
Lectures on topological field theories

PRELIMINARY ROUGH DRAFT1 – last revised 6-23-07, 10 am

Eric Sharpe

These lecture notes cover my talks at the June 2007 derived categories minicourse at the
University of Utah. I begin by giving a very brief introduction to quantum field theory,
quickly moving to nonlinear sigma models and the associated A and B model topological
field theories, and the physical realization of derived categories. Later lectures will cover
Landau-Ginzburg models, matrix factorization, gauged linear sigma models, and mirror
symmetry.

1This is a preliminary rough draft. As such, it is bound to contain a number of unintentional errors.
Also, as such, this document is not suitable for distribution outside the minicourse.
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1 Path integrals and basic QFT

We’re going to define quantum field theories by doing calculus on infinite-dimensional func-
tion spaces, or, more accurately, approximations thereof.

Let’s begin by introducing an infinite-dimensional derivative.

1.1 Functional derivative

Let x(t) be a function of one variable t. This could be the position of a point-particle along
a line, as a function of time. We can define a function that depends upon x(t) – such a
quanitity is known as a functional of x(t). For example,

S[x(t)] =
∫

dt

(

dx

dt

)2

We would like to define a derivative on the space of all functions x(t). Such a derivative
should vary the value of the function x(t) at a single point, and not others. Let us denote
such a derivative by δ/δx(t′). From the property above, when t 6= t′, we need

δ

δx(t′)
x(t) = 0

However, when t = t′, we need the derivative to be nonzero. In some sense, we’d want it to
be equal to 1 at that point. More precisely, we define

δ

δx(t′)
x(t) = δ(t− t′)

where δ(t− t′) is the Dirac delta function, a distribution with the following properties:

δ(t− t′) = 0 for t 6= t′
∫∞
−∞ dt′f(t′)δ(t− t′) = f(t)

for any ‘well-behaved’ function f(t). Furthermore, we expect this infinite-dimensional or
“functional” derivative δ/δx(t′) to have all the properties one would expect of an ordinary
derivative acting on differentiable functions: there should be a product rule, a chain rule,
derivatives should commute with one another, and so forth. For example:

δ
δx(t′)

(x(t))2 = 2x(t)δ(t− t′)
δ

δx(t′)
(x(t)y(t)) = δ(t− t′)y(t)
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A typical application of this derivative is in the ‘calculus of variations,’ where one is asked
to find, for example, a function that minimizes some functional.

Here is one simple example: show that the shortest distance between two points is a straight
line. For simplicity, let us assume the points lie in a fixed plane, and consider paths which
can be represented as functions y(x), where x, y are the obvious coordinates on the plane.
For a given path y(x) between two fixed endpoints, the length of the path is defined by

s =
∫

(

1 + (dy/dx)2
)1/2

dx

To find the path that minimizes the arc length s, let us compute δs/δy(x′) and set it equal
to zero. (Morally, this is just like first-semester calculus, where you find the extremum of a
function f(x) by solving f ′(x) = 0.) Let us compute:

δ

δy(x′)
s =

δ

δy(x′)

∫

(

1 + (dy/dx)2
)1/2

dx

=
∫

dx(1/2)
(

1 + (y′)2
)−1/2

(2)(y′)
d

dx

(

δy(x)

δy(x′)

)

=
∫

dx
(

1 + (y′)2
)−1/2

y′
d

dx
δ(x− x′)

Now, the expression above contains a derivative of a Dirac delta function. To make sense of
this, we integrate by parts, and use the fact that the boundary terms will vanish so long as
x′ is not at the edges:

δ

δy(x′)
s = −

∫

dx
d

dx

[

(

1 + (y′)2
)−1/2

y′
]

δ(x− x′)

= − d

dx

[

(

1 + (y′)2
)−1/2

y′
]

= −
(

1 + (y′)2
)−3/2

y′′

To find the path y(x) that minimizes the arc length s, we find the function y(x) for which
δs/δy(x′) = 0. From the expression above, we see that a sufficient condition is y′′ = 0, which
implies y = Ax + B for some constants A and B. This is the equation of a straight line,
so we have just verified, using functional derivatives, that the shortest distance between two
points is a straight line.

A more common physics application is a rewriting of classical mechanics due to Hamilton,
and known as Hamilton’s least-action principle: the path taken by any object minimizes its
action, where the action is a quantity constructed from the kinetic and potential energies.
The differential equations one obtains from expanding δS[y(x)]/δy(x′) = 0 are known as the
equations of motion.
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With that in mind, let us compute the functional derivative of the following functional:

S[x(t)] =
∫ ∞

−∞
dt





m

2

(

dx

dt

)2

− V (x)





From the discussion above,

δ

δx(t′)
S[x(t)] =

δ

δx(t′)

∫ ∞

−∞
dt





m

2

(

dx

dt

)2

− V (x)





=
∫ ∞

−∞

(

m
dx

dt

d

dt

δx(t)

δx(t′)
− V ′(x)

δx(t)

δx(t′)

)

=
∫ ∞

−∞

(

m
dx

dt

d

dt
δ(t− t′) − V ′(x)δ(t− t′)

)

=
∫ ∞

−∞

(

−md
2x

dt2
δ(t− t′) − V ′(x)δ(t− t′)

)

= −md
2x

dt2
− V ′(x)

where in the next to last step we have integrated by parts and assumed the boundary terms
vanished. In this case, the equations of motion are

m
d2x

dt2
= −V ′(x)

A reader who remembers a bit of classical mechanics might recall this expression. The
quantity d2x/dt2 is the acceleration a of a particle, and the net force F on a particle in a
potential V (x) is given by F = −V (x). So our equations of motion say F = ma, which is
one of Newton’s laws.

1.2 Functional integrals

Hamilton’s least-action principle is a very elegant rephrasing of classical mechanics – no more
mucking about with force diagrams, just minimize an action functional. But, you might ask,
why should it describe classical mechanics?

When Richard Feynman was a graduate student, he asked himself the same question. He
eventually showed, as part of his Ph.D. thesis, the Hamilton’s least-action principle expresses
the leading effect in an approximation to quantum mechanics. In order to do this, he defined
the integrals that go hand-in-hand with the functional derivatives introduced in the last
section. Known as functional integrals or path integrals, these integrals – formally over
spaces of functions – can be used to define quantum mechanics and quantum field theory.
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Given a classical mechanical system described by some action functional S, quantum me-
chanics is encoded in the functional integral denoted

∫

[Dx] exp(−S/h̄)

where h̄ is Planck’s constant, which encodes the strength of quantum corrections. When h̄ is
small, quantum effects are suppressed. We have not yet tried to make sense of this expression,
but we can already see – at least formally – how Hamilton’s least-action principle is going
to emerge. From the method of steepest descent described in section A.3, one would expect
that for small h̄, the dominant contribution to the path integral will come from functions
x(t) such that δS/δx = 0, and other contributions should be, comparatively, exponentially
suppressed. But δS/δx = 0 is exactly the statement of Hamilton’s least-action principle.

Now, how does one define a path integral, at least formally? Let us consider functions of a
single variable t. Suppose the action is an integral over the interval [a, b]. Just as an ordinary
integral can be defined as the limit of a sequence of Riemann sums, we can formally try to
define the path integral as the limit of a series of approximations. Let N be an integer,
and split the interval [a, b] into N equal-size pieces. Define tk = a + k(b− a)/N , and define
xk = x(tk). To try to integrate over a space of functions x(t), let us integrate over the values
of x(t) at the tk, and interpolate function values in between those points. In other words,
approximate

∫

[Dx] by

CN
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN−1

for some suitable normalizing constant C. Suppose the action functional S is given by

∫ b

a

1

2

(

dx

dt

)2

dt

then we could approximate the functional by

N−1
∑

j=0

1

2

(

xj+1 − xj

(b− a)/N

)2 (
b− a

N

)

In this form, we could then try to define

∫

[Dx] exp(−S/h̄) = lim
N→∞

CN
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN−1 exp



−1

h̄

N−1
∑

j=0

1

2

(

xj+1 − xj

(b− a)/N

)2 (
b− a

N

)





If we try to pursue this program, then there are some problems one will run into. For
example, it is far from clear that different approximation schemes for any given action
functional S will result in the same path integral. In fact, there is indeed such an ambiguity
in quantum mechanics – a given quantum-mechanical system is not uniquely specified by a
classical mechanical system. In formal discussions, this boils down to the Stone-von Neumann
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theorem. This is not a limitation of path integrals, but rather reflects the reality that
quantum mechanics is a more nearly correct description of the physics, so to be precise, one
must specify the quantum mechanical system, for which classical mechanics is then just an
approximation.

When phrased in this language, quantum field theory is very similar to quantum mechanics
– the primary distinction is that the functions that one integrates over, depend upon more
than a single independent variable. For example, let φ be a real-valued function on R4,
which you can interpret as space-time2. One can still define action functionals; a typical
example has the form

∫

d4x
1

2

[

∂µφ∂
µφ + m2φ2

]

where ∂µ = ∂/∂xµ, and we are using Einstein’s summation convention, in which one sums
over repeated indices. The function φ is known as3 a “field,” and the quantity m is known
as the “mass” of the field φ. One can define a functional derivative, just as before:

δ

δφ(x′)
φ(x) = δ4(x− x′)

where δ4(x− x′) denotes a product of four Dirac delta functions, one for each coordinate on
R4. One can then imagine defining a functional integral

∫

[Dφ] exp(−S[φ]/h̄)

Without even attempting to define a functional integral rigorously, the reader might already
object that there is something fishy going on here. After all, if we attempt to define the
functional integral as the limit of a product of ordinary integrals, then we are going to end
up summing over infinitely jagged, thoroughly non-differentiable, fields when we take a limit
N → ∞, but a typical action functional S involves derivatives of the fields, not to mention
that one typically only wants to work with differentiable functions.

This difficulty manifests itself in other ways also – for example, it is ultimately the reason
for the famous infinities of quantum field theory.

There are several ways to resolve this difficulty, known as regularization schemes. Each
involves changing the definition of the fields φ in some form. For the purposes of these notes,
let us work with the simplest possibility, a “momentum-cutoff regularization.” This means

2Throughout these notes, we shall always assume all metrics are Riemannian, so as to avoid subtleties in
dealing with Minkowski metrics. In the present case, we are assuming a flat Euclidean metric gµν = δµν .

3More generally, any real-, complex-, or even (as we shall see later) Grassmann-valued function or section
of a bundle that one sums over in a functional integral is known as a field. This is the why this subject is
known as quantum field theory. Note this notion of field has absolutely nothing at all to do with the notion
of a field in mathematics.
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the following. Since φ is a function on a vector space (specifically, R4), we can express it in
terms of its Fourier transform:

φ(x) =
1

(2π)4

∫

d4p exp(−ip · x)φ̃(p)

Instead of summing over all possible Fourier components, let us restrict to Fourier compo-
nents whose momentum has magnitude bounded by some cutoff Λ:

φΛ(x) =
1

(2π)4

∫

|p|≤Λ
d4p exp(−ip · x)φ̃(p)

The path integral then sums over φΛ’s, not φ’s:
∫

[DφΛ] exp(−S[φΛ]/h̄)

By imposing such a momentum cutoff, we have forcibly removed arbitrarily jagged configu-
rations from the path integral, and so removed one difficulty with defining the path integral.
We could then try to define the path integral as a limit of a product of integrals, say in
momentum space rather than on the original R4.

More generally, it is believed that a ‘classical’ path integral, over ordinary fields/functions,
does not exist in general; only such ‘regularized’ path integrals are believed to exist. I say
‘believed’ because no one has succeeded in giving a rigorous definition of a path integral, but
from a physics perspective, a choice of regularization, such as the momentum cutoff above,
should be an important part of any rigorous definition ultimately developed.

1.3 Feynman diagrams

Typically, in a quantum field theory, one wishes to compute correlation functions. In statis-
tics, a correlation function is something of the form

< f1 · · ·fn >=
∑

events

(probability of each event)f1 · · · fn

where the fi are functions on the space of events. Here, we think of the factor exp(−S/h̄)
as being analogous to an unnormalized probability, and we define the correlation function of
f1, · · · , fn to be

< f1 · · · fn >=

∫

[DφΛ] exp(−S[φΛ]/h̄)f1 · · · fn
∫

[DφΛ] exp(−S[φΛ]/h̄)

where the fi are real analytic functions of the φΛ.

To be more specific, let us consider the correlation function

< φΛ(x1) · · ·φΛ(xn) >=

∫

[DφΛ] exp(−S[φΛ])φΛ(x1) · · ·φΛ(xn)
∫

[DφΛ] exp(−S[φΛ])
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where we have omitted h̄ for simplicity. To compute this, we first rewrite the correlation
function above as

∫

[DφΛ] δ
δJ(x1)

· · · δ
δJ(xn)

exp(−S[φΛ] +
∫

d4xJ(x)φΛ(x)))
∣

∣

∣

J≡0
∫

[DφΛ] exp(−S[φΛ])
(1)

If the action functional S is quadratic in the φΛ’s, e.g. if it has the form

∫

d4x
1

2

[

∂µφ∂
µφ + m2φ2

]

then we can solve this exactly, by completing the square in the exponent.

To see how completing the square works for such operators, let us instead consider completing
the square for matrices. Consider the matrix equation

(1/2)vTAV − JT v

where A is a real, symmetric, invertible N × N matrix, and v, J are N -element column
vectors. Write

v = v0 + v′

where v0 = A−1J . Then,

(1/2)vTAv − JTv = (1/2)(v0 + v′)TA(v0 + v′) − JT (v0 + v′)

= (1/2)vT
0 Av0 + (1/2)(v′)TAv′ + (v′)TAv0 − JTv0 − JT v′

= (1/2)(v′)TAv′ − (1/2)JTA−1J

After completing the square, v′ and J are decoupled from one another.

In the present case, we have the expression

∫

d4x
[

1

2h̄
φΛ

(

−∂µ∂
µ + m2

)

φΛ − JφΛ

]

and we would like to do something similar – complete the square so as to decouple J from
a translate of φΛ. Formally, if we identify v with φΛ and A with (1/h̄)(−∂µ∂

µ + m2), then
we have immediately that

∫

d4x
[

1

2h̄
φΛ

(

−∂µ∂
µ + m2

)

φΛ − JφΛ

]

=
∫

d4xd4y
[

−(1/2)J(x)A−1(x, y)J(y) +
1

2h̄
φ′

Λ(−∂µ∂
µ + m2)φ′

Λ

]

where
φΛ(x) =

∫

d4yA−1(x, y)J(y) + φ′
Λ(x)
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and A−1(x, y) is some function such that, for example,

(1/h̄)(−∂x
µ∂

µ
x + m2)A−1(x, y) = δ4

Λ(x− y)

where δ4
Λ(x− y) is a Λ-regulated version of the Dirac delta function.

To make this concrete, we must find an explicit expression forA−1, but using Fourier analysis,
this is relatively straightforward. The ordinary Dirac delta function has a Fourier transform
expression given by4

δ4(x− y) =
1

(2π)4

∫

d4p exp(ip · (x− y))

The Λ-regulated version should be given by

δ4
Λ(x− y) =

1

(2π)4

∫

|p|≤Λ
d4p exp(ip · (x− y))

Formally, it should now be more or less clear that an explicit expression for A−1 is given by

A−1(x, y) =
h̄

(2π)4

∫

|p|≤Λ
d4p

exp(ip · (x− y))

p2 + m2

In particular, note A−1(x, y) = A−1(y, x) = A−1(x− y).

Let us pause to point out a technical issue that will be important later. The expression
above for A−1 is sensible in no small part because there are no zero eigenvalues of A, which in
particular is because we are implicitly working with L2 normalizable functions. For example,
the laplacian ∂µ∂

µ has no normalizable zero modes on Euclidean space. In general, this will
not be the case. For example, when discussing nonlinear sigma models, as we shall do shortly,
there will be normalizable zero modes. To handle them, we must split them off from the
rest of the path integral, treat them with a separate (ordinary) integral, and then do a path
integral over remaining non-zero modes. We will return to this point later.

Let us now return to the computation of correlation functions in equation (1). We can now
rewrite that expression as

∫

[DφΛ] δ
δJ(x1)

· · · δ
δJ(xn)

exp (+(1/2)
∫

d4xd4yJ(x)A−1(x, y)J(y) − S[φ′
Λ])
∣

∣

∣

J≡0
∫

[DφΛ] exp(−S[φΛ])
(2)

If we assume that the path integral possesses a basic translation invariance, so that [DφΛ] =
[DφΛ], and pull the J ’s out of the [Dφ′

Λ] path integral, then the expression above reduces to

δ
δJ(x1)

· · · δ
δJ(xn)

exp (+(1/2)
∫

d4xd4yJ(x)A−1(x, y)J(y))
∣

∣

∣

J≡0

∫

[DφΛ] exp (− S[φΛ])
∫

[DφΛ] exp(−S[φΛ])

4Remember, the Dirac delta function is a distribution, so its Fourier transform is bound to look odd.
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but this reduces immediately to

δ

δJ(x1)
· · · δ

δJ(xn)
exp

(

+(1/2)
∫

d4xd4yJ(x)A−1(x, y)J(y)
)

∣

∣

∣

∣

∣

J≡0

(3)

in which the path integral no longer appears explicitly.

