

Exponential growth leads to repeated doublings.

Exponential decay leads to repeated halving.

EX 1: If you get a salary increase of 10% each year, in what year will your salary be double what it is today?

After a time, *t*, an exponentially growing quantity with a doubling time of T_{double} increases in size by a factor of $2^{t/T}$. The new value is related to the initial value by

new value = initial value
$$\times 2^{1/T}$$

growth factor = $2^{t/T}$
EX 2: Suppose your bank account has a doubling time of 11
years. By what factor does your balance increase in 34
years? T= II yrs, t= 34 yrs
growth
factor = $2^{t/T} = 2^{34/11} \approx 8.5203$
=) your balance increases by a factor of
about 8.5

EX 3: The initial population of a town is 10,000 and it grows with a doubling time of 8 years. What will the population be in a) 12 years? t = 12 yrsb) 24 years? t = 24 yrsnew population = initial pop. $\star 2^{t/T}$ (a) New pop. = $|0000(2^{1/4}) \simeq 28284.27$ $\simeq 28284$ (b) new pop. = $10000(2^{248}) = 10000(2^{3})$ = 80,000 It can be interesting to look at the time it takes your money in a bank to double.

EX 4: If you place \$1000 in an account that pays 9% annual interest, compounded annually, during what year will it double? $A = P(1+APR)^{y} \qquad (compound interest$ formula)

Y ⇒ Year	Amount = A	
D	000	
l	1000 (1+0.09) ¹ = 1000 (1.0	1)=1090
2	$ 000(1.09)^2 = \frac{1}{88.10}$	
3	/020(1.09) ² ~\$1295.03	
4	1000 (1.09)" ~ "1411.58	
2	1000(1,09)5-41538.62	
6	1000(1.09)641677.10	=) it took a little
F	1000 (1.09) ⁷ ~ 1828.04	over 8 years
8	1000(1.09) 2 1992.56	for your money
9	1000(1.09) ⁹ ~ ^{\$} 2171.89	
		to double

<u>Rule of 70</u>

For a quantity growing exponentially at a rate of P% per time period, the doubling time is approximately

$$T_{double} \approx \frac{70}{P}$$
. (time periods)

This works best for small growth rates and breaks down for growth rates over about 15%.

EX 5: Determine about how many years it will take you to double your money at these annual interest rates.

a)
$$\frac{3\%}{T_{a} \approx \frac{70}{3}}$$

 $\approx 23.3 \,\text{yrs}$
(b) $\frac{5\%}{T_{a} \approx \frac{70}{5}}$
 $= 14 \,\text{yrs}$
(c) $\frac{8\%}{T_{a} \approx \frac{70}{8}}$
 $= 8.75 \,\text{yrs}$

- EX 6: The world population was about 6.8 billion in 2005 and was growing at a rate of about 1.2% per year.
 - a) What is the approximate doubling time?

$$T_a \approx \frac{70}{1.2} \simeq 58.3 \text{ yrs}$$

b) If this growth rate continues, what would the population be in 2019? $A=P(1+r)^{t} = 6.8(1+0.012)^{14}$ $\simeq 8.04$ billion people

Exact doubling time formula:

$$T_{double} = \frac{log_{10}(2)}{log_{10}(1+r)}$$
 where *r* is a decimal and positive.

Note: The units of time for r and T must be the same (per month, year, etc.)

r=0.022

EX 7: Oil consumption is increasing at a rate of 2.2% per year.

a) What is the approximate doubling time?

$$T_a \approx \frac{70}{7.2} \simeq 31.8 \text{ yrs}$$

b) What is the exact doubling time?

$$T_a = \frac{\log(2)}{\log(1+0.022)} \simeq 31.852 \text{ yrs}$$