DEPARTMENT OF MATHEMATICS
University of Utah

Ph.D. PRELIMINARY EXAMINATION IN DIFFERENTIAL EQUATIONS

January 2007

Instructions: You are to work three problems from part A, and three problems
from part B. Clearly indicate which problems you wish to be graded.

Te receive maximum credit, sclutions must be clearly, carefully, and con-
cisely presented and should contain an appropriate level of detail. Each prob-
lem is worth 20 points. A passing score is 72

A. Ordinary Differential Equations

A1l. Consider the T—periodic non-autonomous Linear differential equation

%= Alt)x, xeR". A{l)=At+T)

Let ®(¢) be a fundamental matrix with o0 =1

(8)

Show that there exists at least one nontrivial sclution x = x(¢) such
that

x(t+ T) = px(t)
where 1 is an eigenvalue of ®(T).

Suppose that ${T") has n distinct eigenvalues yi;, i = 1,....n. Show
that there are then n linearly independent solutions of the form

X'l: — p?; (f)e{)gi

where the p,(#) are T-periodic. How is related to 17

.
Suppose that the autonomous noniinear equation X = f(x) exhibits
a limit cvele. By linearizing about this solution, explain how Flo-
quet theory can be used to determine the linear stability of the limit
cycle.



A2, Consider the nonlinear equation

it -y =0, 0<eo]

~
¥y
o

LD e

and choose initial conditions #(0) = a, #(0) = 0.

(a) Using the method of multiple scales show that this has an asymp-
totic series solution of the form

2(t) ~ 2R(st) cos(t + (et} + Ofe)

with !
6, =, R.=;R(1- R

where 7 = ¢f.

(b} Derive the solution
Rimy={(1+ age“zf’)_w

and determine g from the initial conditions. Hence, establish that
there exits a stable periodic orbit.

A3. Consider a second order, linear autonomous system & = Az .z € R

{a) Suppose that A has a pair of complex conjugate eigenvalues. By
performing an appropriate change of coordinates, convert the equa-
tion into Jordan normal form and thus obtain the general solution.

(h) Under what conditions is the fixed point at the origin hyperbolic?
Explain the significance of hyperbolic fixed points in the theory of
nonlinear ODEs.

Ad4. {a) Usc the Poincare-Bendixson theorem to establish the existence of
a limit cycle for the system
z ; .
=y + —4:(1 — 2 )
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j=—wt 51—y



(h) Cousider the system

: ; )
b=y - ale? + o)+
w? + y?

2
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§=ax+y—yla® +y?) — M\/_::_‘——'
| zt+y?

Show that the above pair of equations can be rewritten in polar
coordinates as

= (1 -1, 0 = 2sin*(6/2)

and sketch the phase portrait. Determine whether or nol the fixed
point {1,0) is Liapunov stable.

A5, State the center manifold theorem and explain its importance in hifur-
cation theory. Consider the system

b=—ry, §= -yt

Coonstruct an approximation to the center manifold at the origin and
hence determine the local hehavior of solutions.



B. Partial Differential Equations.

B1. For each n € N, consider the Cauchy problem
— Ny, = 0, in U,

uy = —ysinnz,  on fz, ¥y y =0}
n

chid, 1
5% = ;Sinn;’;, on {(x,y) y =0},

where U = {(z,y) : 0 <y < 1}. Find a sequence {u,} of solutions to
these problems, prove that {u,} does not converge to zero, and explain
why this implies that the Cauchy problem above is not “well posed”.

B2. Let I/ ¢ R" be open and bounded, with smooth boundary. For 7" > 0,
denote Up = U x (0, 7). Let Ty = Uy — Ur (closure taken in R x R).
Prove that functions w(z.t) satisfying u € C*!(Ur) N C(Ur) and

A >y, in Up,
w0, inlUp,

also satisfy the maximum principle

max i = max .
Uy Ir

B3. Consider the wave equation in three spatial dimensions
ey — Hw="0 in R* x (0,0¢).

(a) Explain the concept of domain of dependence for solutions of the
wave equation, and describe what this has to do with finite propa-
gation speed.

(h) Sketch a proof, either using a representation formula or energy
methods, that solutions w € C% of the wave equation have an ex-
plicitly defined domain of dependence.



B4. Denote U/ = {o € R? : 2y > 0}, and I' = {fz e R? ;= 1} Use the
method of characteristics to solve the first-order problem

Tyl + Uy, — T2 = U in U,
w(l,zg) = 2wy on L.

(Hint: to solve the characteristic equations, note that the linear combi-
nations ©s + z and x9 — = decouple.) Determine the region around I’

apon which the solutlon is well-defined.

B5. Let U = {z ¢ R?: 0 < |z| < 1}, and denote I' = {iz| = 1}. Consider

w—Au=f. inl,
w=20, on{zr=0}
g-% =0, onl.

where 7 is the unit outward normal, and fe LA,

Prove a Poincaré-tvpe inequality for this problem, and use it to show
that there exists a unique weak solution v n an appropriate Hilbert

space.
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A. Ordinary Differential Equations

A1. Consider the T—periodic non-antonomous linear differential equation
x = A(t)x, xeR" A(l)= At +T)
Let ®(¢) be a fundamental matrix with ¢(0) = L

(a) Show that there exists at least one nontrivial solution x = x(t) such
that
x(t+T) = px(t)
where y is an eigenvalue of ®(T).
(b) Suppose that ®(77) has n distinct eigenvalues u;, @ = 1,...,n. Show
that there are then n linearly independent solutions of the form

x; = pi(t)e”

where the p;(t) are T-periodic. How is p; related to u;”?