So, by adding a source and completing the square, we have removed the path integral from
expressions for correlation functions.

It is easy to check that, for example,

< φΛ(x)φΛ(y) >= A−1(x, y)

< φΛ(x1)φΛ(x2)φΛ(x3)φΛ(x4) >

= A−1(x1, x2)A
−1(x3, x4) + A−1(x1, x3)A

−1(x2, x4) + A−1(x1, x4)A
−1(x2, x3)

and similarly < φΛ(x1) · · ·φΛ(xn) >= 0 when n is odd.

Rather than expand out all the derivatives in equation (3), there is a simple combinatorial
trick to produce all the terms in these expressions, known as Wick’s theorem. This says that
the terms are obtained by summing up all possible ‘contractions’ of pairs in the correlation
function. In other words, for every way of pairing up correlators, there is one term in the
expansion, in which each such pair has been replaced by an A−1 factor. For example:

< φΛ(x)φΛ(y) >=< φΛ(x) φΛ(y) >= A−1(x− y)

< φΛ(x1)φΛ(x2)φΛ(x3)φΛ(x4) >

= < φΛ(x1) φΛ(x2)φΛ(x3) φΛ(x4) > + < φΛ(x1)φΛ(x2) φΛ(x3) φΛ(x4) > + · · ·

= A−1(x1, x2)A
−1(x3, x4) + A−1(x1, x4)A

−1(x2, x3) + A−1(x1, x3)A
−1(x2, x4)

We can also associate Feynman diagrams. A Feynman diagram is just a graph in which the
edges of the graph are in 1-1 correspondence with A−1’s, which are known as “propagators.”
For example, the Feynman diagram for < φΛ(x)φΛ(y) > is just a single line:

x y

The Feynman diagram for

< φΛ(x1)φΛ(x2)φΛ(x3)φΛ(x4) >

13



is a collection of three pairs of lines.

x1 x2 x1 x2 x1

BB
BB

BB
BB

x2

||
||

||
||

x3 x2 x3 x4 x3 x4

So far we have described a ‘free’ theory – one in which the action is purely quadratic (aside
from the source term), so that the resulting Feynman diagrams expressing correlation func-
tions graphically are nothing more than line segments connecting points. Next, we shall
consider interactions.

So, suppose the action has the form

1

h̄

∫

d4x
[

1

2
φΛ

(

−∂µ∂
µ + m2

)

φΛ − V (φΛ) − JφΛ

]

including the source J , for some real analytic function V (φΛ). For the rest of this lecture,
we will work through the case V (φΛ) = λφ4

Λ.

Now, the action (for J ≡ 0) is no longer quadratic, so we cannot just complete the square
as we did previously. Instead, utilizing the source term, the idea is to expand V (φΛ) in a
Taylor series5 and then convert each φΛ(x)n term in the Taylor series to a (δ/δJ(x))n. Thus,
for example, in the case V (φΛ) = λφ4

Λ, the correlation function (1) becomes

∫

[DφΛ] δ
δJ(x1)

· · · δ
δJ(xn)

exp
(

+λ
h̄

∫

d4x
(

δ
δJ(x)

)4
)

exp(−S0[φΛ] +
∫

d4xJ(x)φΛ(x)))
∣

∣

∣

∣

J≡0
∫

[DφΛ] exp
(

+λ
h̄

∫

d4x
(

δ
δJ(x)

)4
)

exp (−S0[φΛ] +
∫

d4xJ(x)φΛ(x))

∣

∣

∣

∣

J≡0

(4)

where

S0[φΛ] =
1

h̄

∫

d4x
[

1

2
φΛ

(

−∂µ∂
µ + m2

)

φΛ

]

By turning the “potential” V [φΛ] into δ/δJ ’s, we can again reduce to a quadratic action.
Completing the square and proceeding as before, we find that the expression for the correla-
tion function < φΛ(x1) · · ·φΛ(xn) > in the theory with nonzero V (the “interacting” theory)
is given by

δ
δJ(x1)

· · · δ
δJ(xn)

exp
(

+λ
h̄

∫

d4x
(

δ
δJ(x)

)4
)

exp (+(1/2)
∫

d4xd4yJ(x)A−1(x, y)J(y))

∣

∣

∣

∣

J≡0

exp
(

+λ
h̄

∫

d4x
(

δ
δJ(x)

)4
)

exp (+(1/2)
∫

d4xd4yJ(x)A−1(x, y)J(y))
∣

∣

∣

∣

J≡0

(5)

For example, it is now straightforward to compute that in this theory,

< φΛ(x)φΛ(y) >= A−1(x− y) + (12)
λ

h̄

∫

d2zA−1(x− z)A−1(y − z)A−1(z − z) + O(λ2)

14



Figure 1: First few terms in two-point correlation function.

The corresponding Feynman diagrams are illustrated in figure 1.

The first graph, a straight line, shows the free propagator A−1(x − y). The second graph
shows the effect of the λφ4 interaction – a Feynman diagram with a 4-point vertex. If we
had had a φ3 interaction, for example, then the corresponding Feynman diagram would have
had a 3-point vertex; a φn interaction leads to an n-point vertex.

If one only evaluated the numerator in equation (5), then one would also find contributions
to < φΛ(x)φΛ(y) > given by

3
λ

h̄
A−1(x− y)

∫

d4zA−1(z − z)A−1(z − z)

which can be represented diagrammatially by the Feynman diagram shown below in figure 2

Figure 2: Vacuum diagram contribution to two-point correlation function.

The figure eight loop, in which particles propagate into one another but never to an external
leg, is known as a vacuum diagram, and is interpreted physically as particle-antiparticle pairs
spontaneously appearing out of the vacuum, interacting, and then annihilating one another
back into nothingness.

However, although this term appears in the evaluation of the numerator of equation (5), it
is cancelled out by a factor in the denominator. More generally, so long as one is careful to
always include the denominators, there are never contributions to correlation functions from
such vacuum diagrams.

5This is why we specified that V must be real analytic.
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Figure 3: Some further Feynman diagrams appearing in the four-point correlation function.

For another example, let us consider the four-point correlation function

< φΛ(x1)φΛ(x2)φΛ(x3)φΛ(x4) >

in this theory. One contribution to this correlation function will be the same as in the original
theory without the φ4 interaction, namely

A−1(x1, x2)A
−1(x3, x4) + A−1(x1, x3)A

−1(x2, x4) + A−1(x1, x4)A
−1(x2, x3)

represented by the (disconnected) Feynman diagrams consisting of pairs of lines

x1 x2 x1 x2 x1

BB
BB

BB
BB

x2

||
||

||
||

x3 x2 x3 x4 x3 x4

However, there are now additional contributions. For example, there are also terms

λ

h̄
(4!)

∫

d4zA−1(x1 − z)A−1(x2 − z)A−1(x3 − z)A−1(x4 − z)

+

(

λ

h̄

)2

(4!)2
∫

d4z1d
4z2A

−1(x1 − z1)A
−1(x4 − z1)A

−1(x2 − z2)A
−1(x3 − z2)A

−1(z1 − z2)
2

+ · · ·

represented diagrammatically by the Feynman diagrams in figure 3.

The second term is one of a set of permutations – there is nothing special about the ordering
of the labels on the outer legs, all possible orderings appear, but for simplicity we have only
listed one of the terms and sketched one of the diagrams appearing.

WARNING: You might guess that the Feynman graph expansion above of
correlation functions is a convergent series. In fact, it usually is not. Rather,
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it is usually an example of an asymptotic series6. In the conventions of the ap-
pendix, where asymptotic series of the form

∑

n an/x
n are discussed, this is an

asymptotic series in7 λ−1. As discussed in the appendix, these usually do not
converge, but one can still get useful information from them. On the other hand,
because they do not converge, it is possible for multiple functions to have the
same asymptotic series – an asymptotic series expansion of a function loses a
certain amount of information. That information is encoded in “nonperturbative
effects,” which are not uniquely determined by the perturbative expansion of the
theory. This tension between perturbative and nonperturbative effects drives
most basic discussions of quantum field theory – on the one hand, it makes get-
ting exact answers very difficult, and on the other hand, makes nonperturbative
contributions very interesting.

1.4 The renormalization group

The renormalization group or renormalization group flow is the name for the behavior of a
quantum field theory as we lower the cutoff regulator Λ. (The term “renormalization group”
itself is a historical artifact; there is no group present.) Given a theory defined at scale Λ,
we can get a theory valid at scale Λ− δΛ by performing the functional integral over degrees
of freedom between Λ and Λ − δΛ, effectively “integrating out” those degrees of freedom.
One finds that, even after taking into account the difference in cutoffs, the two theories
will differ – there is a motion on an abstract space of quantum field theories. Also, this
process of renormalization group flow loses information – it is possible for two theories that
start different, to become the same after renormalization group flow. Equivalence classes
identifying theories that become the same after renormalization group flow are known as
universality classes.

To be specific, consider a theory of a single scalar φΛ with action

1

h̄

∫

d4x
[

1

2
φΛ

(

−∂µ∂
µ + m2

)

φΛ − λφ4
Λ

]

(6)

6The careful reader might wonder how this happened – this is arising from the Taylor series expansion of
the exponential describing interactions, after all, so why isn’t the final result also a Taylor series? Intuitively,
the problem is that when λ < 0, the potential flips over and φ = 0 is no longer a stable vacuum, so that the
radius of convergence of any expansion in λ must be zero. A more thorough explanation involves carefully
studying the numerical factors appearing in each Feynman diagram. We will not give such a thorough
explanation here, but instead will state that analogous phenomena are relatively common. For example, one
standard trick to obtain asymptotic series expansions is to integrate a Taylor series outside of its region of
convergence – the resulting series is no longer a convergent series, but often can still be understood as an
asymptotic series approximation.

7Expanding in λ gives us an expansion in the number of vertices appearing in Feynman diagrams. There
is an alternative expansion parameter. It can be shown that powers of h̄ count the number of loops appearing
in the Feynman diagrams. Expanding in h̄ also yields an asymptotic series expansion.
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(Our analysis will closely follow [4][section 12.1].) Given a field φΛ(x), we can construct a
new field φΛ−δΛ whose Fourier transform has the same components as φΛ for |p| ≤ Λ−δΛ, but
those higher-momentum components vanish. Define φ̂ to be a field whose Fourier transform
has components that are nonzero only for Λ − δΛ < |p| ≤ Λ, and zero outside that range,
and inside that range, equal those of φΛ. Thus, we have

φΛ(x) = φΛ−δΛ(x) + φ̂(x)

What we want to do is to break the functional integral over φΛ into two pieces, one for
φΛ−δΛ and one for φ̂, and then perform the functional integral over φ̂, which will give us an
‘effective’ quantum field theory for φΛ−δΛ.

To that end, let us expand out the action (6) in the new variables. It is straightforward to
check that the result is

1

h̄

∫

d4x
[

1

2
(φΛ−δΛ + φ̂)

(

−∂µ∂
µ + m2

)

(φΛ−δΛ + φ̂) − λ(φΛ−δΛ + φ̂)4
]

=
1

h̄

∫

d4x
[

1

2
φΛ−δΛ

(

−∂µ∂
µ + m2

)

φΛ−δΛ − λφ4
Λ−δΛ

]

+
1

h̄

∫

d4x
[

1

2
φ̂
(

−∂µ∂
µ + m2

)

φ̂ − λ
(

4(φΛ−δΛ)3φ̂ + 6(φΛ−δΛ)2(φ̂)2 + 4φΛ−δΛ(φ̂)3 + (φ̂)4
)

]

where we have used the fact that
∫

d4xφΛ−δΛ

(

−∂µ∂
µ + m2

)

φ̂ =
∫

d4xφ̂
(

−∂µ∂
µ + m2

)

φΛ−δΛ = 0

because their Fourier transforms have nonoverlapping components.

Now, the next step is to – at least formally – integrate out the φ̂ degrees of freedom. As
usual, we will not be able to do this exactly, but instead will merely be able to construct
an asymptotic series expansion for the result. What we will find is that the mass m and
coupling constant λ of the φΛ−δΛ theory will be shifted, among other things. Furthermore,
they will change in a fashion that could not be compensated by rescaling the coordinates so
as to effectively scale Λ−δΛ back to Λ – changing the cutoff will change the theory, by more
than just a motion in Λ space.

So, we need to construct a theory with only φΛ−δΛ’s, that nevertheless reproduces correlation
functions of the theory containing both φΛ−δΛ’s as well as φ̂’s. To do this, let us compute some
correlation functions in the theory with both φΛ−δΛ’s and φ̂’s, and see what modifications
will have to be made.

First, consider a two-point function < φΛ−δΛ(x1)φΛ−δΛ(x2) >. The first few Feynman di-
agram contributions to the correlation function, involving φ̂ propagators, are illustrated in
figure 4.
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Figure 4: First few terms in two-point correlation function.

The first diagram in figure 4 just shows a single φΛ−δΛ propagator, propagating without
interactions. In the second diagram, a single φ̂2φ2

Λ−δΛ interaction has been used. The third

diagram involves two φ̂φ3
Λ−δΛ interactions. The fourth diagram involves two φ̂3φΛ−δΛ inter-

actions.

Let us compute how the effect of one of these diagrams can be interpreted as a modification
of the action for φΛ−δΛ. Consider the second term in the figure above, involving the single φ̂
loop branching off of a φΛ−δΛ propagator. The φΛ−δΛ propagator is given by

A−1(x− y) =
h̄

(2π)4

∫

|p|≤Λ−δΛ
d4p

exp(ip · (x− y))

p2 + m2

and the φ̂ propagator is given by

B−1(x− y) =
h̄

(2π)4

∫

Λ−δΛ<|p|≤Λ
d4p

exp(ip · (x− y))

p2 + m2

Then the second term in the figure above is the term

λ

h̄
(2)

∫

d4zA−1(x1 − z)A−1(x2 − z)B−1(0)

in the asymptotic series expansion of the correlation function < φΛ−δΛ(x1)φΛ−δΛ(x2) >.

We are going to compute that contribution in detail, but before we do, let us first understand
how to absorb this into a modification of the φΛ−δΛ action. The original φΛ−δΛ action,
meaning, the terms not coupled to φ̂, are given by

1

h̄

∫

d4x
[

1

2
φΛ−δΛ

(

−∂µ∂
µ + m2

)

φΛ−δΛ − λφ4
Λ−δΛ

]

If we were to shift m2 by some amount, i.e. replace m2 by m2 + δm2, then the result would
look like a new interaction term in the action, given by

1

h̄

∫

d4x
1

2
φ2

Λ−δΛ(δm2)

and hence a contribution to the < φΛ−δΛ(x1)φΛ−δΛ(x2) > correlation function given by

δm2

h̄

∫

d4zA−1(x1 − z)A−1(x2 − z)
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Thus, we can understand the effect of the φ̂ loop as a modification of the mass by an amount
given by

δm2 = 2λB−1(0)

In a moment we shall compute δm2 in more detail, but first, let us understand the meaning
of this contribution. The point here is that changing the value of the cutoff regulator Λ
changes what we mean by m2 – m2 is not a true parameter but rather should be thought of
as a function of Λ. As we integrate out the high-momentum degrees of freedom φ̂, we can
understand their effects as a change in the “parameters” of the theory such as m2.

This sort of effect is typical – parameters appearing in actions in quantum field theories are
usually functions of cutoff scales.

Now, for completeness, let us derive an explicit expression for δm2. Recall

δm2 = 2λB−1(0)

=
2λ

(2π)4

∫

Λ−δΛ<|p|≤Λ
d4p

1

p2 + m2

Since the integrand depends only upon the magnitude of p and not its direction, we can do
the angular part separately; denote the integral over angular variables in Euclidean 4-space
by Ω4.

In fact, an explicit expression for Ωd, the integral of 1 over spherical angular
variables in d dimensions, exists. It can be derived by rewriting

(∫ ∞

−∞
dx exp(−x2)

)d

= πd/2

as an integral over d-dimensional space. In general, the result is that

Ωd =
2πd/2

Γ(d/2)

where Γ(x) is the “Gamma” function, a meromorphic function on the complex
plane, obeying Γ(x+1) = xΓ(x), Γ(1/2) =

√
π, and Γ(n+1) = n! for n a positive

integer. (See the appendix for more information on the gamma function.) We
leave it as an exercise to verify that Ω2 = 2π and Ω3 = 4π, as one would expect.

