


Simple, Compound and Continuously Compounded Interest

Ex 1: If you invest $100 at a yearly interest rate of 5%, show how it will grow
during the first five years. r=00%
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Compound T st (omce per Year): I/\ =P(1+r X )
Ex 2: How much must you invest at age 40 so that you Will have a million

dollars by the time you retire at 70? Assume an interest rate of 7%
compounded annually.
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In general, the formula for compound interest is

A = balance after ¢ years ‘

P = principal
r = annual interest rate
¢t = number of years

n = number of times it is compounded per year
A= P(1+EY"
n

Ex 3: Show the difference between compounding one time per year and twelve
times per year when investing $1000 at 5% interest for 10 years.
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Ex 4: What if the compounding on example 3 is continuous?
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Exponential Growth and Deca
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Ex 5: The Half-life of radium (***R) is 1620 years. What percent of the radium
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Ex 6: A certain strain of dangerous bacteria is known to grow from 100 to 5000
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Ex 7: A car that is priced at $25,000 new, is worth $15,000 afte.r two years.
a) Find the linear model of depreciation. V=m¢+ b Po‘ﬂb ‘-{,U )
b) Find the exponential model of depreciation. ¥ = ae" o( o, 25 DDD)

c) Sketch a graph of the two models. @ (2, \§Uw>
d) Determine the value of the car at the end of five years for each of the
models. Value in $1000
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