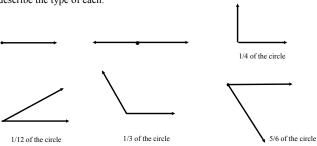


Vocabulary for angles



C

Degree Measure of Angles and Types of Angles

Ex 1: State the measure of each of these angles in degrees and describe the type of each.

terminal side

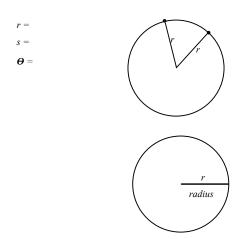
positive angle

negative angle

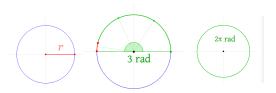
coterminal angles

Ex 2: State a coterminal angle between 0° and 360° for each of these.

a)
$$\alpha = 432^{\circ}$$


b)
$$\beta = -25^{\circ}$$

c)
$$\gamma = 500^{\circ}$$
 d) $\theta = -630^{\circ}$

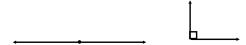

Radian Measure of an Angle

What is the $\underline{\text{number }\pi}$?

A <u>radian</u> is that portion of the circle equal in length to one radius of that circle.

 $\underline{https://en.wikipedia.org/wiki/File:Circle_radians.gif}$

- Ex 3: Graph each of these angles in standard position and classify them according to where their terminal side lies. State another coterminal angle between -2π and 2π for each angle.
- a) $\alpha = \frac{\pi}{3}$ b) $\beta = -\frac{5\pi}{6}$ c) $\lambda = \frac{\pi}{2}$ d) $\theta = \frac{9\pi}{4}$


Converting Between Degrees and Radians

The conversion factor between degrees and radians is $2\pi \ radians = 360^{\circ}$.

- Ex 4: Convert the following measures.
- a) 225° to radians
- b) $-\frac{5\pi}{6}$ radians to degrees

- c) 2 radians to degrees
- d) 1080° to radians

Supplementary and Complementary Angles in Degrees

Ex 5: Determine the complement and supplement (if they exist) for each of these angles.

angle

complement

supplement

- a) $\alpha = 24^{\circ}$
- b) $\beta = 90^{\circ}$
- c) $\gamma = 130^{\circ}$
- d) $\varphi = 180^{\circ}$

Supplementary and Complementary Angles in Radians

Ex 6: Determine the complement and supplement (if they exist) for each of these angles.

angle

complement

supplement

a)
$$\alpha = \frac{\pi}{3}$$

b)
$$\beta = \frac{5\pi}{6}$$

c)
$$\gamma = \frac{\pi}{4}$$

d)
$$\varphi = \pi$$