Using the fact that

∫

dx
x3

x2 + a2
=

x2

2
− a2

2
log

(

x2 + a2
)

+ C
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we find that

δm2 =
2λ

(2π)4
Ω4

[

1

2

(

Λ2 − (Λ − δΛ)2
)

− m2

2
log

Λ2 +m2

(Λ − δΛ)2 +m2

]

Next, let us turn to the four-point function, and how the φ̂ contributions to correlation
functions can be understood by modifying the φΛ−δΛ theory. A few interesting terms in the
four-point function

< φΛ−δΛ(x1)φΛ−δΛ(x2)φΛ−δΛ(x3)φΛ−δΛ(x4) >

are illustrated in figure 5. A single line indicates a φΛ−δΛ propagator, whereas a double line
indicates a φ̂ propagator.
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Figure 5: First few connected terms in four-point correlation function.

The first (left-most) diagram involves solely the λφ4
Λ−δΛ interaction. The second diagram

is one of a set of three, involving two φ̂2φ2
Λ−δΛ interactions and a φ̂ running in an internal

loop. There are three diagrams of that form, in which the labels on the four outer edges are
permuted; we have only sketched one. The third diagram shown involves an effect we saw
in the expansion of the two-point correlation function, in which a φ̂ loop runs off of one of
the correlators. It involves a single φ̂2φ2

Λ−δλ interaction, as well as the λφ4
λ−δΛ interaction of

the first diagram.

We have already implicitly taken into account the contribution of the third diagram, in
our previous discussion of two-point correlation functions, where we saw that such a φ̂ loop
branching off of a propagator had the effect of modifying the mass.

Here, let us examine the effect of the middle diagram and its permutations. We will argue
that the effect of such diagrams is to shift the value of λ, just as the effect of the single φ̂
loop branching off of a propagator was to modify the mass.

The middle diagram itself corresponds to the following term in the four-point correlation
function:

1

2!

(

λ

h̄

)2

(6)2(2)4
∫

d4z1

∫

d4z2A
−1(x1−z1)A−1(x4−z1)B−1(z1−z2)2A−1(x2−z2)A−1(x3−z2)
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After some algebra, this can be rewritten as

1

2!

(

λ

h̄

)2

(6)2(2)4λ2

(

h̄

(2π)4

)4
∫

|p|≤Λ−δΛ
d4p1 · · · d4p4 exp(ip1x1 + ip2x4 + ip3x2 + ip4x3)

·δ4(p1 + p2 + p3 + p4)(p
2
1 +m2)−1 · · · (p2

4 +m2)−1

·
∫

Λ−δΛ<|p|≤Λ
d4p5(p

2
5 +m2)((p1 + p2 − p5)

2 +m2)−1Θ(p1 + p2 − p5)

where

Θ(p) =

{

1 Λ − δΛ < |p| ≤ Λ
0 else

We can get a decent approximation to this integral by noting that the last factor will only
receive contributions when |p5| ≈ Λ and |p1 + p2 − p5| ≈ Λ, so that

∫

Λ−δΛ<|p|≤Λ
d4p5(p

2
5 +m2)((p1 + p2 − p5)

2 +m2)−1Θ(p1 + p2 − p5)

≈
∫

Λ−δΛ<|p|≤Λ
d4p5(p

2
5 +m2)−2

= Ω4

∫ Λ

Λ−δΛ
r3dr(r2 +m2)−2

= Ω4

[

m2

2(Λ2 +m2)
− m2

2((Λ − δΛ)2 +m2)
+

1

2
log

(

Λ2 +m2

(Λ − δΛ)2 +m2

)]

≈ Ω4
δΛ

Λ

Now, by way of comparison, the diagram with no loops contributes
(

λ

h̄

)

(4!)
∫

d4zA−1(x1 − z)A−1(x2 − z)A−1(x3 − z)A−1(x4 − z)

=

(

λ

h̄

)

(4!)

(

h̄

(2π)4

)4
∫

|p|≤Λ−δΛ
d4p1 · · ·d4p4 exp(ip1x1 + · · · + ip4x4)

·(p2
1 +m2)−1 · · · (p2

4 +m2)−1δ4(p1 + p2 + p3 + p4)

Comparing our results for the first and middle diagrams, we see that, to leading order8, the
effect of the internal φ̂ loop is to shift the value of λ to λ+ δλ where

δλ = 3λ2h̄
1

2!

1

4!
(6)2(2)4Ω4

δΛ

Λ

8To subleading order, another interesting bit of physics comes into play. Specifically, to subleading order,
δλ depends upon the inflowing momenta p1 and p2. This is not a mistake, but rather is another general
feature of quantum field theory, one we shall not pursue here.
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where the leading factor of 3 comes from the fact that there are a total of three diagrams of
this form, relating by permuting the external legs.

So far, it appears naively that lowering the cutoff Λ has effectively changed the theory, by
shifting the values9 of m2 and λ. The careful reader might object that the theory was defined
by a triple m2, λ, and Λ, and so it is not fair to compare theories with different cutoffs. Let
us fix this issue by performing a rescaling that will restore the cutoff to its original value Λ.
If we define

x′ =
Λ − δΛ

Λ
x

then this will shift the dual momenta to

p′ =
Λ

Λ − δΛ
p

and in particular after this rescaling, the new cutoff changes to

(Λ − δΛ)
Λ

Λ − δΛ
= Λ

When we perform that scaling in the action, we find that

m2 + δm2 7→
(

Λ

Λ − δΛ

)4
(

m2 + δm2
)

and similarly for λ + δλ. It is straightforward to check, order-by-order in δΛ, that these
rescalings do not restore the original values of m2 or λ. As a result, it really is the case
that lowering the cutoff is changing the theory – rescaling to restore the original value of the
cutoff, does not restore the original values of the parameters.

So far we have seen how lowering the cutoff Λ has effectively changed the theory – it effectively
shifts m2 and λ. It is natural in this context to define a function which is a derivative along
this process. We define the beta function for λ to be

β ≡ lim
δΛ→0

Λ
∂

∂δΛ
(λ+ δλ)

In the present case, to leading order, we compute that

β ≈ 3λ2h̄
1

2!

1

4!
(6)2(2)4Ω4

(Note that although the beta function is defined invariantly, following the procedure outlined
here the best we can compute is successive terms in an asymptotic series approximation to
the beta function.)

9An even more attentive reader will note that in principle the scale of φ could also be changed – another
possible quantum effect is to rescale the φ’s, so that the action is written in terms of Zφ for some Z rather
than just φ. This does happen in general, and plays an important role; but for simplicity and brevity, we
are omitting this important effect.
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This effect can also be described with a differential equation for the correlation functions,
known as the renormalization group equation or Callan-Symanzik equation. This has the
form

(

−t ∂
∂t

+ β
∂

∂λ
+

n
∑

i=1

di

)

< O1 · · ·On >= 0

in a theory in which m = 0. The variable t is a momentum scaling parameter, and the di’s
are the scaling dimensions10 of the Oi’s. In the special case that β = 0, this just says that
the correlation function scales in the naive way; the beta function β acts as a sort of anomaly
in scale invariance.

To summarize, as we lower the cutoff Λ, the quantum field theory changes – not just by a
redefinition of Λ, but the ‘parameters’ of the theory are revealed to secretly be functions of
Λ. This process of lowering the cutoff, integrating out high-momentum degrees of freedom,
is a lossy, non-invertible process. In particular, it is possible for two quantum field theories
that start different at some cutoff Λ, to become the same at a smaller cutoff after apply-
ing renormalization group flow. This trick is used in physical realizations of both derived
categories and stacks; in the former case, this is how localization on quasi-isomorphisms is
realized physically.

1.5 Fermions

So far we have described quantum field theory for scalar-valued functions. Next, we shall
outline quantum field theory for fermions, in the special case of two dimensions11.

In two dimensions, a fermion is a pair of Grassmann-valued sections (ψ+(x), ψ−(x)) of a
bundle on the two-dimensional spacetime,

√
K (K is the canonical bundle) in typical cases.

To be Grassmann-valued means that multiplication anticommutes:

ψ(x)ψ(y) = −ψ(y)ψ(x)

Intuitively, to be Grassmann-valued means to behave as if multiplication were by the wedge
product of differential geometry, though the technical details are a bit more complicated.

For Grassmann constants, there are notions of both derivatives and integrals. The derivative
is defined in what should be a fairly obvious fashion. For example, if theta is a Grassmann

10The scaling dimensions need not be purely classical – they can receive quantum corrections. Briefly, the
reason is that there is an additional possible parameter we have ignored. In addition to modifying m2 and
λ, we can also modify the scale of φΛ, by defining φ′Λ = ZφΛ. Just as m2 and λ are secretly functions of Λ,
so too is Z. The freedom to rescale the φΛ’s by a function ultimately allows the naive scaling dimension to
be modified, via Z.

11Fermions also make sense in higher dimensions, but there are technicalities in their definition which
are irrelevant for our purposes. We restrict to two dimensions for brevity, not because of any fundamental
physical obstruction.
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constant,

∂

∂θ
θ = 1

∂

∂θ
(a + bθ) = b where a, b ∈ C

∂

∂θ1
θ2θ1 = −θ2

∂

∂θ1
θ1 = −θ2

and so forth. Note in particular that the derivative anticommutes with other Grassmann
variables.

To properly define the integral requires more space than we have here. (One really ought to
introduce supermanifolds, distinguish differential forms on the supermanifold from closely
related but distinct integral forms, and then introduce the Berezinian to define the integral
– see for example [33].) However, for our purposes here, and indeed for the purposes of
most discussions of quantum field theory, a simplified approach suffices. We can define the
Grassmann integral to be the same as the derivative:

∫

dθ ≡ ∂

∂θ

Thus, for example,
∫

dθ (a+ bθ) = b
∫

dθ1dθ2 (θ1θ2) =
∫

dθ1dθ2 (−θ2θ1) =
∫

dθ1 (−θ1) = −1

= −
∫

dθ2dθ1 (θ1θ2) = −
∫

dθ2θ2 = −1

For Grassmann-valued functions, and Grassmann-valued sections of bundles, there are cor-
responding notions of Grassmann functional derivatives and functional integrals, with the
same anticommutivity properties. For example,

δ

δψ(x)

δ

δψ(y)
= − δ

δψ(y)

δ

δψ(x)

A typical action for a two-dimensional fermion, not coupled to any additional bundles, is of
the form ∫

d2x
[

iψ−∂ψ− + iψ+∂ψ+

]

where ψ denotes the complex conjugate. In principle, one can compute propagators, Feyman
diagrams, etc more or less just as in the case of scalar field theory.

With an eye towards future developments, let us also take a moment to discuss zero modes.
Since the propagator is the inverse of the operator appearing in the kinetic term, one must
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first factor out any zero eigenvalues of that operator. For the case of a scalar field on a
Euclidean spacetime, there were no (normalizable) zero modes, hence there was nothing to
factor out, but in principle one could expect a space M of bosonic zero modes, in which case
the path integral measure for the scalar field would contain a factor

∫

M

integrating over those zero modes separately. Similarly, if a worldsheet fermion ψ has zero
modes, those must be factored out and handled separately. If we have coupled ψ+ to some
nontrivial bundle E , say, with hermitian fiber metric hαβ, so that

ψ+ ∼ ΓC∞

(√
K ⊗ E

)

then the fermion kinetic term is
∫

d2xihαβψ
β

+Dzψ
α
+

where Dz is an antiholomorphic covariant derivative. If ψi1, · · · , ψin are a set of zero modes,
then the path integral measure contains a Grassmann-integral factor

∫

dψi1 · · · dψinωi1···in

where ω is a nowhere-zero holomorphic section of ΛnE .

1.6 Exercises

1. Fermat’s principle of optics states that light travels in a path for which the quantity
∫

n(x, y, z)ds is a minimum, where ds is the infinitesimal arc length and n is the “index
of refraction.” Restrict to paths in a plane for simplicity, and (in polar coordinates)
suppose that n(r, θ) = rk for some integer k. Show that when k = −1, a light ray can
travel in a circle about the origin.

2. Consider the action for a field φ with action

S =
∫

d3x
(

∂µφ∂
µφ − gφ3 − λφ4 + γφ6

)

Use Hamilton’s least-action principle to find the equations of motion of φ.

3. Using the identity
(∫ ∞

−∞
dx exp

(

−x2
)

)d

= πd/2

show that the integral of 1 over spherical angular variables in d dimensions is

Ωd =
2πd/2

Γ(d/2)
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4. In evaluating the two-point correlation function < φΛ(x)φΛ(y) >, we encountered a
vacuum diagram, represented graphically by the Feynman diagram

but argued that this contribution in the numerator of equation (5) was cancelled out by
a contribution from the denominator of that expression. Check that claim – show that
a contribution from the denominator cancels out this term in the numerator. (Hint:
Use the Taylor expansion

(1 + x)−1 = 1 − x + x2 − x3 + · · ·
when expanding out the denominator in equation (5).) More generally, show that
all such vacuum diagrams always cancel out, and so never contribute to correlation
functions.

5. We extensively discussed a theory of a single real-valued function φ(x) with a λφ4

interaction. Now, change the λφ4 interaction to a gφ3 interaction. What are the first
few terms in the asymptotic series expansion for the correlation function

< φΛ(x1)φΛ(x2)φΛ(x3) >

? (Write out the terms both in terms of A−1’s as well as Feynman diagrams.) (Hint:
a φn interaction should generate n-point vertices in Feynman diagrams.) Argue here
that vacuum diagram contributions again cancel out. If you are feeling ambitious, also
estimate the leading order term in the beta function for the coupling g.

6. Suppose we replace the λφ4 by g exp(aφ) for constant a, g. Show that the sum of all
vacuum diagrams through first order in g is given by

g

h̄

∫

d4x exp

(

a2

2
A−1(x, x)

)

Hint: you can either expand out the terms and find the series expansion, or, you can
use an infinite-dimensional analogue of the identity

exp

(

a
d

dx

)

f(x) = f(x+ a)

namely,

exp

(

a
δ

δJ(x)

)

f [J(y)] = f [J(y) + aδ(y − x)]

Asymptotic series problems
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7. For x > 1, consider the series
∞
∑

n=0

(−)n

xn+1

Determine if this series is asymptotic to the function

1

1 + x

8. Show that a series
∑ An

xn is asymptotic to f(x) if and only if it is also asymptotic to
f(x)+exp(−x). (In QFT, this is the statement that Feynman diagrams do not capture
all the information of correlation functions, they miss nonperturbative effects, which
appear as terms proportional to exp(−kx) for some k.) In particular, an asymptotic
series expansion of a function does not uniquely determine the function.

9. The modified Bessel function K0(x) has the integral representation

K0(x) =
∫ ∞

0
exp(−x cosh t)dt

Use the method of steepest descent, applied to the integral above, to derive the leading
term in an asymptotic expansion of K0(x), valid for large x.

2 Nonlinear sigma models

2.1 Physical nonlinear sigma models

2.1.1 Definition

A nonlinear sigma model is a two-dimensional quantum field theory describing maps from
the two-dimensional spacetime or worldsheet Σ into some Riemannian manifold X (with a
complex structure and hermitian metric) known as the target space. We will also assume the
hermitian metric is Kähler – we will not need that fact to define the nonlinear sigma model,
but, we will need it to insure that the model has “supersymmetry,” which we shall discuss
later.

The action for a nonlinear sigma model is given by

1

α′

∫

Σ
d2z

(

1

2
gµν∂φ

µ∂φν +
i

2
Bµν∂φ

µ∂φν + igiψ

−Dzψ

i
− + igiψ


+Dzψ

i
+ + Riklψ

i
+ψ


+ψ

k
−ψ

l
−

)

The α′ is a constant, nomenclature determined by convention, that (as we shall see later) is
related to the coupling constant in the theory. The φ fields are maps from the worldsheet
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Σ into the target space X, expressed in local holomorphic coordinates i,  or Euclidean
coordinates µ, ν. Both the φ and ψ fields are implicitly assumed to be regulated; but for
convenience of notation, we have omitted the Λ subscripts, and will assume them implicitly
henceforth. The metric gµν is a metric on the target space X, pulled back to the worldsheet.
As such, it is a function of the φ fields. Rikl is the pullback of the Riemann curvature
(4-)tensor on X, determined by the metric gµν , and expressed in components. Bµν(φ) is an
antisymmetric closed 2-form on the target space, pulled back to the worldsheet.

