called thenic sectionshecause they can be visualized as the intersection of a cone
with a plane. We shall now consider another definition, dptiom the ancient Greeks, which leads to
important properties of the conics.

Fix a pointF and a linel in the plane such that does not go througk. Pick a positive numbes.
We consider the locus of all pointsX in the plane such that

(11.18) IXF| = e[XL|

where|XY| means the distance froito Y. eis theeccentricity of C; F thefocusandL thedirectrix .
Note that the curv€ is symmetric about the line through the focus and perpetatita the directrix.
This is theaxis of the curve. There is one point betwedermndL onC which is on this axis; this point is
thevertex of C.

We now show that ie= 1, C is a parabola, ie < 1,C is an ellipse and ie > 1, C is a hyperbola.
Let’s take the axis o€ to be thex axis, and place the vertex at the origd, Then the focus is some
point (p,0); we takep > 0. Since|OF| = p, from 11.18 we find that the directrix is the lixe= —p/e
(see figure 11.14).
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Now, for a pointX = (x,y) on the curve, we have
(11.19) XL| =x+p/e and |XF|=/(x—p)2+y?
and so equation 11.18 in coordinates is given by
(11.20) V(X—p)2+y2=¢e(x+p/e) =ex+p.
Casee = 1. Squaring both sides we get
(11.21) X% — 2px+ PP+ Y2 = X2+ 2px+ p?>  simplifyingto y? = 4px.

This of course is the standard form of a parabola. It alsatézcthe focus and the directrix of a parabola.
Proposition 11.2 The focus of the parabolay? = ax isa/4 units on one side of the vertex of the parabola
along the axis, and and the directrix intersects the axis a/4 units on the other side.

Example 11.5 Find the vertex, focus and directrix of the parabola givethsyequation £ + 6x—y +
4=0.
First we put the equation in standard form. Completing thease, we have

9\ 9 3\? 1 1
2 — —_ = = — — = — —
(11.22) 2<x +3x+4> 5=y 4, or <X+ 2) 5 <y+ 2) :

Thus the vertex is gt-3/2,1/2), the axis of the parabola is the line= —3/2 and we have@d=1/2, so
p=1/8. Thus the focus is t-3/2,(1/2) + (1/8)) = (—3/2,5/8) and the directrix is the ling = 3/8.

Example 11.6 Find the equation of the parabola whose vertex (@&2) and whose directrix is the line
x = —1. Find the focus of this parabola.
Since the directrix is a vertical line, the axis is horizdnga the equation has the form

(11.23) (y—2)2=4p(x—4),



§11.2 Eccentricity and Foci 163

since the vertex is #,2). Now p is the distance between the vertex and the directrig;s2— (-1) =
5. Thus the equation of the parabolais

(11.24) (y—2)2=20(x—4) .
The focus is 5 units to the right of the vertex, so i$@aLR).

Example 11.7 Find the equation of the parabola whose focus is the origihveimose vertex is at the
point (a,0) with a > 0.

The parabola has its axis tkxeaxis, and since the vertex is to the right of the focus, thalpala
opens to the left. Thus the equation has the form

(11.25) y? = —4p(x—a),

wherep is the distance between focus and vertex. But that $® the equation is
(11.26) y? = —4a(x—a) .

Casee # 1.Squaring both sides of 11.20 gives us

(11.27) X% — 2px+ PP+ Y2 = (X + 2px+ p?)

which simplifies to

(11.28) (1-e)x2+y>—2p(1+e)x=0

Thus, ife < 1, this is an ellipse, and & > 1 this is a hyperbola. Notice, because of symmetry in the
minor axis, ellipses and hyperbolas have two foci; one oh sate of the minor axis.

