Math 1050 ~ College Algebra
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- = * Determine whether or not a function is a polynomial.
* Identify the degree, leading term, leading coefficient and constant term
n m(m + 1) of a polynomial.
k= 2 * Determine the existence of zeros using the Intermediate Value Theorem.
"';1 ntl * Find the zeros and multiplicities of a polynomial; use multiplicity to
g 1—2 determine the behavior of the graph at each zero.

1—2  Identify the end behavior of a polynomial function.
» Sketch the graph of a polynomial function using zeros, multiplicities
and end behavior.
* Solve applications that require finding the maximum or minimum value
of a polynomial function.



A Polynomial Function and Vocabular
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Ex1: Deterni,ine which of thgse are polynomial functions and identify the degree,
the leading%e'rm, the leadingﬁ coefficient and the constant of those that are.
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Polynomial functions have the character1st1c of being continuous and smooth.

The leading coefficient and the degree can tell us a lot about the graph of a
polynomial, including its end behavior.
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Ex 2: For each graph, guess at a hkely degree, circle the x and y-intercepts, and
identify the sign (+ or -) of the leading coefficient. l‘-l- a=le d\,\z coel(.
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To graph a polynomial, it helps to determine the roots and the y-intercept.

Real Zeros of Polynomial Functions ( Yg,\-s =S2vos * ,H\tr

Equivalent Statements: for aeR , f(x) a polynomial SWTS
mds)

0 x = a 1s a zero of f(x).

X = a is a solution of f{x) = 0.
(x-a) 1s a factor of f(x).
(a,0) is an x-intercept of the graph of f(x).

Repeated Zeros
A factor (x-a)* for k> 1 yields a repeated zero, x = a of multiplicity k.

« If ks odd, the graph crgsses the x-axis at x = a. ‘t"c(“\
» If kis even, the graph touches the x-axis at X =a. (w_‘)k
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Intermediate Value Theorem moAc\
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Ex3: For ‘Slch function,‘ describe the engl—behavior, find all real zeros,
including Multiplicity, and the numbér%f turning points on the graph.
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Ex 4: Sketch the graph of f(x) by looking at the leading coefficient, finding the
zeros, and perhaps plotting more points.
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An Application Problem

Ex5: The profit (in millions of dollars) for a sport cap manufacturer can be
modeled by P(x) = -x’ + 4x” + x, where x is the number of caps they produce
(in millions). They currently produce 4 million caps, making a profit of
$4,000,000. What smaller number of caps could they make and still make
the same profit?
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