The ψi,ı
± are Grassmann-valued sections of the following bundles:

ψi
+ ∈ ΓC∞

(

K
1/2
Σ ⊗ φ∗T 1,0X

)

ψi
− ∈ ΓC∞

(

K
1/2
Σ ⊗ (φ∗T 0,1X)∨

)

ψı
+ ∈ ΓC∞

(

K
1/2
Σ ⊗ (φ∗T 1,0X)∨

)

ψı
− ∈ ΓC∞

(

K
1/2
Σ ⊗ φ∗T 0,1X

)

The line bundles KΣ and KΣ are the holomorphic and antiholomorphic canonical bundles
on Σ. (Technically, to define the nonlinear sigma model, we must pick a particular spin
structure – a set of choices of square-root bundles K1/2 – and different choices give slightly
different nonlinear sigma models.)

Finally, the D’s in Dzψ
i
− and Dzψ

i
+ are ‘covariant derivatives.’ In general, if ψ is a smooth

Grassmann-valued section of some bundle E , then the covariant derivative Dψ is defined so
as to be a smooth Grassmann-valued section of TΣ ⊗ E . An ordinary derivative ∂ψ will
not have this property – across coordinate patches, the derivative will act on the transition
functions and so general inhomogeneous terms. To fix that, we add terms to the ordinary
derivatives which also transform inhomogeneously across coordinate patches, balanced so
that the inhomogeneities all cancel out. In the present case,

Dzψ
i
− = ∂ψi

− + ∂φjΓi
jmψ

m
− +

1

2
ωzψ

i
−

The Γi
jm is a connection on a principle bundle associated to TX, and is defined in terms of

the metric Gµν on X by

Γµ
νλ =

1

2
gµρ (∂λgρν + ∂νgρλ − ∂ρgνλ)

It is known as the ‘Christoffel connection,’ and is well-known in differential geometry. On
a Kähler manifold, defined by a hermitian metric with the property that ∂igjk = ∂jgik, the
Christoffel connection has the property that only components with all holomorphic or all
antiholomorphic indices are nonzero (exercise: check!). The Christoffel connection term is
present because ψi

− couples to φ∗TX. Finally, ωz is a connection on a principal bundle
associated to KΣ, and it is present because ψi

− couples to
√
KΣ.

For those acquainted with Gromov-Witten theory, we should point out that we are not sum-
ming over worldsheet metrics / complex structures in this quantum field theory. Instead, we
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are working implicitly with a fixed choice of metric on Σ, which has mostly been suppressed
in writing the action above. It is also possible to consider a different theory in which one
sums over choices of metrics on Σ. The resulting quantum field theory is much more com-
plicated to describe than the quantum field theory above, and leads after twisting to what is
known as a topological string theory, whereas the theory above will lead to topological field

theories. Thus, in the theory above, invariants built from certain topological twists will be
closely analogous to, but not quite the same as, Gromov-Witten invariants.

Let us take a moment to rewrite the purely bosonic part of the action

1

2
gµν∂φ

µ∂φν +
i

2
Bµν∂φ

µ∂φν

=
1

2
gi

(

∂φi∂φ + ∂φi∂φ
)

+
i

2
Bi

(

∂φi∂φ − ∂φi∂φ
)

= gi∂φ
i∂φ +

1

2
(gi + iBi)

(

∂φi∂φ − ∂φi∂φ
)

= gi∂φ
i∂φ +

1

2
φ∗ (ω + iB)

where ω is the Kähler form on the target space. The first term amounts to |∂φi|2, and tells
us that holomorphic maps will be zero modes, for which the kinetic term vanishes. The
second term is a topological term, determined by the topological class of the map φ.

2.1.2 Perturbation theory

How do we make sense of this as a quantum field theory? Previously, we’ve discussed models
in which the kinetic term for the scalars was of the form ∂µφ∂

µφ, but here, we have a term of
that form with a multiplicative factor containing a function of φ, i.e., here the kinetic term
is more nearly of the form f(φ)∂µφ∂

µφ.

In order to do perturbative quantum field theory, we must first split off the zero modes of the
Laplacian. For example, constant maps into X are examples of zero modes, so we must split
them off in the path integral and then do perturbation theory around each fixed zero mode.
More generally, holomorphic maps Σ → X are further examples of zero modes that should
be split off. (We can see this from the rewritten form of the bosonic terms above – the first
term amounts to |∂φi|2, and will vanish identically for holomorphic maps; the second term
is determined by the topological class of φ, and does not contribute to the dynamics.) In
other words, we can write

∫

[Dφ] =
∑

d

∫

Md

∫

[Dφ]′

where d is the degree of the map, Md is a moduli space of such maps of fixed degree, and
∫

[Dφ]′ denotes a path integral over nonzero eigenfunctions of the Laplacian. In the case of
degree 0 maps, these are constant maps Σ → X, so M0 = X. To do perturbative quantum
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field theory, for any one fixed constant map φ0, we expand12 φ = φ0 + φ′, and then replace
quantities such as gµν(φ) with a Taylor-series expansion

gµν(φ0) + · · ·

Furthermore, with clever choices of local coordinates13, we can arrange for gµν(φ0) to be δµν ,
and also simultaneously set the first derivatives to zero. Thus, expanding around a fixed
zero mode φ0, we can write

gi∂φ
i∂φ = δi∂φ

i∂φ + (infinite series of interaction terms)

This begins to make it possible to do perturbative quantum field theory, in the sense described
earlier in these notes. In particular, for each point on the moduli space

∐

d Md, we get a
series of Feynman diagrams, determined by the infinite tower of interactions that arose from
the Taylor series for the metric gi. Each Feynman diagram is defined at a specific point of
the bosonic moduli space

∐

d Md; we then integrate the sum of Feynman diagrams over the
moduli space to get the correlation function.

There is a closely analogous story for the fermions. To make sense of propagators there,
again we must first split off the zero modes, which will be either holomorphic (for ψ+, since
the kinetic term is proportional to Dzψ+) or antiholomorphic sections (for ψ−, since the
kinetic term is proportional to Dzψ−) of the bundles. Instead of an ordinary integral, we
will have a Grassmann integral.

Putting this together, we see that formally correlation functions can be expressed as

< O1 · · ·On >=
∑

d

∫

Md

∫

dψ0 · · · dψ0

∫

[Dφ]′
∫

[Dψ]′ exp(−S/h̄)O1 · · ·On
∫

[Dφ]′
∫

[Dψ]′ exp(−S/h̄)

When defining correlation functions previously in, say, λφ4 theory, we did not have any
∫

M

over moduli spaces of bosonic zero modes because there were no bosonic zero modes. The
expression above is a more general expression for correlation functions than that considered
previously, that takes into account the possibility of zero modes.

If Σ is R2, then, it is possible to compute propagators and Feynman diagrams in exactly the
same way described earlier. If Σ is a compact Riemann surface, then, constructing propaga-
tors becomes much more difficult, though large-momentum features such as renormalization
will behave in the same fashion as on R2.

Let us also take a moment to discuss coupling constants in the nonlinear sigma model.
When the metric is scaled up to be very large, so that all features of the space are a nearly

12How can we ‘add’ two maps into a space X? Remember, we are working in local coordinates everywhere,
so this addition is actually taking place in the image of the coordinate charts, which is a vector space. Of
course, we also need to assume that subset of the vector space has certain obvious connectivity properties
for the addition to be well-defined.

13Such as Riemann normal coordinates [1].
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infinite distance away from one another, the nonlinear sigma model should be weakly coupled,
intuitively, whereas when the metric is scaled down, all features of the space are close to
one another and should be easily visible, so intuitively the nonlinear sigma model should be
strongly coupled. That intuition is correct, and we can make it precise as follows. Fix one
particular metric g0

µν , and then for any other metric gµν related by an overall scale, write
gµν = r2g0

µν for some constant r. Then the bosonic kinetic term in the action has the form

1

α′

∫

d2x
[

1

2
gµν∂φ

µ∂φν
]

=
r2

α′

∫

d2x
[

1

2
g0

µν∂φ
µ∂φν

]

Expand the map φµ about a constant map φ0:

φµ = φµ
0 + δφµ

then the action above can be written

r2

α′

∫

d2x
[

1

2
g0

µν(φ0)∂(δφ
µ)∂(δφν) +

1

2
(∂ρg

0
µν)(φ0)(δφ

ρ)∂(δφµ)∂(δφν) + · · ·
]

Finally, we need to rescale the fields so that the basic kinetic term, the first term in the
Taylor expansion, which will define propagators, has coefficient 1. Define

φ̃µ =
r√
α′
δφµ

Then the action can be rewritten in the final form

∫

d2x

[

1

2
g0

µν(φ0)∂φ̃
µ∂φ̃ν +

√
α′

r

1

2
(∂ρgµν)(φ0)φ̃

ρ∂φ̃µ∂φ̃ν + · · ·
]

We see that all the interaction terms, arising from the Taylor expansion of the metric, are
multiplied by positive powers of

√
α′/r. Thus, when r is large, the interaction terms are

suppressed, and the nonlinear sigma model is nearly a free field theory – weakly coupled, as
our intuition suggested, and similarly, when r is small, interactions are magnified and the
theory is strongly coupled.

2.1.3 Scale invariance

The nonlinear sigma model has a classical scale invariance. If we rescale the coordinates on
Σ as z 7→ λz, then the action is invariant if we rescale the fermions as ψ 7→ λ−1/2ψ.

Quantum-mechanically, that scale invariance can be spoiled by quantum corrections. Recall
from our earlier discussion of beta functions that the beta function acts as a sort of anomaly
in scale-invariance: if the beta function is nonzero, then the correlation functions will not
scale in the fashion one would expect.
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In the present case, the interactions determined by the metric have a 2-tensor beta function
βµν , which to leading order is given by the Ricci tensor of the Riemannian metric on X:

βµν ∝ Rµν

(In the current theory, with fermions, it can be shown that perturbatively the only further
contribution to the beta function arises at four-loop order.) Vanishing of the beta function
is a necessary condition for a conformal field theory. This is part of the reason why Calabi-
Yau manifolds are of interest to physicists: after all, a necessary condition for a complex
Riemannian manifold X to be Calabi-Yau is that Rµν = 0. (It can be shown [2, 3] that on
a Calabi-Yau, one can make βµν = 0 to all orders, not just leading order, by making small
adjustments to the Calabi-Yau metric.)

2.1.4 Supersymmetry

This nonlinear sigma model also possesses another property, known as supersymmetry. Su-
persymmetry is a symmetry that exchanges bosons φ with fermions ψ. Because of the
complex structures on both Σ and X, and the compatible metrics, there are a total of four
different supersymmetry transformations possible, which are naturally grouped into two pairs
and called “(2,2) supersymmetry.” The (infinitesimal) supersymmetry transformations are
given by

δφi = iα−ψ
i
+ + iα+ψ

i
−

δφı = iα̃−ψ
ı
+ + iα̃+ψ

ı
−

δψi
+ = −α̃−∂φ

i − iα+ψ
j
−Γi

jmψ
m
+

δψı
+ = −α−∂φ

ı − iα̃+ψ

−Γı

mψ
m
+

δψi
− = −α̃+∂φ

i − iα−ψ
j
+Γi

jmψ
m
−

δψı
− = −α+∂φ

ı − iα̃−ψ

+Γı

mψ
m
−

The “(2,2)” refers to the fact that there are four supersymmetry transformation parameters,
α±, α̃±, one pair of each chirality. These supersymmetry transformation parameters are

Grassmann-valued C∞ sections of K−1/2, K
−1/2

.

2.2 The A, B model topological field theories

There are several different ways to obtain topological field theories. One of the most com-
monly described is to ‘twist’ an ordinary supersymmetric quantum field theory, by changing
which bundles various fields couple to. In the case of the nonlinear sigma model described
in the last section, given the fermions ψi,ı

± , we can replace K
1/2
Σ with either 1 or KΣ. There
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is a constraint – we must require that each term in the action remain a (1, 1) form, so if in

ψi
+ we replace K

1/2
Σ with 1, then correspondingly in ψı

+ we must replace K
1/2
Σ with KΣ.

As a result, there are four different choices of ‘twist’ one can make. Two of those choices are
physically equivalent to the other two, leaving only two interesting possibilities. Those two
possibilities have been labelled the A and B models.

A very readable reference on the A and B model on Riemann surfaces without boundary
(the ‘closed string’ A, B models) is [6]. This section will closely follow that reference.

For the most part, we will be interested in the B model, since that is the model to which
derived categories are relevant. However, we shall also outline A model computations, as
they provide some insight into why the B model works the way it does.

2.2.1 The closed string A model

In this section we will outline the A model on a worldsheet Σ without boundary – the ‘closed
string’ A model.

As outlined above, the A model is nearly identical to the nonlinear sigma model – the action
functional has the same form, for example. The difference is that we interpret the fermions
ψ as coupling to slightly different bundles – which means the covariant derivatives Dψ are
defined slightly differently. In this model, the fermions couple to bundles as follows:

ψi
+(≡ χi) ∈ ΓC∞ (φ∗T 1,0X) ψi

−(≡ ψi
z) ∈ ΓC∞

(

KΣ ⊗ (φ∗T 0,1X)∨
)

ψı
+(≡ ψı

z) ∈ ΓC∞ (KΣ ⊗ (φ∗T 1,0X)∨) ψı
−(≡ χı) ∈ ΓC∞ (φ∗T 0,1X)

We have also introduced new notation for the fermions, following the conventions of [6].

The original supersymmetry transformation parameters coupled to K
−1/2
Σ , K

−1/2
Σ , but after

this twist, half of them now couple to 1, i.e. are Grassmann-valued scalars. Furthermore,
it can be shown that that subset is nilpotent. In physics, any nilpotent symmetry with
Grassmann-valued scalar parameters is called a BRST symmetry, in honor of Becci-Rouet-
Stora-Taylor who first introduced such a symmetry into quantum field theory.

In the present case, the BRST transformation parameters are α− and α̃+, which we shall
rename α and α̃ for the rest of this section. The BRST transformations of the fields (a subset
of the supersymmetry transformations) are then given as follows:

δφi = iαχi

δφı = iα̃χı

δχi = 0
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δχı = 0

δψı
z = −α∂φı − iα̃χΓı

mψ
m
z

δψi
z = −α̃∂φi − iαχjΓi

jmψ
m
z

BRST transformations with α = α̃ are sometimes denoted with a Grassmann-valued operator
Q, defined by δ− = αQ−, so for example, Qφi = iχi.

Now, as we have described it so far, this quantum field theory, the A model, is nearly identical
to the original nonlinear sigma model. The difference between the two is somewhat subtle
– just a change in the definitions of the fermions. That modification changes the covariant
derivatives in the action, but otherwise the form of the action functional is unchanged.

However, in the A model, there is a special subsector of the theory, known as the topological

subsector, in which we can make very strong statements. The topological subsector consists
of correlation functions of BRST-invariant combinations of fields. Clearly anything built
from products of χ’s will be BRST-invariant, but we can also multiply by certain functions
of φ in special circumstances. Let14

b(φ)i1···ipı1···ıqχ
i1 · · ·χipχı1 · · ·χıq

denote a very general product of fields that should include all (worldsheet scalar) BRST
invariant field products as a subset.

In fact, more can be done: it can be shown there is a one-to-one correspondence between
BRST-closed field products and d-closed differential forms on X. In this isomorphism, we
identify χi with dzi, χı with dzı, and modulo factors of i, we identify Q with the exterior
derivative d. The Grassmann property of the χ’s maps to the antisymmetric property of the
wedge product.

A little more generally, on any given component of the moduli space15 of
bosonic zero modes, the BRST-closed field products should be identified with
differential forms on that component. In general, the moduli space of bosonic

14An attentive reader might note the following problem with the expression above. In correlation functions
computed previously, when two fields approached one another, the correlation function typically diverged as
some function of the cutoff Λ. Therefore, placing fields on top of one another, with zero separation, should
surely not be well-defined. This observation is correct, and there is a fix. The fix is to define a composite

operator, in which such divergences have been removed. Now, in general, defining composite operators is
complicated, but QFT’s in two dimensions are a special case, and all such divergences can be removed
through a very mild process of ‘normal ordering.’ We shall not define normal ordering here, but will simply
state that all products of fields, evaluated at the same point on Σ, are implicitly normal ordered in these
lectures.

15In fact, the classical moduli spaces are not compact. Physically this leads to “IR divergences” which
have to be regulated, and so one is led to pick a compactification of the moduli spaces. There is nowadays
a well-established theory of how one does this, which we shall not attempt to cover here.
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zero modes will be a disjoint union

∐

d

Md

and each BRST-invariant field product Oi will define a differential form of fixed
degree on each Md. For d = 0, Md = X, so in particular we get a differential
form onX. However, there is a more or less standard way to derive the differential
forms on other components from the differential form on X, so to describe the
forms on all components, it suffices to describe the differential form on X.

