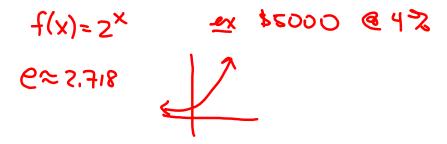
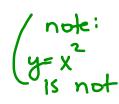
Chapter 3: Exponential and Logarithmic Functions

In section 3.1 you will learn to:

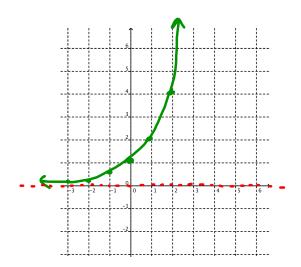
- Recognize, evaluate and graph exponential functions with whole number bases.
- Use exponential functions to determine simple and compound interest.
- Recognize, evaluate and graph exponential functions with base *e*.



An exponential function is one where the independent variable (x) is an exponent.



$$f(x) = 2^x$$

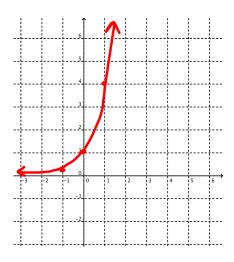


$$f(x)=2^{x}$$

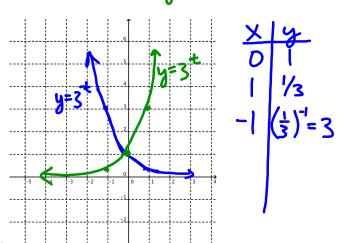
an exponential		
х	2×	m)
0	1	
	2	
2	4	
-1	1/2	2-1= 1/2
-2	17	5-5= 7=
-3	1/8	5 = 1/2,
3	8	

Asymptote:
$$(no VA)$$
 $y=0$ is thA .
Domain of $f(x)$: $x \in \mathbb{R}$ $(or (-\infty, \infty))$
Range of $f(x)$: $y>0$ $(or (0, \infty))$

$$f(x) = 4^x$$

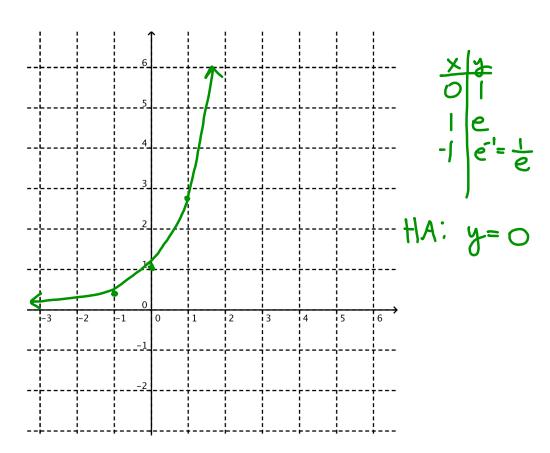


$$f(t) = 3^{-t} = (1/3)^{t}$$



(a bare that's less than I has same shape as an exponential curre w/ base bigger than I, except its reflected across y-axis)

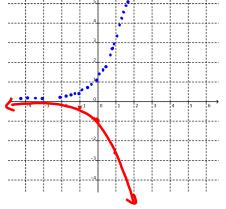
$f(x) = e^{x}$ where $e \approx 2.718$



Transformations of $f(x) = e^x$

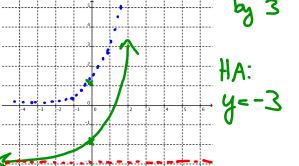
 $f(x) = e^{-x} hon^{2}$

reflections



 $f(x) = e^x - 3$

shift down



Problem 1: If P dollars are invested in an account that pays an interest rate of r (expressed as a percent) compounded annually, how much is in the

account after: pinupolitarest
a year?
$$A = P + Pr = P(1+r)$$

2 years?
$$A = P(|+r) + [P(|+r)]_r = P(|+r)(|+r) = P(|+r)^2$$

3 years?
$$A_3 = P(|+r|)^2 + (P(|+r|)^2)r = P(|+r|)^2(|+r|) = P(|+r|)^3$$

What if we compound it twice year?
$$A = P(1+\frac{r}{2})^{2t}$$

Quarterly?
$$A = P(1 + \frac{r}{4})^{4t}$$

Problem 2: As compounding periods become smaller, the compounding can be considered to be instantaneous. This is known as continuous compounding.

The formula for continuous compounding is:

$$A_t = Pe^{rt}$$

n = number of compounding times per year.

t = number of years

r = interest rate

P = amount invested

A = amount after t years.

Discrete compounding: $A_t = P(1 + \frac{r}{r})^{nt}$

Continuous compounding: $A_t = Pe^{-t}$

Problem 3. \$12,000 is invested in an account that pays 4.8 % interest. How much can we expect to be in the account after five years if...

P=12000, r=0.048

Interest is compounded annually? $A = P(1 + \frac{\pi}{n})^{n+1}$ $A = P(1 + \frac{\pi}{n})^{n+1}$ $A = 12000(1 + \frac{0.047}{1})^{1(5)}$ $A = 12000(1 + \frac{0.047}{1})^{1(5)}$

... Interest is compounded monthly?

 $A = |2000(1 + 0.048)^{12/5}) \approx $15,247.69$

...Interest is compounded daily?

 $A = |2000(1 + \frac{0.04R}{365})^{365(5)} \approx $15,254.75$

...Interest is compounded continuously? $A = Pe^{rt} = 12000e^{0.048(5)} \simeq 415.254.99$

An interesting question which we will be able to solve later in this chapter is how long it takes to double your investment. A loose estimate can be obtained by the Rule of 72.