1. Find the value of \(x \) where the graphs of these two functions have parallel tangent lines:

\[
f(x) = x^2 - 3x + 2, \quad g(x) = 2x^2 - 11x - 17.
\]

Solution. Two lines are tangent if they have the same slope. We find the slope of the tangent lines by differentiating: \(f'(x) = 2x - 3 \), \(g'(x) = 10x - 11 \). So the two graphs have parallel tangent lines at the points where \(f'(x) = g'(x) \). We solve:

\[
2x - 3 = 10x - 11 \quad \text{or} \quad 8x = 8 \quad \text{or} \quad x = 1.
\]

2. Find the derivatives of the following functions:

 a) \(f(x) = (x + 1)(\frac{1}{x} + 1) \)

Solution. First write the function in exponential notation: \(f(x) = (x + 1)(x^{-1} + 1) \) and then use the product rule:

\[
f'(x) = (1)(x^{-1} + 1) + (x + 1)(-x^{-2}) = x^{-1} + 1 - x^{-1} - x^{-2} = 1 - x^{-2}.
\]

 b) \(g(x) = (\tan(3x) - 1)^2 \)

Solution. Use the chain rule:

\[
g'(x) = 2(\tan(3x) - 1)(\sec^2(3x))(3) = 6(\tan(3x) - 1)(\sec^2(3x)).
\]

3. Find the slope of the line tangent to the curve

\(y = x^2 - 3x + \frac{1}{x} \)

at the point \((3, 1/3)\).

Solution. The slope of the tangent line is the value of the derivative at the point \(x = 3 \). Let \(f(x) = x^2 - 3x + x^{-1} \). Then

\[
f'(x) = 2x - 3 - x^{-2} \quad \text{so that the slope is} \quad f'(3) = 2(3) - 3 - 3^{-2} = \frac{26}{9}.
\]
4. Let \(y = x^3 - 48x + 1 \). Find the \(x \) coordinate of the points at which the graph has a horizontal tangent line.

Solution. The graph has a horizontal line where \(y' = 0 \). Differentiating: \(y' = 3x^2 - 48 \), and solving \(3x^2 - 48 = 0 \) we find \(x = \pm 4 \).

2. On the planet Garbanzo in the Weirdoxus solar system, the equation of motion of a falling body is

\[
s = s_0 + v_0 t - 10t^3
\]

where \(s_0 \) is the initial height above ground level and \(v_0 \) is the initial velocity. Distance is measured in garbanzofeet. If a ball is thrown upwards from ground level at an initial velocity of 120 garbanzofeet/second, how high does the ball rise?

Solution. We are given \(s_0 = 0 \), \(v_0 = 120 \), so the equation of motion is \(s = 120t - 10t^3 \). Differentiating we get the equation for velocity: \(v = 120 - 30t^2 \). At the height of the motion the velocity is 0, so we have \(0 = 120 - 30t^2 \), so the ball is at its maximum height in \(t = 2 \) seconds. At this value of \(t \), \(s = 120(2) - 10(2)^3 = 160 \) garbanzofeet.