



## 3.5 complex numbers

| Trigonometric form of a complex number.                      |                                                                                           |                                                                                   |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| z = a + bi                                                   | <i>i</i> becomes $z = r(\cos\theta + i\sin\theta)$                                        |                                                                                   |  |
|                                                              | $r =  \mathbf{z} $ and the reference angle, $\theta$<br>Note that it is up to you to make | ' is given by $\tan \theta' =  b/a $<br>sure $\theta$ is in the correct quadrant. |  |
| Example: Put these complex numbers in Trigonometric form.    |                                                                                           |                                                                                   |  |
| 4                                                            | 4 <i>i</i>                                                                                | -2 + 3 <i>i</i>                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
|                                                              |                                                                                           |                                                                                   |  |
| Writing a complex number in standard form:                   |                                                                                           |                                                                                   |  |
| Example: Write each of these numbers in a + b <i>i</i> form. |                                                                                           |                                                                                   |  |
| Example:                                                     | Write each of these numbers in a +                                                        | b <i>i</i> form.                                                                  |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>$\cos 2\pi/3 + i \sin 2\pi/3$ )                     | b <i>i</i> form.<br>20 (cos 75° + <i>i</i> sin 75°)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>$\cos 2\pi/3 + i \sin 2\pi/3$ )                     | b <i>i</i> form.<br>20 (cos 75º + <i>i</i> sin 75º)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>$\cos 2\pi/3 + i \sin 2\pi/3$ )                     | b <i>i</i> form.<br>20 (cos 75º + <i>i</i> sin 75º)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>sos $2\pi/3 + i$ sin $2\pi/3$ )                     | b <i>i</i> form.<br>20 (cos 75º + <i>i</i> sin 75º)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a + $\cos 2\pi/3 + i \sin 2\pi/3$                          | bi form.<br>20 (cos 75º + i sin 75º)                                              |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>tos $2\pi/3 + i \sin 2\pi/3$ )                      | b <i>i</i> form.<br>20 (cos 75° + <i>i</i> sin 75°)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>$\cos 2\pi/3 + i \sin 2\pi/3$                       | b <i>i</i> form.<br>20 (cos 75º + <i>i</i> sin 75º)                               |  |
| Example:<br>√2 (c                                            | Write each of these numbers in a +<br>$\cos 2\pi/3 + i \sin 2\pi/3$                       | b <i>i</i> form.<br>20 (cos 75° + <i>i</i> sin 75°)                               |  |

## 3.5 complex numbers

| Multiplying and dividing two complex numbers in trigonometric form:                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $z_1 = 3(\cos 120^\circ + i \sin 120^\circ)$ $z_2 = 12 (\cos 45^\circ + i \sin 45^\circ)$                                                                                                     |
| To multiply two complex numbers, you multiply the moduli and add the arguments.<br>$z_1 z_2 = r_1 r_2 (\cos(\emptyset_1 + \emptyset_2) + i \sin(\emptyset_1 + \emptyset_2))$                  |
|                                                                                                                                                                                               |
| To divide two complex numbers, you divide the moduli and subtract the arguments.<br>$\frac{Z_1}{Z_2} = \frac{r_1}{r_2} (\cos(\emptyset_1 - \emptyset_2) + i \sin(\emptyset_1 - \emptyset_2))$ |
|                                                                                                                                                                                               |

| Please note that you must be sure your that in your answer r is positive and 0< $\theta$ <360° . |  |
|--------------------------------------------------------------------------------------------------|--|
| Here is an example. Find the product and quotient of these two complex numbers.                  |  |
| $z_1 = 3(\cos 150^\circ + i \sin 150^\circ)$ and $z_2 = 12 (\cos 275^\circ + i \sin 275^\circ)$  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |
|                                                                                                  |  |

Powers of complex numbers DeMoivre's Theorem: If  $z = r(\cos \theta + i \sin \theta)$  and n is a positive integer, then  $z^n = r^n (\cos n\theta + i \sin n\theta)$ Example: Use DeMoivre's Theorem to find (2-2i)<sup>7</sup>

Roots of complex numbersEvery number has two square roots.The square roots of 16 are:The square roots of 24 are:The square roots of -81 are:The square roots of -75 are:Likewise, every number has three cube roots, four fourth roots, etc. (over the complex number system.)So if we want to find the four fourth roots of 8 we solve this equation. $x^4 = 16$ 

If we solve x<sup>6</sup>- 1 = 0 we can do some fancy factoring to get six roots. Do you remember how to factor the sum/difference of two cubes?



Now to solve the previous problem,  $x^{6}-1 = 0$ , we can use this theorem.

Start with  $x^6 = 1$  We are looking for the six sixth roots of unity (1)

Finally we can answer the question: What are the two square roots of *i* ?

In summary ~ Powers and roots of a complex number in trigonometric form:  $z^{n} = r^{n}(\cos(n_{0}) + i \sin(n_{0}))$   $z^{1/n} = \sqrt[n]{r}(\cos(\theta/n) + i \sin(\theta/n))$ for the first root, with others 300<sup>n</sup>/n apart. The cube of z (z to the third power): The five fifth roots of z: