

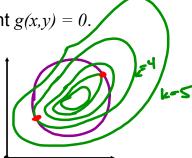
Now we will see an easier way to solve extrema problems with some constraints.

We want to optimize f(x,y) subject to constraint g(x,y) = 0.

Graphically:

 \frown : level curves (f(x,y) = k)

: constraint curve



To maximize *f* subject to g(x,y) = 0 means to find the level curve of *f* with greatest *k*-value that intersects the constraint curve. It will be the place where the two curves are tangent.

Two curves have a common perpendicular line if they are tangent at that point. We know ∇f is perpendicular to its level curves. ∇g is also perpendicular to the constraint curve.

The want the pts where $\nabla f = c \nabla g$

Theorem (Lagrange's Method)

To maximize or minimize f(x,y) subject to constraint g(x,y)=0, solve the system of equations

 $\nabla f(x,y) = \lambda \nabla g(x,y) \text{ and } g(x,y) = 0$

for (x,y) and λ . The solutions (x,y) are critical points for the constrained extremum problem and the corresponding λ is called the Lagrange Multiplier.

- Note: Each critical point we get from these solutions is a candidate for the max/min.
- EX 1 Find the maximum value of f(x,y) = xy subject to the constraint $g(x,y) = 4x^2 + 9y^2 36 = 0.$

¢

$$\begin{array}{l} (\operatorname{virtical} pts : z=f(x,y)=xy\\ (\frac{3}{\sqrt{z}}, \sqrt{z}, -3)\\ (\frac{3}{\sqrt{z}}, \sqrt{z}, -3)\\ (\frac{3}{\sqrt{z}}, \sqrt{z}, -3)\\ (\frac{-3}{\sqrt{z}}, \sqrt{z}, 3)\\ (\frac{-3}{\sqrt{z}}, \sqrt{z}, -3)\\ (\frac{-3}{\sqrt{z}$$

EX 2 Find the least distance between the origin and the plane

x+3y-2z=4. g(xyz) constraint (Note: minimizing the squared distance
d=1 x2 + y2 + 22 necessarily minimizes
$f(x,y,z)=x^2+y^2+z^2$
(g(x,y,z) = x+sy -2z-4=0)
(C) 22=-22 (A) 2x=2 (B) 2y=32 (C) 22=-22
$ \begin{array}{c} \langle 2x, 2y, 2z \rangle = \lambda \langle 1, 3, -2 \rangle \\ \hline A & 2x = \lambda \\ & x = \frac{\lambda}{2} \\ \hline & y = \frac{3}{2}\lambda \\ \hline & y = \frac{3}{2}\lambda \\ \hline & z = -\lambda \end{array} $
$\Rightarrow \boxed{2} \frac{3}{2} + 3\left(\frac{3}{2}\lambda\right) - 2\left(-\lambda\right) - 4 = 0$
$\frac{\lambda}{2} + \frac{9}{2}\lambda + 2\lambda = 4$
=) $x = \frac{1}{2} \left(\frac{4}{7} \right) = \frac{2}{7}$ $y = \frac{2}{4} \left(\frac{4}{7} \right) = \frac{2}{7}$
greatest distance from (0,0,0) to any place
=> the pt we found is the least distance from origin.
Pt is at $\left(\frac{2}{7}, \frac{4}{7}, \frac{-4}{7}\right)$
=) distance from origin = $\int \left(\frac{2}{7}\right)^2 + \left(\frac{1}{7}\right)^2 + \left(\frac{-1}{7}\right)^2$
= 156 2114 7 2114 7

EX 3 Find the max volume of the first-octant rectangular box (with faces parallel to coordinate planes) with one vertex at (0,0,0) and the diagonally opposite vertex on the plane 3x + y + 2z = 1.

$$(x_{1},y_{1},z) = x_{1}y_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{1}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{1}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{1}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{2}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{2}x_{2}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2}) = x_{2}x_{2}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2},y_{2}) = x_{2}x_{2}x_{2}$$

$$(x_{2},y_{2},y_{2},y_{2},y_{2},y_{2},y_{2}) = x_{2}x_{2}x_{2}$$

$$(x_{2},y_{$$

If we have more than one constraint, additional Lagrange multipliers are used. If we want to maiximize f(x,y,z) subject to g(x,y,z)=0 and

h(x,y,z)=0, then we solve

 $\nabla f = \lambda \nabla g + \mu \nabla h$ with g=0 and h=0.

EX 4 Find the minimum distance from the origin to the line of intersection of the two planes.

$$x + y + z = 8$$
 and $2x - y + 3z = 28$

$$W=f(x,y,z) = x^{2} + y^{2} + z^{2} \qquad (2) g(x,y,z) = xxy + z - 8 = 0$$

$$W=f(x,y,z) = x^{2} + y^{2} + z^{2} \qquad (3) h(x,y,z) = 2x - y + 3z - 28 = 0$$

$$Vf = 3 \nabla g + M \nabla h$$

$$(0 < 2x, 2y, 2z > = 3 < 1, 1, 1 > + M < 2, -1, 3 >$$

$$(x) 2x = 3 + 2M \qquad (b) 2y = 3 - M \qquad (c) 2z = 3 + 3M
x = \frac{1}{2} 3 + M \qquad y = \frac{1}{2} 3 - \frac{1}{2}M \qquad z = \frac{1}{2} 3 + \frac{3}{2}M$$

$$(2) \frac{1}{2} 3 + M + \frac{1}{2} 3 - \frac{1}{2}M + \frac{1}{2} 3 + \frac{3}{2}M = 8$$

$$\frac{3}{2} 3 + 2M = 8 \iff 33 + 4M = 16$$

$$(3) 2(\frac{1}{2} 3 + M) - (\frac{1}{2} 3 - \frac{1}{2}M) + 3(\frac{1}{2} 3 + \frac{3}{2}M) = 28$$

$$23 + 7M = 28$$

$$-2(33 + 4M = 16) \qquad (\Rightarrow + \frac{-63}{4} - \frac{8}{4}M - \frac{1}{3}M = 52$$

$$\frac{1}{2}M = 4$$

$$3 (23 + 7M = 28) \qquad (\Rightarrow + \frac{-63}{4} - \frac{8}{4}M - \frac{1}{3}M = 52$$

$$\frac{1}{2}M = 4$$

$$3 3 - 9$$

$$\Rightarrow x = \frac{1}{2}(0) + \frac{1}{2}(4) = -2 \qquad (noth: Max)$$

$$z = \frac{1}{2}(0) - \frac{1}{2}(4) = -2 \qquad (noth: Max)$$

$$z = \frac{1}{2}(0) + \frac{3}{2}(4) = 6 \qquad distanc \rightarrow 7$$

$$\Rightarrow min distance at (4, -2, 6)$$

min

$$distance of \sqrt{4^{3} + (-2)^{3} + 6^{3}} = \sqrt{16 + 4 + 36}$$

$$= \sqrt{56} = 2\sqrt{14}$$

Lagrange multipliers don't work well for constraint regions like a square or triangle because there is not one equation to represent g(x,y)=0.