Moreover, physically it can be shown that any correlation function of a Q-exact product of
fields vanishes:

< Q{· · ·} >= 0

(We will not explain the reason for this here, but will simply state it as a fact. It is relatively
straightforward to derive, but involves a few ideas we do not have the space here to describe.)

As a result, in the topological subsector, we are only interested in Q-closed field products
modulo Q-exact ones, because if one of the correlators is Q-exact, then since the others
are Q-closed, the product of all correlators can be written as a Q-exact expression, and the
correlation function must vanish:

< O1 · · ·On(QV ) >=< Q{O1 · · ·OnV } >= 0

where QOi = 0 by assumption.

Now, let us outline how to calculate a correlation function of Q-closed field products Oi.
In principle, from our general remarks on nonlinear sigma models, the correlation function
should have the form

< O1 · · ·On >=
∑

d

∫

Md

< O1 · · ·On >d,x∈Md

It can be shown that, within the topological subsector of this particular theory, there are
(usually) no net Feynman diagram contributions. Roughly, diagrams with bosons φ running
in loops cancel out against diagrams with fermions ψ running in loops, a typical property of
supersymmetric theories. More precisely, correlation functions in the topological subsector
are independent of α′, and since, as we showed earlier, the coupling constant in the theory
is α′/r2 for some scale r, α′ independence usually means there are no Feynman diagram
corrections. The α′-independence of correlation functions in the topological subsector follows
from the fact that the action for the nonlinear sigma model can be written in the form

1

α′

∫

d2x (Q · V ) +
1

α′

∫

d2xφ∗ (ω + iB)
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where
V = gi

(

ψ
z∂φ

i + ∂φψi
z

)

As a result, if we formally take a derivative of a correlation function with respect to α′, the
result is to insert into the action a Q-exact expression plus a topological term. The term
with the Q-exact expression vanishes, and the other term is topological. Thus, correlation
functions are independent of α′, except insofar as α′ also multiplies the topological term in
the action. (A very similar argument will also hold in the B-twisted nonlinear sigma model,
which is also independent of α′.)

Thus, correlation functions can be computed in free field theory, and boil down to working
with zero modes.

If we identify each correlator Oi with some differential form ωi, then each correlator

< O1 · · ·On >d,x∈Md

can be identified with a wedge product of differential forms on Md, evaluated at a point
x ∈ Md.

Now, let us finish evaluating these correlation functions. In addition to the bosonic zero
modes, encapsulated in the moduli space components Md, there are also fermionic zero
modes, and corresponding Grassmann integral contributions to the path integral. In the
case in which there are no ψı

z or ψi
z zero modes, only χi, χı zero modes, then it can be

shown that the number of such zero modes, for maps of any fixed degree d is the same as the
dimension of the moduli space component Md, and so after performing those Grassmann
integrals we have

∫

Md

< O1 · · ·On >d,x∈Md
=
∫

Md

ω1 ∧ · · · ∧ ωn =
∫

Md

(top-form)

where the ωi are differential forms associated to the Oi. In the more general case, in order
to absorb the Grassmann integrals arising from ψı

z or ψi
z zero modes, we must utilize the

interaction16 term
1

α′

∫

Σ
d2x

(

Riklψ
i
+ψ


+ψ

k
−ψ

l
−

)

16The careful reader will wonder why this is allowed, since we have previously argued that correlation
functions should be α′-independent, save for the topological term

∫

φ∗(ω + iB). The correct answer is
slightly subtle – a careful analysis of the ψı

z , ψ
i
z zero modes, more careful than we have space for here, shows

that their Grassmann integrals in the path integral measure are weighted by factors of
√
α′. (A quick way

to see why this is reasonable is to compare dimensions – these fields are worldsheet vectors, not scalars, so
the Grassmann integrals must be multiplied by something with dimensions of length to make everything
consistent, and

√
α′ is a natural choice. This is only an intuitive justification, not a solid argument.) In any

event, the factors of α′ in the path integral measure cancel out the factors of α′ arising from the interaction,
so the final result is that correlation functions are, indeed, independent of α′, as originally claimed.
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We bring down one copy of this interaction for each pair of ψı
z, ψ

i
z zero modes, and the

result can be interpreted mathematically as modifying the correlation function computation
by inserting the top Chern class of the obstruction bundle [5]:

∫

Md

< O1 · · ·On >d,x∈Md
=
∫

Md

ω1 ∧ · · · ∧ ωn ∧ ctop (Obs)

As a sample computation, let us outline correlation functions in the A model on Pn. To
simplify matters, we shall simply state as a fact that the compactified moduli spaces are
given by

Md = P(n+1)(d+1)−1

Let O be a BRST-closed field product corresponding to a (1, 1) form on Pn that generates
its classical cohomology ring. In this particular case, there are no ψi

z or ψı
z zero modes, only

χ zero modes. A given correlation function < Ok > will be nonzero in a sector d if and only
if it defines a top-form, i.e. the dimension of Md is k. Define q to be a constant such that
in a sector of maps of degree d,

qd = exp(
∫

φ∗(ω + iB))

Then we find that

< Ok >=

{

qd k = (n+ 1)(d+ 1) − 1
0 else

Put another way,

< On > = 1

< OnOn+1 > = q

< OnOd(n+1) > = qd

Notice that we can describe these correlation functions more compactly: given that < On >=
1, we can recover the other correlation functions formally by identifying On+1 ∼ q. Such
a relationship is known in quantum field theory as an operator product, and one way of
describing the correlation functions above is in terms of the operator product ring. This
ring consists of products of O with itself modulo the relation above, i.e. C[O]/(On+1 − q).
That ring is a deformation of the classical cohomology ring of Pn, namely C[x]/(xn+1). For
that reason, we refer to the new ring as a quantum cohomology ring. We shall not discuss
quantum cohomology rings further, but thought it might be illuminating to outline how they
arise physically.

Although we have formulated the A model as a topological twist of a nonlinear sigma model
with a fixed complex and Kähler structure, in fact the A model can be shown to be indepen-
dent of the choice of complex structure – it only depends upon the choice of Kähler structure.
Briefly, this is because the action can be written in the form Q ·V with all information about
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the complex structure buried in V – so deforming the complex structure will merely add
Q-exact terms, which will leave correlation functions in the topological subsector invariant.
We will see that for the B model, the opposite is true – the B model is independent of Kähler
structure, but depends upon the choice of complex structure.

2.2.2 The closed string B model

In this section we will outline the B model on a worldsheet Σ without boundary – the ‘closed
string’ B model. Adding a boundary complicates matters, but we will definitely discuss
this later, because it is the ‘open string’ B model or, B model on a Riemann surface with
boundary, that is the physical realization of derived categories.

In the closed string B model, we perform the opposite topological twist to the A model.
Here, we take the fermions ψ to couple to the following bundles:

ψi
+ ∈ ΓC∞ (K ⊗ φ∗T 1,0X) ψi

− ∈ ΓC∞

(

K ⊗ (φ∗T 0,1X)∨
)

ψı
+ ∈ ΓC∞ ((φ∗T 1,0X)∨) ψı

− ∈ ΓC∞ (φ∗T 0,1X)

It is convenient to define17

ηı = ψı
+ + ψı

−

θi = giı

(

ψı
+ − ψı

−

)

ρi
z = ψi

+

ρi
z = ψi

−

In these variables, the action can be written

1

α′

∫

Σ
d2x

[

gµν∂φ
µ∂φν + igiη


(

Dzρ
i
z + Dzρ

i
z

)

+ iθi

(

Dzρ
i
z − Dzρ

i
z

)

+ Riıjρ
i
zρ

j
zη

ıθkg
k
]

The supersymmetry transformation parameters that are scalars after the twist are α̃+ and
α̃−. For simplicity, assume α̃+ = α̃− = α. The corresponding BRST transformations (a
subset of the supersymmetry transformations) are given by

δφi = 0

δφı = iαηı

17A careful reader will object that ψı
+ and ψı

−
couple to different bundles, so as we have defined them, it

does not make sense to simply add them in the definitions of ηı or θi. However, there is a trivial fix. We
can use the target-space metric to dualize; and also, to be consistent, we should have defined one of the
fields with lower indices instead of upper indices, and used the metric to relate them. Thus, for example,
a more nearly technically accurate definition of ηı is as ψı

+ + gıjψ−j , where ψı
+ and ψ−j are defined to be

sections of the same bundles. Because the metric is always present, it is a standard convention to omit it
from discussions, and leave the reader to fill it in (as we have done here) as needed.
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δηı = 0

δθi = 0

δρi = −αdφi

Here, the correlators in the topological subsector are of the form

b(φ)
j1···jq

ı1···ıp η
ı1 · · · ηıpθj1 · · · θjq

and as before, we are only interested in Q closed products modulo Q exact products, for
the same reasons. Here, the BRST operator Q can be identified with the operator ∂, ηı can
be identified with dzı, and θi can be identified with ∂/∂zi. The cohomology of the BRST
operator can then be identified with the sheaf chomology group

Hp
(

X,ΛqT 1,0X
)

There is a consistency condition that one needs to make sense of the B model, arising from
the fermion zero modes. Recall from our discussion of basic QFT, that for each set of fermion
zero modes, there must exist a nowhere-zero section of the bundle to which the zero modes
couple. In this case, if we restrict to just ψ+, say, in degree d = 0, then there are as many ψ+

zero modes as the dimension of X, and we need a nowhere-zero section of ΛtopT 1,0X. In fact,
to be compatible with the BRST operator, that nowhere-zero section must be holomorphic
(else the BRST symmetry is broken across coordinate patches). A holomorphic nowhere-zero
section of a line bundle is a trivialization, so this implies that X must be Calabi-Yau. For
this reason, one usually says that the B model is only well-defined on Calabi-Yau’s.

A couple of comments are in order at this juncture.

• First, the discussion above ignored the ψ− zero modes. When one takes
them into account, the Calabi-Yau condition can be very slightly weakened:
one only needs a trivialization of K⊗2

X , not KX . Unfortunately, that does
not buy you very much, because if a complex Kähler manifold X has the
property that K⊗2

X
∼= OX but KX 6∼= OX , then X is not simply-connected,

and it has a double cover which is Calabi-Yau.

• There is an analogous story in the A model, but there, the effects of the ψ+

and ψ− cancel out. One requires a trivialization of KX ⊗K−1
X

∼= OX instead
of K⊗2

X , but a trivialization of OX always exists, so there is no constraint in
the A model. Furthermore, that trivialization can be chosen to be constant,
and so guaranteed to commute with the A model’s BRST operator, which
is d rather than ∂.

For a more detailed discussion of these subtleties, see for example [7].
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It can be shown, in much the same way as for the A model, that the B model is independent
of Kähler structure onX, just as the A model was independent of complex structure, because
Kähler deformations add Q-exact terms to the action. See [6] for details.

Furthermore, the B model is independent of α′, for the same reasons as the A model, and so
correlation functions reduce to semi-classical zero-mode manipulations.

From the same general analysis as the A model, one would then expect that correlation
functions should have the general form

< O1 · · ·On >=
∑

d

∫

Md

ω1 ∧ · · · ∧ ωn

where ωi ∈ Hp(Md,Λ
qTMd), and the integrals on the right side might occasionally have

∧c> factors or something analogous. However, the Kähler-moduli-independence implies that
this result should simplify considerably. Because we can make the metric as large as we
want, we should be able to suppress instanton effects to an arbitrary large degree. In other
words, there should only be a contribution from d = 0 sectors, and nothing else:

< O1 · · ·On >=
∫

X
ω1 ∧ · · · ∧ ωn

Put another way, the open string B model is purely classical – it does not get any worldsheet
instanton corrections.

2.3 More abstract discussions of topological field theories

Shortly after topological field theories were introduced to the physics literature, as special
quantum field theories in which there existed a subset of correlation functions (defining the
the topological subsector) which were independent of the metric on the space on which the
theory is defined, there arose in the mathematics literature certain mathematical translations
of properties of the topological subsector.

The first such example, to the author’s knowledge, was work of Atiyah [23] in which a
topological field theory was defined as a functor from the cobordism category to the category
of Hilbert spaces. For example, for the A, B models above, in this language, we think of
associating BRST-cohomology of field products to one-dimensional boundaries of Riemann
surfaces, then think of the Riemann surface with boundary as describing how the system
evolves. Since the theory is independent of worldsheet metric, only the topology of the
Riemann surface with boundary is pertinent.

Now, the detailed structure of the topological subsector of the A, B models can be somewhat
richer than that description implies, and so there have been further refinements. The most
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recent version of these refinements, to our knowledge, is due to Costello [24, 25], who has a
description of both open and closed string topological conformal field theories, which includes
most (if not all) of the algebraic structures present in the general case, including L∞ and
A∞ algebras.

Thus, at this point in time, there seems to be a detailed purely mathematical understanding
of the topological subsector of topological field theories, and it is possible to map from the
topological subsector of a given topological field theory to one of these more categorical
descriptions.

However, the reverse construction is not known. Given, say, a functor from the cobordism
category to the category of Hilbert spaces, ala Atiyah, or even a later refinement, it is not
yet known in general how to build a quantum field theory containing a topological subsector
whose properties are described by the categorical framework.

Thus, at this point in time, there is a difference between what physicists mean by a topological
field theory (a quantum field theory containing a topological subsector) and what many
mathematicians mean by a topological field theory (as exemplified by Atiyah’s functor on
the cobordism category). The topological subsector of a quantum field theory nearly always
represents only a miniscule fraction of the correlation functions in the full quantum field
theory – the quantum field theory contains a great deal of information not described in the
topological subsector.

2.4 Exercises

1. In the discussion of the nonlinear sigma model, supersymmetry transformations of the
fields were listed. Check that the action is invariant under those transformations, in
the special case of a constant metric. (The more general case requires much more work
but is not especially more illuminating.)

2. In the discussion of the closed string A model, the BRST transformations of the fields
were listed. Check that the BRST transformations are a subset of the susy transfor-
mations of the nonlinear sigma model, and that they are nilpotent.

3. In the case of the closed string A model, show that in a d = 0 sector (i.e. constant
maps), that there are no ψı

z or ψi
z zero modes, and that there are as many χ zero modes

as the dimension of X, in the case that the worldsheet Σ = P1.

4. In the case of the closed string B model, we have argued in general terms that the
quantum field theory does not get any worldsheet instanton corrections. Let us examine
a particular case more closely. Suppose our target space X is the total space of the
bundle O(−1) ⊕O(−1) → P1, and consider a worldsheet instanton sector describing
maps into the base P1, of degree d, so that φ∗T 1,0X = O(2d) ⊕ O(−d) ⊕ O(−d). In
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this case, the moduli space Md has dimension 2d+ 1. Show that when the worldsheet
Σ = P1, the number of η and θ zero modes is 2(d + 1), for d > 0, which is wrong
to match the dimension of the moduli space, hence it is impossible for physics to
generate a top-form on the moduli space. (For the A model, on the other hand, the
analogous computation gives 2d + 1 zero modes (check!), exactly right to match the
dimension of the moduli space.) This argument unfortunately does not work for more
general normal bundles; for other cases, the reason why the B model gets no quantum
corrections from those sectors is a more subtle issue. See [7] for details.

3 The open string B model and derived categories

3.1 Boundary conditions and Chan-Paton factors

There are two important differences between the open string B model and the closed string
B model, i.e., the B model on Riemann surfaces with and without boundary, respectively.
The first difference is that we must specify boundary conditions on the open strings. Those
boundary conditions will tie the ends of the open string to submanifolds of the space, so
that, at low energy, the open string only propagates along the submanifold. The second
difference is that there are additional degrees of freedom located solely along the boundary.
These extra degrees of freedom, known as Chan-Paton factors, are specified by a smooth
principal bundle with connection living over the distinguished submanifold.

The choice of submanifold, together with a bundle on it, is to a first approximation what
is meant by a D-brane. The submanifold is sometimes known as the worldvolume of the
D-brane, and the bundle over that submanifold is sometimes known as the gauge bundle.

In the case of the open string B model, both the submanifold and the bundle are constrained:
the submanifold must be a complex submanifold, and the bundle must be equivalent18 to a
holomorphic vector bundle.

3.1.1 Boundary conditions

Let us first discuss boundary conditions, without adding any extra degrees of freedom on the
boundary. After we add those extra degrees of freedom, we shall see the boundary conditions
change, but first let us work through boundary conditions in the simpler case.

