
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

August 18, 2015.

Instructions: This examination has two parts consisting of five problems in
part A and five in part B. You are to work three problems from
part A and three problems from part B. If you work more than the
required number of problems, then state which problems you wish
to be graded, otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must be
clearly and carefully presented and should be detailed as possible.
All problems are worth 20 points.

A. Ordinary Differential Equations: Do three problems for full credit

Al. Let f C’(U,R) for U c R and x0 E U. Given the Banach space X = C([0,T],W)
with norm LrW = maxo<e<T x(t), let

K(x)(t) = xo
+ f f(x(s))ds

for x e X. Define V = {x X Ii’ — Xol < e} for fixed e > 0 and suppose K(x) V (which
holds for sufficiently small T), so that K : V —4 V with V a closed subset of X.

(a) Give the definition of a locally Lipschitz function in an open set U of a normed vector
space.

(b) Using the fact that f is locally Lipschitz in U with Lipsclutz constant L0, and taking
x, y E V show that

K(x(t))
— K(y(t))I L0tx

—

Hence, show that
IIK(x) —

K(y) <L0Tx
—

x,y E V

(c) State the contraction mapping principle on a Banach space.

(d) Choosing T < l/L0, apply the contraction mapping principle to show that the integral
equation has a unique continuous solution x(t) for all t [O,T] and sufficiently small
T. Hence establish existence and uniqueness of the initial value problem

x(O)=xo.

A2. Consider the T—periodic non-autonomous linear differential equation

±=A(t).r, A(t)=A(t+T)

Let (t) be a fundamental matrix with (O) = I.

(a) Show that there exists at least one nontrivial solution Jt) such that

(t + T) =

where p is an eigenvalue of (T).
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(b) Suppose that (T) has n distinct eigenvalues p1. i = 1,.. , n. Show that there are

then 71 linearly independent solutions of the form

= p,(t)e

where the p(t) are T—periodic. How is p related to Iti?

(c) Consider the equation ± = f (t)Aoa’, x e R2, with f(t) a scalar T—periodic function

and A0 a constant matrix with real distinct eigenvalues. Determine the corresponding

Floquet multipliers.

A3. Consider the differential operator acting on L2(R),

d2
L=——, O<x<

with self-adjoint boundary conditions ‘(O)/t’(O) = tan 0 for some fixed angle 0.

(a) Show that when tan 0 < 0 there is a single negative eigenvalue with a normalizable

elgenfunction ‘0(x) localized near the origin, but none when tan 0 > 0.

(b) Show that there is a continuum of eigenvalues A It2 with eigenfunctions k(x) =

sin(kx + i(k)), where the phase shift ‘i is found from

— 1 H- ik tan 0

— Vi +k2tan20

(c) Evaluate the integral

9 f
I(x, x’) = J sin(kx + ij(k)) sin(k.r’ + i(k))dk,

and interpret the result with regards the relationship to the Dirac Delta function and

completeness, that is, 6(x — x’) — I(x, x’) 0(x)0(x’). You will need the following

standard integral
dIt 1

J lkI

_________

—

—e
1 ± k2t2 2r

— 2V1

HINT: you should nionitor how the bound state contribution (for tan 0 < 0) switches

on and off as 0 is varied. Keeping track of the modulus signs .
..

in the standard

integral is crucial for this.

A4. Consider the nonlinear equation

X+EI(X—1)+X=0. 0<E<1

and choose initial conditions x(0) = 1. ±(0) = 0.

(a) Using the method of multiple scales show that this has an asymptotic series solution

of the form
x(t) R(zt) cos(t + 9(Et)) + 0(E)

with

Or=0. R=R(4_R2)

where r = Et.
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(b) Derive the solution

R(r)
(1 + aoe_Et)1/2

and determine a0 from the initial conditions. Hence, establish that there exits a stable
periodic orbit. [HINT: perform the change of variable p = R2.]

A5. (a) Show how to convert the ODE

± = fi(x,y), =f2(x,y).

into polar coordinates.

(b) Consider the dynamical system

± = —y+x(1—z2—x2—y2)
2 2 2p = x+y(1—z —x —y

± = 0.

Determine the invariant sets and attracting set of the system. Give a general definition
of the w—limit set for a flow (x, t) in R’2, and deternune it in the case of a trajectory
for which Iz(0)j < 1.

