Preliminary Exam, Numerical Analysis, January 2012

Instructions: This exam is closed books, no notes and no electronic devices are allowed. You have three hours and you need to work on any three out of questions 1-4, and any three out of questions 5-8. All questions have equal weight and a score of 75% is considered a pass. Indicate clearly the work that you wish to be graded.

Problem 1(Full rank matrix).

Given $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.

Problem 2(QR and Cholesky Factorizations).

Let A be a nonsingular square matrix and let A = QR and $A^*A = U^*U$ be the QR factorization of A and the Cholesky factorization of A^*A , respectively. Assume that the usual normalizations $r_{jj}, u_{jj} > 0$ are in effect. Is it true or false that R = U? Justify your answer.

Problem 3(Midpoint Rule).

Derive error estimate for the midpoint rule in the form:

$$|E_n^M| \le \frac{h^2(b-a)}{24} \max_{a \le x \le b} |f''(x)|$$

Midpoint rule:

$$M_n(f) = h(f(x_1) + f(x_2) + \dots + f(x_n))$$

where h = (b - a)/n and

$$x_j = a + (j - \frac{1}{2})h, \quad j = 1, ..., n$$

Problem 4(Spectral Radius).

Let $A \in C^{m \times m}$ and $|| \cdot ||$ denote any operator norm on $m \times m$ matrices. Show that

$$\lim_{k \to \infty} ||A^k||^{1/k} = \rho(A).$$

Problem 5(Interpolating Polynomial).

Define $l_{i,n}(x)$ - Lagrange basis functions with $x_0, x_1, ..., x_n$. Prove that for any $n \ge 1$,

$$\sum_{i=0}^{n} l_{i,n}(x) = 1$$

for all x.

Problem 6(Linear Multistep Methods).

Construct an example of:

a) a consistent but not stable (not zero-stable) linear multistep method b) a stable (zero-stable) but not consistent linear multistep method What kind of behavior do you expect from the numerical solution produced by the methods in a) and in b)?

Problem 7(Convergence of Linear Multistep Method).

Consider the method

$$y_{n+2} - 2y_{n+1} + y_n = \frac{h}{2} \Big(f(t_{n+2}, y_{n+2}) - f(t_n, y_n) \Big)$$

Apply the method to the scalar IVP y' = y, y(0) = 1 and solve exactly the resulting difference equation, considering the starting values to be $y_0 = y_1 = 1$. Show theoretically that the numerical solution does not converge as $h \to 0$ and $n \to \infty$.

Problem 8(Stability of the Scheme).

Using the von Neumann method investigate the stability of the implicit downwind scheme:

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} - \frac{u_m^{n+1} - u_{m-1}^{n+1}}{h} = f_m^n,$$

$$u_m^0 = g_m, \quad m = 0, \pm 1, \pm 2, \dots, \quad n = 0, 1, \dots, [T/\Delta t] - 1.$$