We need to impose some sort of boundary conditions on the open string fields in order to
make the theory well-defined on a Riemann surface with boundary. The two basic boundary

18Modulo a choice of hermitian fiber metric.
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conditions that we work with are Neumann boundary conditions and Dirichlet boundary
conditions. Neumann boundary conditions are given by

∂φµ = ∂φµ

and Dirichlet boundary conditions are given by

∂φµ = −∂φµ

These two boundary conditions may look indistinguishable, but there is an important physi-
cal distinction between them. First, let us express these conditions in real coordinates rather
than complex ones. Write z = x+ iy, and work on the upper half-plane. Then, ∂ + ∂ = ∂x

and ∂ − ∂ = −i∂y . Thus, we see that Neumann boundary conditions imply

∂yφ
µ = 0

or equivalently ∂nφ
µ = 0 along the boundary (n for normal), whereas Dirichlet boundary

conditions imply
∂xφ

µ = 0

or equivalently ∂tφ
µ = 0 along the boundary (t for tangent). These boundary conditions still

sound very similar. To understand precisely how they differ physically, let us temporarily
switch from Euclidean metrics and indices to Lorentzian ones. (Lorentzian metrics are more
relevant than Euclidean metrics physically, but can be more subtle to handle properly, so
for most of these lectures we work with Euclidean metrics instead.)

If our worldsheet is an infinite strip, say, describing an interval propagating in time, then
the tangent direction to the boundary can be identified with the time axis, and the normal
to the boundary can be identified with the spacelike direction. Then, Dirichlet boundary
conditions force the φµ to be independent of time. If we say that some coordinate φ1, say,
has Dirichlet boundary conditions, then that means that the boundary of the string will lie
on the hyperplane φ1 = 0.

Thus, Dirichlet boundary conditions force the endpoints of the string to lie along some sub-
manifold of the target space X, whereas Neumann boundary conditions allow the endpoints
to propagate freely. By imposing Dirichlet boundary conditions on some of the fields φµ, we
force the ends of the string to lie on some submanifold S, and in so doing, we obtain strings
describing D-branes.

Earlier we said that a D-brane is roughly a choice of submanifold S together with some extra
degrees of freedom we have not yet specified. Now we see where the first part of that data
arises – as a specification of Dirichlet boundary conditions on some of the fields. (In fact,
the “D” in the name D-brane comes from Dirichlet.)

An aside on nomenclature: Sometimes we specify the submanifold S by saying that the
D-brane is wrapped on S. Also, one sometimes uses the notation Dp-brane to indicate a
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D-brane with p spatial dimensions, though in these notes we will avoid that notation so as
to sidestep confusion involving Euclidean versus Lorentzian metrics. Also, in these notes we
will use the terms “D-brane” and “brane” interchangeably, though in general the terms are
not interchangeable – there exist examples of branes which are not D-branes. We will not
see any such in these notes, though.

From the supersymmetry transformations, compatible boundary conditions on the world-
sheet fermions are, for Neumann boundary conditions

ψµ
+ = ψµ

−

and for Dirichlet boundary conditions,

ψµ
+ = −ψµ

−

Note that in general one could choose combinations of Dirichlet and Neumann boundary
conditions that are not compatible with the complex structure – for z = x + iy, one could
impose Neumann boundary conditions on the x direction and Dirichlet boundary condition
on the y direction, for example. So, in general D-branes will wrap real submanifolds, not
necessarily complex submanifolds.

Now, let us apply these boundary conditions to the B model. Because ψi
+ and ψı

+ couple to
different bundles, one a worldsheet vector the other a worldsheet scalar, and the ψ−’s are
symmetric, to be consistent the boundary conditions must preserve the complex structure.
Thus, the submanifold of the Calabi-Yau X specified by the boundary conditions, cannot be
any submanifold, but rather must be a complex submanifold.

It should be trivial to check that for Neumann boundary conditions, θi = 0, whereas for
Dirichlet boundary conditions, ηı = 0.

Now, in the closed string B model, we interpreted ηı as a dzı on the target space X, whereas
the θi was interpreted as a vector field, coupling to TX. Here, if S is the submanifold
specified by D-brane boundary conditions, then in the open string B model we would like to
interpret ηı as dzı on the submanifold S, and θi as vectors in TX|S coupling to the normal
bundle NS/X .

The careful reader will note that we need to be slightly careful about the
interpretations above – we run the risk of needing to assume that TX|S splits
holomorphically as TS ⊕ NS/X , if we state the boundary conditions poorly. In
general, although TX|S will so split as a smooth bundle, holomorphically it will
not split. For example, consider conic curves in the projective plane P2. These
curves are topologically P1’s, but embedded nontrivially. Here, TC = O(2),
TP2|C = O(3)⊕O(3), and NS/X = O(4). As C∞ bundles on P1, O(3)⊕O(3) ∼=
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O(2)⊕O(4), but they are distinct as holomorphic bundles. In general, we merely
have an extension

0 −→ TS −→ TX|S −→ NS/X −→ 0

In the case of the closed string B model, massless spectra were given by BRST-invariant
field products corresponding to elements of the cohomology group H ·(X,Λ·T 1,0X). Here,
the analogous computation gives BRST-invariant field products corresponding to elements
of H ·(S,Λ·NS/X). We shall return to this matter later, and will see how ultimately this gives
rise to Ext groups between sheaves.

There is an additional consistency check of this choice of boundary conditions that we should
perform. For Neumann boundary conditions, the string endpoints are allowed to propagate
freely on the worldvolume of the D-brane, and so one would expect the equations of motion
that one derives form the classical action to behave well.

So, let us turn to the nonlinear sigma model, on a worldsheet Σ that now has a boundary, and
compute the equations of motion of the φ fields. From the bosonic kinetic term, proportional
to ∫

Σ
d2zgµν∂αφ

µ∂αφν

(where the α are worldsheet Euclidean indices, and µ, ν are target-space Euclidean indices),
we see that when we compute the equations of motion for φ, we will find a term which we
will have to integrate by parts:

δS

δφλ(z′)
= · · · +

∫

Σ
d2zgµλ (∂αφ

µ)
(

∂αδ2(z − z′)
)

= · · · +
∫

Σ
d2z∂α

(

gµλ (∂αφ
µ) δ2(z − z′)

)

−
∫

Σ
d2zgµλ (∂α∂

αφµ) δ2(z − z′)

The second term above will lead to the usual equations of motion. The first term, however,
given by

∫

Σ
d2z∂α

(

gµλ (∂αφ
µ) δ2(z − z′)

)

=
∫

∂Σ
gµλ (∂nφ

µ) δ2(z − z′)

will be a problem when z′ lies on the boundary of Σ. In order for the equations of motion to
be valid everywhere, we need to impose the boundary condition ∂nφ

µ = 0. So, as advertised,
we have recovered Neumann boundary conditions as a constraint for well-behaved equations
of motion for φ fields propagating freely along the worldvolume.

3.1.2 Chan-Paton factors

In addition to specifying boundary conditions on the bulk fields, we can also optionally add
a boundary interaction, which couples to a connection on some principal bundle. For the
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case of a connection on a principal U(1) bundle, this interaction on the boundary of the
worldsheet Σ has the form ∫

∂Σ

[

Aµdφ
µ − 2iFµνψ

µ
+ψ

ν
−

]

(7)

along the submanifold specified by the boundary conditions (i.e. for Neumann boundary
conditions). This boundary interaction is known as Chan-Paton factors, and the bundle to
which the connection Aµ couples is known as the Chan-Paton bundle. It is straightforward
to check that the interaction above is supersymmetric for B-model-compatible boundary
conditions so long as the curvature tensor

Fµν = ∂µAν − ∂νAµ

is of type (1, 1), i.e. Fij = Fı = 0.

Now, the presence of such an interaction modifies the boundary conditions for the open
string. The reason for this goes back to our argument that Neumann boundary conditions
leads to well-behaved equations of motion: in the present case, the presence of Chan-Paton
factors modifies the boundary contributions, and so should modify our conclusions. (This
was first discussed in [26], and our discussion here will follow their conventions.)

Begin with the relevant bosonic part of the action, with all factors added:

1

α′

∫

Σ
d2z

[

1

2
gµν∂φ

µ∂φν
]

− 1

4α′

∫

∂Σ
Aµdφ

µ =
1

8α′

∫

Σ
d2z [gµν∂

αφµ∂αφ
ν ] − 1

4α′

∫

∂Σ
Aµdφ

µ

(Factors in front of the Chan-Paton factor were chosen for later convenience.) When we
compute the equations of motion, we get the boundary terms

2

8α′

∫

Σ
d2z

[

∂α

(

gµλ∂
αφµδ2(z − z′)

)]

− 1

4α′

∫

∂Σ
∂λAµδ

2(z − z′)dφµ − 1

4α′

∫

∂Σ
Aλd

(

δ2(z − z′)
)

=
1

4α′

∫

∂Σ
dx
[

gµλ∂nφ
µδ2(z − z′)

]

− 1

4α′

∫

∂Σ
Fλµδ

2(z − z′)dφµ

=
1

4α′

∫

∂Σ
dxδ2(z − z′) [gµλ∂nφ

µ − Fλµ∂tφ
µ]

so now we see that for the equations of motion to be well-behaved at the boundaries, we
must require

gµλ∂nφ
µ = Fλµ∂tφ

µ

in place of the original Neumann boundary conditions (to which this reduces when F = 0).
From supersymmetry, the B-model fermions should then obey

θi = Fiη


in place of the original Neumann boundary conditions θi = 0. (As usual, we have to be
slightly careful about the interpretation of that constraint when TX|S does not split holo-
morphically as TS ⊕NS/X .)
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3.1.3 Notes on the open string A model

In most of these notes, we are concerned with the B model, since that is where derived cate-
gories enter physics. However, for completeness, let us briefly mention a few facts concerning
the open string A model.

In the A model, it is ψi
+ and ψı

− that are both worldsheet scalars, so consistent boundary
conditions will have to relate ψi

+ to ψı
− – which means that the boundary conditions do not

respect the complex structure on X. There is an analogous modification to the conditions
on the curvatures of the Chan-Paton factors.

With more work along these lines, one can show that the A model ‘typically’ couples to
D-branes on Lagrangian submanifolds of X together with flat vector bundles over those
submanifolds.

There are a few special exceptions to that rule – it is also possible for the open string A
model to describe D-branes on coisotropic submanifolds with non-flat vector bundles. See
[38] for more information.

3.1.4 Further complications

Very briefly, let us mention in passing two further complications. They play an important
role, but understanding that role is beyond the scope of these lectures.

One complication is the “Freed-Witten anomaly” [30]. This says two things. First, a D-brane
can not consistently wrap a submanifold unless the normal bundle admits a Spinc structure
(or unless one makes H 6= 0, but that would lead to a discussion of Hitchin’s generalized
complex geometry, beyond the scope of these lectures). In the B model, all submanifolds
are complex submanifolds of complex manifolds, and for these the normal bundle will always
admit a Spinc structure, so there is no obstruction. Second, the Freed-Witten anomaly
tells us that if the normal bundle admits a Spinc structure but not a Spin structure, then
the Chan-Paton factors must be ‘twisted.’ This, unfortunately, is a problem for us, For
example, the tangent bundle of P2 admits a Spinc structure but not a Spin structure, and
for submanifolds of Calabi-Yau’s, the normal bundle admits a Spin structure if and only if
the submanifold does. Thus, if we wrap a D-brane on a P2 inside a Calabi-Yau, then the
Chan-Paton factors must be suitably twisted. In practice, what this means is that the D-
brane corresponding to the sheaf i∗E , where i : S ↪→ X and E a holomorphic vector bundle
on S, will have Chan-Paton factors coupling to E ⊗ √

KS instead of E , where KS is the
canonical bundle of S [31]. In general,

√
KS will not be an honest bundle, merely a ‘twisted’

bundle, but we shall not attempt to explain what that means in detail here. This difference,
although it plays a crucial role in many technical discussions of derived categories in physics
[31], will not appear in these lectures, so we will not belabor it further.
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Another complication that emerges in general is the open string analogue of the Calabi-Yau
condition in the B model. Just as the structure of the Grassmann zero mode integrals in
the path integral implies that the closed string B model can only be defined on spaces X
with K⊗2

X
∼= O, there is an analogous condition in the open string B model which naively

appears to significantly restrict which D-branes one can consistently stretch an open string
between [31]. In the simplest cases, for trivial Chan-Paton factors, the constraint is that an
open string can stretch between two D-branes wrapped on submanifolds S, T if

ΛtopNS∩T/S ⊗ ΛtopNS∩T/T
∼= O

This condition also plays an important role in more detailed analyses [31]; however, the fact
that the Riemann surface has boundary complicates the question of whether this is truly a
constraint. A complete discussion of this matter does not yet exist.

3.2 Relevance of sheaves

So far, we have described D-branes in the open string B model as, a complex submanifold
i : S ↪→ X together with a holomorphic vector bundle E → S. Such a pair can be naturally
described as the coherent sheaf i∗E .

To make that identification useful, we need to be able to compute physical quantities in
terms of sheaves, and in the next section we shall see how that can be done.

Given that sheaves of the form i∗E are relevant, a good question to ask is, what about other
coherent sheaves? Do they play any role, or are they physically irrelevant? To this there are
two answers:

• For a more general coherent sheaf, by replacing it with a projective resolution we
will be oble to construct a corresponding physical system consisting of D-branes and
antibranes, see section 3.4. Assuming that worldsheet renormalization group flow in
the B model is the same thing as localization on quasi-isomorphisms, then this gives us
one way to associate physics to more general coherent sheaves. Alas, it is not terribly
satisfying, as it does not directly address the question of how to interpret more general
coherent sheaves as individual D-branes.

• A direct attack on this question was conducted in [32]. There, it was argued that
coherent sheaves of the form of structure sheaves of nonreduced subschemes of X, and
related sheaves, could be directly interpreted as D-branes with nonvanishing ‘Higgs
field vevs,’ which was checked by comparing massless spectra to Ext groups. That still
doesn’t give an interpretation of all sheaves, but fills in a significant gap, and gives
some idea of what a general case might look like.
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3.3 Massless spectra = Ext groups

Historically, sheaves were first introduced to the study of D-branes by Harvey and Moore in
[27], as a throwaway observation. The reason that this description is of interest to physicists
is that sheaves can be used to do physics computations.

For one example, massless spectra can be computed using sheaf theory. The states of the
open string B model, on an infinite strip with the boundaries associated to two distinct
D-branes / sheaves, should be some sort of cohomology, dependent upon an ordered pair
of sheaves. A natural guess is that they should be computed by Ext groups between the
sheaves on either side.

Physicists discovered experimentally after [27] that this natural guess seemed to be correct,
as Ext groups do indeed compute spectra in a number of examples. However, understanding
why it should be correct took longer.

Some basic cases were implicit in [29]. In that paper, the open string B model for open
strings connecting D-branes wrapped on the entire space was described. In this case, the
open string B model states – states effectively on the boundary of an infinite strip in the far
future or past – are of the form

b(φ)αβ
ı1···ınη

ı1 · · · ηın

(utilizing a Dolbeault-type realization of such groups) where α, β are Chan-Paton indices,
coupling to holomorphic vector bundles associated with either boundary. The BRST coho-
mology of these states is in one-to-one correspondence with elements of the sheaf cohomology
groups

Hn (X, E∨ ⊗ F)

Understanding how Ext groups arise for D-branes wrapped on submanifolds took a much
longer time. It was first worked out in [31]. To illustrate how this works, let us specialize to
the case of two sets of D-branes both wrapped on the same submanifold i : S ↪→ X, both
with the same holomorphic vector bundle E , which to simplify things even further, we shall
assume is a line bundle. The physical spectrum computation realizes the spectral sequence19

Hp
(

S, E∨ ⊗ E ⊗NS/X

)

=⇒ Extp+q(i∗E , i∗E)

Suppose, for example, we wish to describe an element of Ext1(i∗E , i∗E). On the face of it,
one would guess that there are contributions from field products of the forms

biαβθi, b′αβ
ı ηı

19For those who wish to understand how this spectral sequence is derived, it can be derived as a special-
ization of the local-to-global spectral sequence.
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The trick is, making sense of BRST cohomology. If the TX|S splits holomorphically as
TS ⊕ NS/X , and the Chan-Paton bundle E is trivial, then the BRST operator acts just as
∂, and the states above span

H0(S, E∨ ⊗ E ⊗NS/X) ⊕H1(S, E∨ ⊗ E)

which is noncanonically isomorphic to Ext1(i∗E , i∗E), since it can be shown the spectral
sequence degenerates. If TX|S does not split holomorphically, and E is not trivial, then we
have to work harder. In this case, we cannot make sense of θi globally on S, both partly
because TX|S does not split holomorphically, so we cannot make sense of θi by itself, and
also because the boundary conditions are modified, so that θi = Fiη

. We can lift NS/X to
TX|S in order to make sense of the expression “biαβθi,” albeit at the cost of breaking the
holomorphic structure, so that it is no longer BRST closed by itself. If we then demand that
after we apply the boundary condition θi = Fiη

 that the state be closed, then in effect we
have the composition

H0(S, E∨ ⊗ E ⊗NS/X) −→ H0(S, E∨ ⊗ E ⊗ TX|S) −→ H1(S, E∨ ⊗ E)

which is precisely [31] the relevant differential of the spectral sequence.