We now want show how to locate the foci of an ellipse given andard form. Thus we start by
putting 11.28 in standard form, and then compare it to theéda of proposition 11.1c. Dividing equa-
tion 11.28 by the coefficient of gives us

2
(11.29) 2 2Py Y

11T e "

Now completing the square, we come to

2 2 2
P Y _ P
(11.30) <x—1e) T T o

Comparing this to

(Y—Yo) 2
b2

(X—%g)?

a2

(11.31) + =1
we see that the center of the ellipse i$pt(1—e),0) anda= p/(1—e), b’ = (1—€?)a’. Letc be the

distance of the center from the focus. Then

(11.32) c= P —p=e P =ea
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andc? = €?a? = a? — b2, Summarizing

Proposition 11.3 If an ellipse isin standard form (11.31), with a > b, then the foci of the ellipse are on
the major axis, ¢ units away from the center where

(11.33) c2=a’-b’
The eccentricity of the ellipse is given by the equations

(11.34) b>=(1-¢ea?> or c=ea

The same arguments for the case 1, the hyperbola, lead to
Proposition 11.4 If a hyperbolaisin standard form
(x=%)*  (Y—Yo)?

a2 b2

then the foci of the hyperbola are on the major axis, ¢ units away from the center where

(11.35) =1

(11.36) 2 =a’+b?
The eccentricity of the hyperbola is given by the equations

(11.37) b>=(e?—1)a®> or c=ea

Example 11.8 Find the foci of the conic given by the equatigf+ 4y? — 2x= 8.
First, we complete the square to get the equation in staridard

(x=1)2% ¥

7 L

(11.38)

This conic is an ellipse centered at (1,0), with major axistraxis, anda® = 9, b’ = 9/4. Thus
c? =a? —b? =9(3/4), soc = (3/2)V/3. This is the distance of the foci from the center (along tkagom
axis), so the foci are &t + (3/2)v/3,0).

Example 11.9 Find the foci of the conic given by the equatigh— x> + 4x = 13.
Complete the squares, and get the standard form

y>  (x=2?

(11.39) 7z =1

This is a hyperbola with center &2,0), and major axis the ling = 2. We havec? = a® + b? = 18, so
¢ = 3V/2 is the distance of the foci from the center along the ¥re2. Thus the foci are g2, £3v/2).
The vertices are 42, +3).

Example 11.10 Find the equation of the ellipse centered at the origin, witbcus a{2,0) and a vertex
at(3,0).
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The equation of an ellipse centered at the origin is

X2 y2

Z2tp=1

(11.40)
We are givera =3, ¢ = 2. Thusb® = a® — ¢ = 5, and the equation is

(11.41) X4

§11.3. String and Optical Properties of the Conics

We have seen that the parabola can be defined as the locuswtX¥@quidistant from a given poirt
and a given lind.. The ellipse and the hyperbola have similar definitions.

Proposition 11.5 Given two points F, and F, and a number a greater than the distance between F; and
F,, the locus of points X such that

(11.42) IXF,| + |XF,| = 2a

isan ellipse with foci at F; and F, and major axis of length 2a.

Given an ellipse in standard form, we can verify 11.42 by giley algebraic computation. To show
that 11.42 leads to the equation of an ellipse is anothebeddrecomputation beginning this way. Choose
coordinates so that the poirfég andF, lie on thex-axis, and the origin is midway between the points.
ThenF, has coordinates-c, 0), andF, has coordinate, 0) for somec < a. LetX have the coordinates
(x,y). Then 11.42 becomes

(11.43) V(X+0)24+y2+/(x—c)2+y2=2a

Eliminate the radicals to verify that we end up with a quadratjuation which is that of an ellipse. We
have a similar description of the hyperbola:

Proposition 11.6 Given two points F; and F, and a positive number a, the locus of points X such that
(11.44) IXFy| = [XF,| = 2a

is a hyperbola with foci at F; and F,.

Actually, this is just the branch of the hyperbola which ws@pound the focuB,; the other branch
is given by the equation

(11.45) IXF,| — |XFy| = 2a

The optical properties of the conics follow from these gfroharacterizations. Let's start with the
parabola. Suppose that the parabola is coated with a leflgeting material. The rays of a beam of
light originating far away along the axis of the parabold afiproach the parabola along lines parallel to



Chapter 11 Conics and Polar Coordinates

166

Figure 11.15

its axis. According to the physics of the situation, the araflreflection off the parabola is equal to the
angle of incidence. The optical property of the parabolhas these reflected rays all meet at the focus.

Proposition 11.7 Let X be a point on the parabola, and T the tangent line to the parabola at X. Let L,
be the line from the focus to X, and L the line through X parallel to the axis of the parabola. Then the

angle between T and L is equal to the angle between T and L.