(c) Use the Poincare-Bendixson (PB) Theorem and the fact that the planar system

±=x—y—x3, =x+y—y3

has only the one critical point at the origin to show that this system has a periodic
orbit in the annular region A = {x e R2 Ii < x <

B. Partial Differential Equations. Do three problems to get full credit

Bi. Consider the problem of a thin layer of paint of thickness 1(x, t) and speed u(x, y, t) flowing
down a wall, see Fig. 1. The paint is assumed to be uniform in the z-direction. The balance
between gravity and viscosity (fluid friction) means that the velocity satisfies the equation

9

=

where c is a positive constant. This is supplemented by the boundary conditions

u(x 0 t) —0,
Py,t)

h

The density of paint per unit length in the x-direction is poh(x, t) where PD is a constant,

and the corresponding flux is

q, t) = Po J u, y, t)rlt.
0

(a) Using conservation of paint, and solving for u(x, y, t) in terms of h(x, t) and y, derive
the following PDE for the thickness Ii:

Dh 98h
— + clr— = 0.
Pt dx
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(b) Set c = 1. Show that the characteristics are straight lines and that the Bankine

Hugoniot condition on a shock x S(t) is

dS — [l3/3]t
T {h]t

A stripe of paint is applied at t 0 so that

0,
h(x,0) =

1.

Show that, for small enough t,

a: < 0 or x > 1

0<i <1.

0, x<0

(z/t)’/2, 0 <x <t

1, t<x<S(t)

0, S(t) <I,

B2. Suppose that v(x) is a C2 harmonic function in the domain fl C R’, so u 0 in .

(a) Prove the mean value property: if x E 2 and
(ball of radius r centered at x) then

r > 0 is chosen such that Br(X) C 2

1
—1wr 8B, (x)

u(s)ds.

where the shock is a: = S(t) 1 + t/3. Explain
and show that thereafter

dS — S

dt — 31

wall

why this solution changes at t = 3/2,

q(x,t)

x

x+x

q(x-i-Ax,t)
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where w is the measure of PB1. Hence show that

u(x)f u(y)dy.
W7 B,(x)

(b) Assuming Q is connected, prove that n can attain its maximum value at an interior
point x E , only if u is constant.

B3. The small longtituclinal free vibrations of an elastic bar are governed by the following
equation:

Pu P Pu
=

—
E—

Here u is the longtitudinai displacement p is the linear density of the material, and E is its
Young’s modulus. Assume that the bar is constructed by welding together two bars of differ
ent (constant) Young’s moduli E1,E2 and densities P1, P2, respectively. The displacement
ii is continuous across tile junction, which is located at x = 0.

(a) Give a weak formulation of the global initial value problem, and use this to derive the
following jump condition:

Eiu(O—,t) =E2n(O+,t), t > 0.

(b) Let c = E3/p. A left incoming wave uj(x, t) = e(t_x/d1) produces at the junction

a reflected wave UR(x,t) = Re(t+1/d1) and a transmitted wave uy = Tei(t_x/c2).

Determine the reflection and transmission coefficients R, T, and interpret the result.

B4. (a) Consider a string clamped at the end points a, b with u(a, t) = Ua, u(b, t) ub, where

u(x, t) is the string’s deviation from the horizontal rest position. Tile kinetic energy

of the strmg is
I

_______

Ek = f puds, ds = + udx,

where p(x, t) is the mass density. Tile potential energy due to stretching of the string

E=fk(1+u_1)dx

where k(x, t) is the elastic coefficient.

i. Find the first variation of the action

fT

A=J (E—E)dt.
0

ii. Integrating by parts, imposing the boundary conditions, and equating the first

variation to zero, derive the PDE

(put1 + = (k(1 + u)h/2U).

Assuming p, k are constants and using the approximation u1 < 1 derive the

classical one-dimensional wave equation.
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(b) Consider the functional

Y{uj
= ID (VuI2 + + fu) dx,

where D is a bounded domain in lR and f is a bounded, continuous function in D.
Suppose that there exists a minimizer u of Y[u] in the Sobolev space H1(D). Use
this to prove existence and uniqueness of the weak formulation of the PDE (for which

C(D))

—V2+u=—f, 3EDCRr, D,,u=O, xeDD.

[Hint: show that the weak formulation can be expressed as (u, 1’)FJi(D) 0 for all
E H1(D).[

B5. Consider the one-dimensional parabolic PDE

71Do 8 (U Dm

Dt
+

n)
—

8x2

(a) Show that a traveling wave solution u(x, t) = U(z) with z (i — Vt)/e satisfies

dU U’
= —

— VU + constant,
dz n

and deduce that
/

L / i—

[U]j—.

(b) Discuss how the traveling wave solution relates to shock solutions of the quasilinear
equation obtained by setting e = 0. Also show that, when ii = 2, U can only tend to
U(±) as z —÷ ± if dU/dz <0.
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