3.4 Brane/antibrane configurations and derived categories

Finally, we are ready to begin to understand how derived categories appear physically in the
open string B model. For any object of a derived category Db(X) over a smooth Calabi-Yau
X, i.e. a complex of sheaves, the general idea is to map that complex of sheaves to a set
of alternating D-branes and anti-D-branes (corresponding to the sheaves) with ‘tachyons’
between them corresponding to the maps in the complex.

Before trying to make this precise, let us take a moment to explain what an ‘anti-D-brane’
and a ‘tachyon’ are. An anti-D-brane is specified by the same data as a D-brane, in fact
in the B model is nearly identical to a D-brane, except that physically anti-D-branes and
D-branes try to annihilate one another. Their worldsheet specification is identical – same
boundary conditions, same Chan-Paton factors. They are distinguished from one another
by the addition of a certain operator to the boundary of an open string between a section
corresponding to a brane and another section corresponding to an antibrane. That operator
shifts a certain ‘U(1)’ charge, which modifies the physical interpretation.

In any event, a physical theory containing both branes and antibranes is not stable. A
tachyon is a field20 that pops up whenever there are simultaneously branes and anti-branes

20A field in the effective theory on the target space. The tachyon is not a field on the worldsheet, though
it can be represented on the worldsheet by a BRST-closed field combination corresponding to an element of
Ext0X(S1,S2).
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present. (More generally, the appearance of tachyons is correlated with the appearance of
instability, and the fact that branes and anti-branes try to annihilate one another makes a
theory containing both very unstable.) Technically, if one has branes and antibranes both
wrapped on the same submanifold S of spacetime, then the tachyon that appears is a map
between their respective holomorphic vector bundles.

Now, let us clean up the proposed dictionary above slightly. As remarked earlier, we do not
know how to associate D-branes to general sheaves, only to certain sheaves. However, in the
derived category that is not a problem. For any object of a derived category Db(X) over a
smooth Calabi-Yau X, pick a representative in the same equivalence class that is a complex
of locally-free sheaves, i.e. holomorphic vector bundles on X. Then, that complex we can
certainly represent physically – with branes and antibranes wrapped on all of the space X,
with holomorphic vector bundles on their worldvolumes.

This proposal was originally made in [34], and later repeated in [35].

However, this proposal, as stated so far, still leaves a lot of questions unaswered. For example:
how does the condition for a complex arise physically in terms of properties of tachyons?

This question was not answered until the publication of [36]. For simplicity, let us again
assume that the holomorphic vector bundles on the D-brane and anti-brane worldvolumes
are line bundles, so as to avoid subtleties in more general cases. A tachyon is represented on
the open string worldsheet by a BRST-closed field product corresponding to an element of
Ext0

X(E ,F), when both the branes and anti-branes are wrapped on all of X, where E and F
are the holomorphic vector bundles on each worldvolume. Such a BRST-closed field product
is represented by ϕαβ, where α, β are indices coupling to E , F , and with no other factors of
ηı or θi. To describe open strings in the presence of a nonzero tachyon, we add the term

∫

∂Σ
G · ϕαβ ∝

∫

∂Σ

(

ψi
+ + ψi

−

)

∂iϕ
αβ

to the boundary action, where G represents the non-BRST half of the supersymmetry trans-
formations.

In fact, we need to do a bit more, though this was not mentioned in [36].
The complete boundary action describing a nonzero tachyon background also
includes a bosonic potential term of the form ϕ∗ϕ (see for example [39][section
5.1.2], [40][section 4], [41][section 2], or [42]; there is a short discussion also in
section 4.2.2).

The addition of the term above to the boundary action has the effect of modifying the BRST
operator. In the closed string B model, as discussed previously, the BRST operator can be
interpreted simply as ∂. Here, however, the BRST operator is modified21 to become ∂ + ϕ.

21One way to see this is to evaluate the correlation function < Q · V > for any V , and then commute the
BRST operator Q past the new boundary terms. See [36, 37] for more information.
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A necessary condition to have supersymmetry along the boundary in the twisted theory is
that Q2 = 0, which now implies that ϕ must be holomorphic (∂ϕ = 0), and also, if we have
several different branes and antibranes with tachyons between them, that composition of
successive tachyons must vanish:

ϕαβ
1 ϕβγ

2 = 0

In this fashion, we find the condition to have a complex.

In fact, we need not stop there. We can also consider open strings in the
presence of other Ext elements. Elements of Ext1 merely deform the sheaves;
elements of Extn for n > 1 lead to the “generalized complexes” of [43]. An
example of such a generalized complex is given by

3

2

0 0 0 0 0

1

in which the Ext degrees corresponding to each map have been labelled. As above,
the BRST operator Q is deformed, and the condition Q2 = 0 implies a constraint
among the various maps which is exactly the condition for a generalized complex
in the sense of [43]. These generalized complexes can be used to build “enhanced
triangulated categories” as well as an enhancement of ordinary derived categories
of sheaves. See [37, 44, 45, 46] for more information.

So far we have described how complexes can be understood physically – as sets of branes
and antibranes with tachyons corresponding to the maps between them. Now, how do we
realize, for example, localization on quasi-isomorphisms?

The answer is that localization on quasi-isomorphisms is believed to be realized by worldsheet
renormalization group flow. To see this, let us consider a simple example: a single D-brane
wrapped on a divisor D, versus a brane and anti-brane with bundles O, O(−D) and a
tachyon realizing the complex

O(−D) −→ O
These are equivalent to one another as objects of the derived category Db(X). Physically,
however, they are significantly different. The D-brane wrapped on a divisor D is described by
a conformally-invariant theory, whereas in the open string describing the brane/anti-brane
system, the boundary terms describing a nonzero tachyon break scale-invariance of the world-
sheet theory, classically. Thus, in this simple example we see that two open strings describing
equivalent objects of the derived category are described by very different physics: one scale-
invariant, the other not. Now, the renormalization group can product a scale-invariant theory
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from one that is not, so the correct claim to make is that different representatives of the
same object of the derived category should be realized physically by different open string
worldsheets in the same universality class of worldsheet renormalization group flow.

As discussed earlier, it is not possible in general to try to follow renormalization group flow
exactly. The best we can usually do is to compute an asymptotic series expansion to a
tangent vector to the flow. Instead, to check this conjecture, we work through large numbers
of computations, and if we can find no contradictions, then eventually we believe that it is
probably (though not provably) correct.

There is a closely analogous problem in the realization of (smooth Deligne-
Mumford) stacks in physics. Stacks look locally like global quotients by finite
groups, but, such a local description cannot be used to built a QFT. Stacks
also have a global description as quotients [X/G] by groups G that need be
neither finite nor effectively-acting, and that description can be translated into
physics. Unfortunately, when G is finite, the corresponding physical theory is
scale-invariant, whereas when G is not finite, the corresponding physical the-
ory is not scale-invariant. Since a given stack can have multiple presentations
of the form [X/G] for G’s both finite and non-finite, we again have a potential
presentation-dependence problem, which we conjecture is resolved by renormal-
ization group flow – stacks classify universality classes of physical theories. Unfor-
tunately, unlike the case of derived categories, there are several basic consistency
checks that appear to be violated, making the question of whether it makes sense
to talk about strings propagating on stacks, somewhat problematic for several
years. However, those issues have been resolved and the conjecture has by now
been checked in a large number of different ways. See [12, 13, 14, 15, 16, 17] for
more details.

3.5 Ext groups from tachyons

Previously we have discussed how Ext groups arise in direct computations involving D-branes
wrapped on curves. It is also possible to derive Ext groups, or more properly RHom’s, for
general objects in the derived category, using the brane / anti-brane / tachyon language.

To illustrate the method, let us work through an example. Let us calculate Ext∗
C

(OD,O)
where D is some divisor on C. The torsion sheaf OD has a two-step resolution:

0 −→ O(−D) −→ O −→ OD −→ 0

so it is easy to check that the answer should be given by

dim Extn
C

(OD,O) =

{

0 n = 0
1 n = 1
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We shall check our physical picture by verifying, through a physical calculation, the Ext
groups just described. (We will find that the physical calculation is too messy for practical
use, but working through the details should illuminate the ideas.)

On one end of the open string, put Chan-Paton factors corresponding to the bundle O(−D)⊕
O, and on the other end of the open string, put Chan-Paton factors corresponding to O. We
shall also give a vev to the tachyon corresponding to the holomorphic map φ : O(−D) → O,
on the corresponding end of the open string. As a result of this tachyon vev, the BRST
operator is now deformed to the form QBRST = ∂ + φ∨. (We write φ∨ instead of φ to
emphasize the fact that φ acts solely within the dualized half of the Chan-Paton factors.)

Proceeding as before, boundary BRST-invariant field combinations are of the general form

bαβ
ı1···ınη

ı1 · · · ηın

where α, β are Chan-Paton factors coupling to O(−D) ⊕ O and O, respectively. Since we
will need to work with the detailed components, let us write

(bαβ
ı1···ın

) =

[

b0ı1···ın

b1ı1···ın

]

where b0 is associated with O(−D)∨ ⊗O and b1 i s associated with O∨ ⊗O.

Now, let us compute BRST cohomology. We need to be careful to keep track of degrees
properly – for example, degree zero states are not of the form

[

b0
b1

]

since the tachyon φ forces b0 and b1 to have different charges. Instead, the only degree zero
state is b1, and the condition for this state to be BRST closed is that ∂b1 = 0 and φ∨b1 = 0.
The only holomorphic function on C that is annihilated by multiplication by x (assuming
D is the divisor {x = 0}, without loss of generality) is the zero function, hence the space of
degree zero states is zero-dimensional, exactly as desired.

The degree one states are of the form

b0 + b1ıη
ı

The condition for these states to be BRST-closed is that

∂b0 = −φ∨
(

b1ıη
ı
)

(8)

∂
(

b1ıdz
ı
)

= 0 (9)

and BRST-exact states are of the form

b0 = φ∨a

b1ıdz
ı = ∂a
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for some a. Condition (9) means that b1ıη
ı is an element of H1(O). Condition (8) means

that if we define b′0 = b0 mod im φ∨, then ∂b′0 = 0, and more to the point,

b′0 ∈ H0 (D,O(−D)∨|D ⊗O|D) = Ext1 (OD,O)

(Technically b′0 can be interpreted as defining a form on D because we are modding out the
image of an element of H1(O).) Conversely, given an element of

Ext1 (OD,O) = H0 (D,O(−D)∨|D ⊗O|D)

we can define b0 and b1, using the long exact sequence

· · · −→ H0(O) −→ H0(O(D)) −→ H0(D,O(D)|D)
δ−→ H1(O) −→ · · ·

The element b1 is the image under δ, and b0 is the lift to an element of A0,0(O(D)).

This is clearly not very efficient, but the fact that it can be done at all is a good con-
sistency check of our assumption that renormalization group flow realizes localization on
quasi-isomorphisms.

3.6 Correlation functions

One thing that one would certainly like to be able to do is compute correlation functions
in the open string B model. In particular, correlation functions on a disk with various Ext
group elements inserted at points on the boundary of the disk.

Unfortunately, direct computations are often very difficult, but, we can apply ideas from the
realization of derived categories in physics to simplify the computations.

3.6.1 Direct computation attempt

Let us briefly outline an example to illustrate the difficulty of direct computation of corre-
lation functions in the open string B model.

In particular, let us consider an example involving D-branes wrapped on an obstructed P1

inside a Calabi-Yau threefold, with normal bundle O⊕O(−2). The structure of the normal
bundle suggests that the P1 should come in a one-parameter family (since h0(P1,N ) = 1),
but, the normal bundle represents only a linearization of the complex structure, and omits
information. For example, an nth order obstruction is realized by a complex structure
described as follows. Let (x, y1, y2), (w, z1, z2) be two coordinate patches on the total space
of the normal bundle over P1, then the (deformation obstructed) complex structure is defined
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by the transition functions

w = x−1

z1 = x2y1 + xyn
2

z2 = y2

The fact that deformations are obstructed should be represented physically22 by a nonzero
correlation function on a disk involving operators corresponding to elements of Ext1

X(S,S)
where S is a sheaf describing a D-brane wrapped on the obstructed P1.

For simplicity, let us assume that the vector bundle on the worldvolume of the D-brane is
a trivial line bundle. (We can also assume, without loss of generality, that TX|P1 splits
holomorphically as TP1 ⊕ N .) Then the BRST-closed field product corresponding to an
element of Ext1

X(S,S) is of the form b(φ)iαβθi. For a particular order of obstruction23, the
correlation function

<
(

biαβθi

)3
>

should be nonzero.

Previously, we have been able to compute correlation functions in topological field theories
by little more than counting zero modes. However, that does not work here. In the present
case, since we are working in the B model, we need consider only constant maps into the
target space, so zero-mode counting reduces to counting the ranks of bundles and applying
boundary conditions. In particular, there are 2 θi zero modes (corresponding to the rank of
the normal bundle to the P1), and one ηı zero mode (since the rank of TP1 is one). On the
face of it, to get a nonvanishing correlation function, we would need the correlation function
to contain one η and two θ’s, but our correlation function above contains three θ’s, so naively
one would think that our correlation function should always vanish.

The subtlety we are forgetting is the freedom to use the worldsheet bulk interaction term

1

α′

∫

Σ
Riklψ

i
+ψ


+ψ

k
−ψ

l
−

By performing various Wick contractions, (legitimate here so long as the final result is
independent of α′), one can derive an expression for the correlation function involving the
Riemann curvature R. In principle, the information about the obstruction in the complex
structure should be encoded in the (hermitian, Ricci-flat) metric on the Calabi-Yau; however,
we do not know of an explicit way to relate them, so we cannot confirm independently that
the result really is correctly reproducing the order of the obstruction.

22We shall simply state this as a fact. This will be more or less obvious to physicists reading these notes,
but, to explain to others, would require more time than we wish to devote to the point.

23For higher orders, the correlation function should involve “descendants” of the b(φ)θi’s, so for simplicity
we shall only consider this case.
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Clearly, direct computations are cumbersome at best.

In the next section, we shall briefly outline a more efficient method to achieve the same ends.

3.6.2 Aspinwall-Katz methods

A more efficient method to compute correlation functions [47] is to take advantage of the
fundamental assumption underlying the description of derived categories in physics: namely,
that localization on quasi-isomorphisms is accomplished via renormalization group flow. In
particular, correlation functions in topological subsectors of topological field theories are,
in principle, independent of representative of universality class, so if a computation is very
difficult in one presentation, then, pick a different presentation of the same universality class
and compute there instead. In the present case, since computations directly involving branes
wrapped on submanifolds are different, we shall work instead with brane/antibrane/tachyon
combinations on the entire space. One should get equivalent results, but hopefully with less
effort.

Open string correlation functions on a disk, with all operators located on the edge of the
disk, have a natural A∞ structure. Roughly, the n-point correlation function

< O1 · · ·On >

can be understood as < O1, mn−1(O2, · · · ,On) > where <,> denotes an inner product
(the composition of m2 and a trace that exists for Calabi-Yau’s), and mn is the n-point
multiplication. Not any A∞ structure can be allowed – since the Oi are inserted on the edge
of a disk, clearly there must exist a cyclic symmetry. For brevity, we will not attempt to list
either necessary or sufficient conditions here.

Given some A∞ algebra A, we can take the cohomology of m1 (the 1-point multiplication)
to get an H ·(A). It can be shown that one can define an A∞ structure on H ·(A) such that
there is an A∞ morphism f : H ·(A) → A with f1 equal to a fixed embedding H ·(A) ↪→ A
defined by taking representatives, and such that m1 = 0 on H ·(A).

Briefly, the idea behind the method of [47] is to take A to be the differential graded algebra
of bundle-valued forms on X with multiplication defined by the wedge product, then the A∞

structure one can derive on H ·(A) defines the disk correlation functions in the open string
B model.

3.7 What is the D-brane category?

So far, we have discussed the D-branes in the open string B model as described by Db(X), to-
gether with higher (Massey) products defined by correlation functions on a disk and defining
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an A∞ structure.

Alternatively, and perhaps more efficiently, we can think of the D-brane category as a dg-
category, a dg-enhancement of the derived category. There are several (quasi-equivalent)
dg-enhancements; for example, one could take the category of complexes of vector bundles
on X with the hom complexes being the Dolbeault complexes of hom’s. In this language,
the derived category Db(X) with its A∞ structure can be thought of as the minimal model
of the corresponding dg-category, and on general principles [56] these two pictures are quasi-
equivalent. So, in principle, one can work with either one.