What we want to show, referring to figure 11.15, is that a. From the figure we see that this
amounts to showing th#— o = a. Let us think of the parabola as being traced out by a paricieing
to the right at constant velocity 1. This expresses the dnates(x,y) of the pointX as functions of arc

lengths. The string property of the parabola tells us that

(11.46) V(X=c)2+y2=x+c

Differentiating with respect to arc length gives us

2x— )X +2y¥  dx

2/(x—02+y2 ds

(11.47)
which simplifies to

(11.48)

Now we do a little trigonometry:

- X C g Y
(11.49) o = ot P oty

dx y dy dx

X—c¢
4+ -2 _ =
V(x—c)2+y2ds = /(x—c)2+y2ds ds

_ o dy

sina = —=
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Figure 11.16

/ : A
B A

F;(—c,0) F,(c,0)

so (10) becomes
(11.50) cog cosa + sinfsina = cosa

or cogf3 — a) = cosa, from which we conclud@ — a = a as desired.
The optical property of the ellipse is that a ray of light emtimg from one focus reflects off the
ellipse so as to pass through the other focus.

Proposition 11.8 Let X bea point on theellipse, and T the tangent lineto the ellipse at X. Let L; bethe
line from the focus F; to X, and L, the line from the other focus F, to X. Then the angle between T and
L, isequal to the angle between T and L.

What we want to show, referring to figure 11.16, is that- a = ; — a. We start with the string
property, written in the coordinates as shown in the figure:

(11.51) VX+0)2+y2+/(x—c)2+y2=2a

We now differentiate with respect to arc length, and arrive a
X+C d_x+ y d—y+ X—C d—x+ y dy _
V(x+c)2+y2ds  /(x+c)2+y2ds  /(x—c)2+y2ds /(x—c)Z+y2ds

We now make the substitutions with the trigonometric fumesi, but here we have to be careful: in our
picturedy andx — c are negative, so since the sine and cosine are ratiesgths, we have

(11.52)

11.53 coPB, = —m—— sina =
(11.53) b= =

)
dsl  ds’
Thus our equation becomes
(11.54) cogs, cosa + sinf,(— cosa) + (— cosB, ) cosa + sinB; (—sina) =0
or

(11.55) (cosB,cosa — sinf,cosa) — (cosB, cosa +sinB; sina) =0
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which is co$p, + a) —cogpB; — a) =0, soB, + a = B, — a as desired
The optical property of the hyperbola is that a ray of lightaerating from one focus reflects off the
opposite branch of the hyperbola so as to appear to have cométie other focus.

Proposition 11.9 Let X be a point on the hyperbola, and T the tangent line to the ellipse at X. Let L,
be the line from the focus F, to X, and L, the line from the other focus F, to X. Then the exterior angles
between T and L, and between T and L, are equal

Figure 11.17:

§11.4. Polar Coordinates

Often a problem can be seen as that of understanding the nmaftio
Yi---- a particle in the plane relative to a fixed point. In such aadian it is
desirable to be able to describe a position in terms of thgtheand the
direction of the line between the two points. These arepiblar coor-
dinates of the point. We consider the fixed point as the origin of these
coordinates, and take the positix:@axis as the “zero” direction. Then any
other direction is described by the angle between it andak#ipex axis,
which we denote a8. The distance of a point on this line from the origin
Figure 11.18 is denoted. These equations relate the cartesian coordinags with

the polar coordinatesg:

(11.56) X=rcosf, y=rsinf, r=vx+y?, G:arctarzx

See figure 11.18

Polar coordinates have two pecularities which we need toggst to. Every value df, 8) determines
a point in the plane. However, if= 0, the point is the origin, anfl doesn’'t make sense. Secondly, the
values(r, 8) and(r, 8 + 2m), and in fact,(r, 8 + 2nm) for anyn give the same point. This ambiguity is
sometimes of value: for example, when discussing the matfanparticle,n tells us how many times
the particle has wound around the origin in the counterclasé sense. Finally, it is also of convenience
to letr take negative values, meaning a distanck|ah the opposite direction of the re§. Thus(r, 8)
and(—r, 6 + 1) determine the same point. We now consider the graphs ofieqsén polar coordinates.