(¢) Explain how Floquet theory can be used to determine the linear
stability of a limit cycle.



A2. (a) Consider the van der Pol oscillator
Ftei(z? 1) +z=0, 0<exl

and choose initial conditions 2(0) = 1,2 = 0. Using the method of
multiple scales show that this has an asymptotic series solution of

the form
z(t) ~ R(et) cos(t + 8(ct)) + Ofe)

with .

0, =0, Ro= R(i-R)
where 7 = ¢, {0) == 0 and R(0) = 1. Hence, establish that there
exits a stable periodic orbit.

(b) Consider the Duffing equation
F4x=—c2°, 0<e<l.

Using the method of multipie scales show that the leading order
solution is of the form

3
z(t) ~ Rgcos(t + o + gRéa‘t) + Ofe).

A3. The response of a certain biological oscillator, (z,y), z > 0,y > 0, to a
stimulus of size b satisfies the differential equation
T=x-—ay+b y=z—cy forxz >0,y >
Uy = —Cy for x = 0,

with a, b, ¢ > 0.

{a) Using phase-plane analysis show that there exists a limit cycle, part
of which lies on the y-axis, when ¢ < 1 and 4a > (1 + ¢)®. [Hint:
existence of limit cycle depends on existence of an unstable spirall.

(b) Show that the period of the orbit is independent of b.



Ad. (a)

(b)

Give the definitions of Poincare and Liapunov stability. Show that
solutions of the system & = y, ¢ = 0 are Poincare but not Liapunov
stable.

Consider the system
G=a—y— x4+ y7) +
2
g=z+y -y +y) -
LA T

Show that the above pair of equations can be rewritten in polar
coordinates as

io=r{l—7r%), 6=2sin*(0/2)

and sketch the phase portrait. Determine whether or not the fixed
point (1,0) is Liapunov stable.

AB. State the center manifold theorem and briefly explain its inportance in
bifurcation theory. Consider the system

b=-2r4y-—az’, §=az(y-— ).

Construct an approximation to the center manifold at the origin and
hence determine the local behavior of solutions. [Hint: first perform a
change of variables in order to diagonalize the linear part of the system].



B. Partial Differential Equations.

B1. Let U be an open subset of R%. Prove that if u € C*{U/) satisfies
Au—u=0 inlU,
then

1
ol — i.S
U’(l) I( )][\813{4{7‘?(

for every ball B(x,r) C U, where I{r) = 1 jr e 8t dt. Assume without
proof that I(r} is the unique 5olut10n to the modified Bessel eguation

which satisfies ¢(0) = 1.

B2. Let U ¢ R® be open and bounded, with smooth boundary. For T' > 0,
denote Up = U x (0,T]. Let T'p = Up — Ur (closure taken in R™® x R},
Recall that for solutions u{z, ) of

—~ Nu=f, in Uy,

uw=g, onlyp,
we define the energy e{ fU (z,t)dz.

(a) Use energy methods to show that the problem above has at most
one solution u € C*1(Ur) (C? in the z variables, and C7 in t).

(b} Assuming g = 0, and u € C*'(Ur), prove that for 0 < { < T,



B3. Let R, = (0,00). Consider the problem

Upp — Uy = 0, in R+ X {t > O},
w(z,0) = g(z), ug{x,0)=h(z), z &R, (initial conditions),
u,(0,1) = 0, t >0 (boundary condition).

Assume that g, h € C*{R.), and that g,(0} = .{0) = 0.

(a) Find an explicit formula for the solution u(z,t) (d’Alembert’s for-
mula is a good place to start).

(b) Suppose that for 0 <t < 1 and 2 > 0, we know u(z,?) = g(z + 1),
and assume suppg ¢ (1,2). Thus, initially a wave is travelling
toward the origin z = 0. What happens to the wave after it hits the
origin, say for ¢ > 27 [s it absorbed, reflected, damped, inverted?
Calculate u(z, 3).

B4. Consider the scalar problem

u, + H{Du} = 0, in R” x (0, 00),
U= Iy, on R" x {t = 0}.

Assume the Hamiltonian H(p) = § Yi_, a-ljf(pj — b;}?, where the coeffi-
cients a;, b; are fixed real numbers, with a; > 0.

(a) Use the Legendre transform H*(¢) = sup,{p-¢— H(p)} to find the
Lagrangian.

(b) Setting the coefficients a; = 1, b; = 0 for all 7, use the Hopf-Lax
formula u(z,t) = min, {{L{*¥) +g{y)} to find an explicit weak
solution to the problem above.



B5. Let U = {z € B? : % < |zl < 1}, and denote 9U = 'y U I’y where
Iy ={lz{ = %}, I'y = {]z] = 1}. Consider

—Aw=f, inU,

Ju

L+ gt 0, only,
1
Ju

5; =0, only.

where a > 0, 1 is the unit outward normal on 8U, and f € L*(U).

Prove that there exists a constant C > 0 such that

C/u‘?dwg/ |Du{2d$+/ w? dS
v U Iy

for all v € CYU). Polar coordinates may be helpfui. Lxplain how
this estimate could be used in a proof of existence and uniqueness for
solutions of the problem above.