Example 11.11 The equatiom = a, for a > 0 is satisfied by all points of distanegrom the origin, so
is polar equation of the circle of radiascentered at the origin.
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Figure 11.19 Figure 11.20
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Example 11.12 The equatior® = §, is the line which makes an angle f with the x-axis.

Example 11.13 r = ab describes the motion of a point which rotates around theiroag angular
velocity 1 while moving out along the ray at velocdy This is theArchimedean spiral and is shown in
figure 11.19.

Example 11.14 r = €¥ is another spiral, however, the point moves out along tharayate exponential
in the rate of rotation. This is tHegarithmic spiral and is shown in figure 11.20.

Example 11.15 The equatiom = acosf is the circle of diametea with center on th&-axis which goes
through the origin. For, if we multiply by we getr? = ar cosf, which can now be written in cartesian
coordinates (using (11.56)) as

(11.57) X+y?=ax  or (x—§)2+y2:a—2.

Given an equation of the form=r(8), we can often trace out the graph by just studying the behavio
of the functionr(0). Let’s redo example 11.15 this way. We have this table
60Z%m 3 on
r10-10 1

Figure 11.21 Figure 11.22
|
X (XY)
0
d ! 6
Fi \
| d_ L
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It will be useful for you to follow the following discussionang the curve in figure 11.21. Between 0
andrt/2 the pointis in the first quadrant, and as the angle incréases/es toward the origin, reaching
there atf = 11/2. Then for6 betweenr/2 andm, the point is in the fourth quadrant (because 0),
steadily moving away from the origin until we reach the poietve started with. This looks like a circle,
and the argument above (in example 11.15) shows that it ite that a®) moves fromrrto 2rrthe circle
is retraced.

Example 11.16 Similarly, the equatiom = acog8 — 6,) is the circle through the origin of radius
with center on the ray of angl&. This amounts to the assertion that any equation of the form

(11.58) r =acosf + bsinf

is a circle with the origin the endpoint of one of its diametésee practice problem 12.1).

Example 11.17 If we are given the equation of a curve in cartesian coordmate can find its equation
in polar coordinates through the substitutios r cosf, y = rsinf. For example
c

11.59 Equati falne: r= ——— .
( ) quation of aline: r 2000 £ bSing

For, the general equation of a lineas+ by = c. After substitution this becomes
(11.60) ar cosf + brcosf = c,

which becomes the above when we solverfor

Example 11.18 The polar equation of a conic of eccentriogyfocus at the origin and directrix the line
x=—d is

ed

11.61 Equati f iccr=——.
(11.61) quation of a Conic: r 1 ecosd

To show 11.61, we start with the defining relatiot=| = e|XL|, referring to figure 11.22. In polar
coordinates this gives us

(11.62) r =e(d+x)=e(d+rcosh)
Solving forr brings us to (11.61). If the figure is rotated &y we just replacd with 6 — 6,

Example 11.19 r = acos . We first construct the table:

60% % ¥n

rao-ao0 a

Follow this discussion along the graph shown in figure 11T28s time the curve starts (8t= 0) at

r = a, and decreases to zero By= 11/4. Betweernt/4 andr/2, r is negative, so the curve is in the third
quadrant, and a8 rotates counterclockwisemoves away from the origin finally to= —afor 6 = /2.
As 0 increases from/2 the point continues to move toward the origin (in the fouptladrant), arriving
there atd = 311/2. Moving on,r becomes positive, so we enter the second quadrant with stende
from the origin steadily increasing until, 8t= 1 we are ar = a. Since co$ is an even function, as
we move fromrr to 217 (or what is the same, from 1rto 0), we just get the same curve, reflected in the
x-axis. This is thdour-petalled roseshown in figure 11.24.
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Figure 11.23 Figure 11.24

Example 11.20 r = acos 3 is a three-petalled rose. Construct the table of importalues between 0
andrrand argue as in example 11.19. The table is

m o M 2m 5m
605 3 33 % 1
rao-a0a 0 —-a

That completes the rose; as we proceed fmito 27T we traverse the rose again. See figure 11.25.

) Figure 11.26
Figure 11.25

. -
_

We conclude

Proposition 11.10 The graph of the equationr = acogn@) or r = asin(n@) isa 2n-petalledroseif nis
even, and an n petalled rose if nis odd (traversed twice).

Limacons. These are the curves defined by the equatiera+ bcosf.
First, we consider the case> b. We have the table
6 0 2 7 ¥ om
r a+b a a—b a a+b
leading to the graph shown in figure 11.26.
As b gets closer and closer & the value of for 6 = mgoes to zero. Thus when= b, we get the
graph shown in figure 11.27, called tbardioid.
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Figure 11.27 Figure 11.28
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Then asb goes beyond, r becomes negative a gets nearnt, and there is an inner loop of the
limacon
Example 11.21 r = 2+ 4cosf. Our table is this:
60% m 3 on
re 2 -22 6

When co® = —1/2, that is, for@ = +£271/3, the value ofr is zero, and between these two values
is negative. We get the graph shown in figure 11.28. We hawerdtie curve so that it is tangent to
6 = +1/3 for those values of. This is correct, as we will show in the next section.

Finally, it is important to note that if the function c@ss replaced by- cosé the curve is reflected
in they-axis, and if it is replaced by-sin@, it is rotated by a right angle.

§11.5. Calculus in polar coordinates

Arc length
Consider the curve given in polar coordinates by the egnatier(8). We can calculate the differ-
entialds of arc length by the differential triangle in polar coordiesusing this diagram.

Figure 11.29

The length of the arc of the circle of radiusubtended by the angt#9 is rd6. The differential
triangle is thus a right triangle with side lengithisandrd6. By the pythagorean theorem

(11.63) ds? = dr? 4 r?de?
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Example 11.22 Find the length of the curve= 62 from 0 to 2.
This curve is a spiral whose distance from the origin inceeass the square of the angle. We have
dr = 26d86, so

(11.64) ds? = dr? +r?d6? = 46°d6? + 6%d6? = 6%(4 + 6°)d6?

and thus the length is

21 2 2
(11.65) /0 ds:/o 04+ GZdG:%(4+ 92)3/2‘()”:%((4+4n2)3/2—43/2)

Area
To caculate the area enclosed by a curve given, in polar owdss, byr = r(8), we calculate the
differential of area, using figure 11.30.

The area of the wedge given by the incremefitis (1/2)r°d@.
To see this, we start with the area of the circle of radiusA =
2. Now an anglea subtends a segment of the circle which is
the (a/2m)th part of the full circle, thus the area of that segment is
(1/2)r?a. Thus, fora = d@, we get

r
1 2
r=r(0) (11.66) dA = Sr7de.

Figure 11.30

rdé

Example 11.23 Find the area enclosed by the cardioig¢- 3(1 +
sing).
The area s

1 21 9 21
(11.67) Area— E/ [3(1+sin6)?] d6 = E/ (1+ 2sin@ + sir? 6)d6 .
0 0

Now, we know that the integral of sthover an entire period is zero, so we can neglect the middie. ter
We now use the double angle formula for the last term, and threpntegral of co@6) for the same
reason:

9 som 1- cos(26) 9 2n3 27
(11.68) Areafz/o <1+f)dezo ~do =

Example 11.24 Find the area inside one petal of the rose sin 30.

At 8 = 0 we have = 0, but then as the angle rotatesncreases to its maximum a®3= r1/2, and
then decreases back to zero f@& 3 1. Thus one petal is spanned @sanges from 0 tat/3. We now
calculate;

(11.69) Area— %/On/ssinz(se)de - %/0"/3 (PLS(GQ)) do— 1 <9 _ 009(69)) ‘"/3 _ T

2 2\ 2 12 0 12
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Figure 11.31

tan line

TangentsGiven the polar equation= r(8) of a curve, we can find the tangent at any point as follows.
First of all, the cartesian coordinates are giverxbyr(6)cos, y=r(60)sin6. If mis the slope of the
tangent line, we have, by the chain rule

dy dy/de6  rcosd+sinfdy
11.70 m=-—-= =
( ) dx dx/d8  —rsinf+cosd L

Notice that, as — 0, the right hand side approaches®arThus, if 6, is a value for whiclr = 0, then
the curve approaches the origin along the ay 6.

Example 11.25 What is the slope of the tangent to the inner loop of the limmaco
(11.71) r=2+5co¥

at the origin?
We find the values o for whichr = 0:

(11.72) 2+5c09=0 or codP = —%

so thatd = +0.63rrradians or 11%°.