3.8 Exercises

1. Check that the nonlinear sigma model still possesses supersymmetry on a Riemann
surface with boundary, when one imposes either Dirichlet or Neumann boundary con-
ditions in the B model. For simplicity, take the metric to be constant, and also assume
the Chan-Paton factors are trivial.

2. Check that the boundary interaction (7) describing the Chan-Paton factors is invariant
under supersymmetry when the boundary conditions are B-model-compatible and the
connection has curvature of type (1, 1), i.e. Fij = Fı = 0. For simplicity, assume
the metric is constant and that the fields on ∂Σ obey Neumann boundary conditions
∂φµ = ∂φµ, ψµ

+ = ψµ
−.

3. We mentioned that non-reduced subschemes correspond physically to D-branes with
“nilpotent Higgs fields.” In this problem, we shall outline an example of what that
means. Consider open strings on X = C2 connecting two sets of D-branes each
supported at a point, the origin of C2. Each D-brane will have a trivial rank 2 vector
bundle. However, one of the D-branes will have a nontrivial Higgs field. A Higgs field
is a section of NS/X ⊗End E , which in this simple case means a pair of 2× 2 matrices.
Take that Higgs field to be defined by the two matrices

Φx =

[

0 1
0 0

]

, Φy =

[

0 0
0 0

]

(Mathematically, these Higgs fields define a deformation of the ring action on the
module describing the rank 2 locally-free sheaf; the resulting (deformed) module is
that of a nonreduced scheme.) This Higgs field deforms the BRST operator to

Q = ∂ + Φxθx + Φyθy

where the θ’s are the θ’s of the B model, namely Grassmann-valued fields on S = point,
and the Φ’s act by matrix multiplication on the left, say. (In this case, the ∂ is
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irrelevant, since S is a point – everything will be constant, this problem is an exercise
in matrix multiplication.) Now, “states of degree zero” have the form

[

a b
c d

]

for complex numbers a, b, c, d, “states of degree one” have the form
[

ax bx
cx dx

]

θx +

[

ay by
cy dy

]

θy

and “states of degree two” have the form
[

e f
g h

]

θxθy

Compute the BRST cohomology of these states (hint: nothing more than an exercise
in computing kernels and images of matrix multiplication). Show that the BRST
cohomology of these states at degree n matches the Ext groups

Extn
C2

(

Dx,O2
0

)

where O0 is the structure sheaf of the origin of C2, and Dx is the structure sheaf of a
nonreduced subscheme of C2 defined by the ideal (x2, y). Use the locally-free resolution

0 −→ OC2

[

−y
x2

]

−→ O2
C2

[x2,y]−→ OC2 −→ Dx −→ 0

NOTE that in effect, we have turned the problem of computing Ext groups between
structure sheaves of nonreduced subschemes, which sounds horribly nasty, into a simple
exercise in linear algebra. More information on this can be found in [37, 32].

4 Landau-Ginzburg models

4.1 Closed strings

A Landau-Ginzburg model is a nonlinear sigma model with a (supersymmetrized) potential
added. To specify a Landau-Ginzburg model, one must specify both a complex Riemannian
manifold as well as a holomorphic function over that Riemannian manifold.

The most general Landau-Ginzburg model (over a space) that one can write down has the
following action:

1

α′

∫

Σ
d2z

(

1

2
gµν∂φ

µ∂φν +
i

2
Bµν∂φ

µ∂φν +
i

2
gµνψ

µ
−Dzψ

ν
− +

i

2
gµνψ

µ
+Dzψ

ν
+ + Riklψ

i
+ψ


+ψ

k
−ψ

l
−

−gi∂iW∂W + iψi
+ψ

j
−Di∂jW + iψı

+ψ

−Dı∂W

)
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where W is a holomorphic function over the target space X, known as the superpotential,
and

Di∂jW = ∂i∂jW − Γk
ij∂kW

The bosonic potential, which is of the form
∑

i |∂iW |2, is sometimes known as a F-term. The
action possesses the supersymmetry transformations:

δφi = iα−ψ
i
+ + iα+ψ

i
−

δφı = iα̃−ψ
ı
+ + iα̃+ψ

ı
−

δψi
+ = −α̃−∂φ

i − iα+ψ
j
−Γi

jmψ
m
+ + α+g

i∂W

δψı
+ = −α−∂φ

ı − iα̃+ψ

−Γı

mψ
m
+ + α̃+g

ıj∂jW

δψi
− = −α̃+∂φ

i − iα−ψ
j
+Γi

jmψ
m
− − α−g

i∂W

δψı
− = −α+∂φ

ı − iα̃−ψ

+Γı

mψ
m
− − α̃−g

ıj∂jW

The ordinary nonlinear sigma model is classically scale-invariant, but notice that the action
above is not scale-invariant even classically when W 6= 0. This means that Landau-Ginzburg
models are not themselves conformal field theories. However, we can use them to define con-
formal field theories by applying renormalization group flow – the endpoint of renormalization
group flow is a (possibly trivial) conformal field theory.

In the physics literature, the name “Landau-Ginzburg model” is sometimes reserved for the
special case that the target space X = Cn for some n. Other cases are then called “hybrid
Landau-Ginzburg” models.

In principle, the A and B twists of nonlinear sigma models extend to these nonlinear sigma
models with superpotential. We shall focus on the case of a B twist, as that is what is most
directly pertinent to derived categories. The B twist for the theory with superpotential is
defined by taking the fermions to be the sections of the same bundles as before. The scalar
supersymmetry transformation parameters are α̃+ and α̃−, as before. Taking α̃+ = α̃− = α
as before, the BRST transformations are now

δφi = 0

δφı = iαηı

δηı = 0

δθi = 2α∂iW

δρi = −αdφi

These are almost the same as for the ordinary B model, except that θi is no longer BRST-
invariant.

The action for the nonlinear sigma model with a superpotential is not itself BRST exact,
unlike the ordinary B model; however, it is still independent of the metric on the worldsheet
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Σ, in the sense that rescaling the worldsheet metric is equivalent to adding BRST-exact
terms to the action. (See [48] for more information.) Under such a rescaling z 7→ λz, the
superpotential-dependent terms in the action become

1

α′

∫

Σ
d2z

(

−λ2gi∂iW∂W + iψi
+ψ

j
−Di∂jW + iλ2ψı

+ψ

−Dı∂W

)

in the B twisted theory (where we have used the fact that ψi
± are worldsheet vectors and ψı

±

are worldsheet scalars). Since λ is arbitrary, we can take a large λ limit from which we see
that contributions to correlation functions will arise from fields φ such that ∂W = 0, which
(since W is holomorphic), is equivalent to configurations such that dW = 0.

Now, let us evaluate a correlation function

< F1(φ) · · ·Fk(φ) >

in this theory, where the Fi are analytic functions of the φ. As usual in the B model, there
will be no Feynman diagram corrections. Furthermore, also as usual in the B model, there
will be no worldsheet instanton contributions from maps of degree d 6= 0, and as already
argued, the degree d = 0 maps will be clustered around solutions of dW = 0.

For the moment, for simplicity, let us assume that the zeroes of dW are isolated points,
and let us further assume that the target space X = Cn, i.e. that we are considering a
Landau-Ginzburg model in the classical sense.

The path integral reduces to ordinary and Grassmann integrals over bosonic and fermionic
zero modes, and for large λ reduces to the product of an integral over bosonic zero modes
(for the nonlinear sigma model on the target X = Cn)

∫

X
dφ exp

(

−A

α′

∑

i

|λ∂iW |2
)

and an integral over the fermionic zero modes

∫

∏

(
√
α′dψi

+)(
√
α′dψi

−) exp
(

i
1

α′

∫

Σ
ψi

+ψ
j
−∂i∂jW

)∫

∏

dψı
+dψ

ı
− exp

(

i
A

α′
λ2ψı

+ψ

−∂ı∂W

)

where A is the area of the worldsheet Σ. The ψı
± zero modes are holomorphic sections of the

pullback of the tangent bundle of X, which is trivial, so there are dim X such zero modes.
The ψi

± zero modes are holomorphic sections of K tensored with the pullback of the tangent
bundle of X. (Since only the ψı

± zero modes are constants, only in the second factor can the
integral over the worldsheet Σ be done trivially to give a factor of the worldsheet area A.)

Now, let us evaluate the bosonic factor

∫

X
dφ exp

(

−A

α′

∑

i

|λ∂iW |2
)
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We will argue in a moment that the method of steepest descent will give an exact answer for
this integral, not just the leading order term in an asymptotic series, because we can make
λ arbitrarily large. To see this, expand

φ = φ0 + δφ

where φ0 is a constant map that solves dW = 0, and δφ is a perturbation to another
(constant) map. Then we see that the potential term in the action can be expanded as

1

α′

∫

Σ
d2z

[

−λ2gi(∂k∂iW )(φ0)(∂k∂W )(φ0)(δφ
k)(δφk) + O((δφ)3)

]

Now, define

φ̃ =
λ√
α′
δφ

We see that the expansion of the potential term in the action now has the form

∫

Σ
d2z

[

−gi(∂k∂iW )(φ0)(∂k∂ıW )(φ0)φ̃
kφ̃k +

√
α′

λ
O((φ̃)3)

]

This is closely analogous to the procedure we followed for defining perturbation theory for
ordinary nonlinear sigma models, except here we absorb the ratio λ/

√
α′ into δφ, instead of

r/
√
α′. In any event, we see that the higher-order terms past the quadratic are suppressed

by factors proportional to λ−1, and since we can make λ arbitrarily large without changing
correlation functions in the topological subsector of the theory, that means that the higher-
order terms are suppressed, and the method of steepest descent will give an exact answer
for this integral, not just the leading term in an approximation.

In any event, given the general analysis above, we can evaluate the bosonic zero mode integral

∫

X
dφ exp

(

−A

α′

∑

i

|λ∂iW |2
)

This is simply a multivariable Gaussian. Define

H = det (∂i∂jW ) , H = det
(

∂ı∂W
)

then we can read off, more or less immediately, that

∫

X
dφ exp

(

−A

α′

∑

i

|λ∂iW |2
)

=
∑

dW=0

πn

(

α′

A

)n

λ−2nH−1H
−1

where the Hessians H , H are to be evaluated at each solution of dW = 0.
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In passing, we should also mention that for a more general case, for a more
general X in a sector of maps of degree d not necessarily zero, the bosonic con-
tribution to the path integral would have the form

∫

Md

exp
(

−A

α′
λ2|∇W̃ |2

)

where Md is a (compactified) moduli space of maps into the target space X and
W̃ is a function on Md induced by the holomorphic function W on X. This is
irrelevant for the B-twisted theory, but, is very relevant for the A-twisted theory.

Next, let us evaluate the factor corresponding to fermionic zero modes:

∫

∏

(
√
α′dψi

+)(
√
α′dψi

−) exp
(

i
1

α′

∫

Σ
ψi

+ψ
j
−∂i∂jW

)∫

∏

dψı
+dψ

ı
− exp

(

i
A

α′
λ2ψı

+ψ

−∂ı∂W

)

The ψı
± zero modes are holomorphic sections of the pullback of the tangent bundle of X,

which is trivial, so there are dim X such zero modes. The ψi
± zero modes are holomorphic

sections of K tensored with the pullback of the tangent bundle ofX. The normalizing factors
of

√
α′ were outlined in an earlier footnote, and have the effect of maintaining the correct

dimensions. Given that information, we can immediately evaluate24

∫

∏

dψı
+dψ

ı
− exp

(

i
A

α′
λ2ψı

+ψ

−∂ı∂W

)

=
1

n!

(

iλ2A

α′

)n

H

∫

∏

(
√
α′dψi

+)(
√
α′dψi

−) exp
(

i
1

α′

∫

Σ
ψi

+ψ
j
−∂i∂jW

)

=
1

(ng)!

(

i

α′

)ng

(α′)ngHg

where g is the genus of the worldsheet Σ.

Putting this all together, we can finally evaluate correlation functions.

< F1 · · ·Fk > =
∑

dW=0

1

n!(ng)!
πn

(

α′

A

)n

λ−2nH−1H
−1
(

iλ2A

α′

)n

H(i)ngHgF1 · · ·Fk

=
∑

dW=0

1

n!(ng)!
πn(i)n(g+1)Hg−1F1 · · ·Fk

where the Fi are analytic functions of the φi.

Note, as a consistency check, that the expression for the correlation function is independent
of the worldsheet area A, the scaling factor λ, and also α′, exactly as one would hope for
this topological field theory, which is supposed to be independent of the worldsheet metric,
α′, and λ.

24Up to signs which depend upon the ordering of the Grassmann integrals. We shall not attempt to give
a rigorous justification of the signs, as in any event any sign can be absorbed into a trivial rescaling of the
original path integral.
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We usually reabsorb factors of i, π, and n! into the definition of the path integral, so as to
write the result more cleanly as

< F1 · · ·Fk >=
∑

dW=0

F1 · · ·Fk

H1−g

As an example, let us compute correlation functions in the following Landau-Ginzburg model.
Consider a Landau-Ginzburg theory defined as a nonlinear sigma model on Cn with super-
potential

W (y1, · · · , yn) = exp(y1) + exp(y2) + · · · + exp(yn) + q exp(−y1 − y2 − · · · − yn)

Define the quantity Π = exp(−y1 − · · ·− yn), then the classical vacua (solutions of dW = 0)
are defined by

exp(y1) = exp(y2) = · · · = exp(yn) = qΠ

which implies that (exp(yi))
n+1 = q for all i. Now, genus zero correlation functions are given

by

< F1 · · ·Fk >=
∑

dW=0

F1 · · ·Fk

H

where H = det(∂i∂jW ), and the Fj are analytic functions in the chiral superfields yi. In
the present case, it is straightforward to compute that H = (n + 1)qnΠn. Since for vacua
exp(y1) = · · · = exp(yn), let x denote any of the exp(yi), then we have that

< xm >=
∑

dW=0

xm

(n + 1)xn

using the fact that x = qΠ for vacua, and where the sum runs over x such that xn+1 = q,
i.e. (n + 1)th roots of q. This expression can only be nonvanishing when m− n is divisible
by n + 1, thus the only nonvanishing correlation functions are

< xn >, < x2n+1 >, < x3n+2 >, · · ·

In particular, we find

< xn > = 1

< x2n+1 > = q

< xn+d(n+1) > = qd

The attentive reader will recognize that these are the same correlation function as we ob-
tained in a different-looking theory, namely in the A-twisted nonlinear sigma model on Pn.
There, we also discussed how the correlation functions are encoded in the quantum cohomol-

ogy relation ωn+1 = q, which also appears to match the relation xn+1 = q above for classical
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vacua in this Landau-Ginzburg model. However, we arrived at these correlation functions in
two very different ways: here, they are classical correlation functions, all in a sector of maps
of zero degree, whereas in the A model on Pn, the source of these correlation functions was
corrections from maps of nonzero degree – so-called “nonperturbative” effects.

This matching is not an accident – later we shall see that the A model on Pn and the
particular Landau-Ginzburg model considered here are “mirror” to one another, which means
the two quantum field theories are secretly equivalent to one another, via a duality that
exchanges perturbative and nonperturbative effects.

4.2 Open strings and matrix factorization

4.2.1 The Warner problem

We saw previously that for a nonlinear sigma model on a Riemann surface with boundary, su-
persymmetry still holds even taking into account the boundary terms. For Landau-Ginzburg
models, on the other hand, matters are not so simple, and the boundary terms that one picks
up under supersymmetry transformations do not vanish by themselves.

To be specific, consider the Landau-Ginzburg model defined in the previous subsection, and
assume that there are no Chan-Paton factors on the boundary to modify the boundary con-
ditions. Under a supersymmetry transformation, one picks up the following total derivative
terms:

1

α′

∫

Σ
d2z

[

∂
(

− i

2
α−∂Wψ

−

)

+ ∂
(

i

2
α+∂Wψ

+

)

+ ∂
(

− i

2
α̃−∂iWψi

−

)

+ ∂
(

i

2
α̃+∂iWψi

+

)]

(10)
If we take Σ to be the upper half-plane for simplicity, so that

∫

Σ
d2z∂ =

1

2i

∫

∂Σ
dx,

∫

Σ
d2z∂ = − 1

2i

∫

∂Σ
dx

then we see the total derivative terms above become

1

α′

1

2i

∫

∂Σ
dx
[

− i

2
α∂ıWψı

− − i

2
α∂ıWψı

+

]

= − 1

α′

1

4

∫

∂Σ
dx
[

α∂ıW
(

ψı
+ + ψı

−

)]

1

α′

1

2i

∫

∂Σ
dx
[

− i

2
α̃∂iWψi

− − i

2
α̃∂iWψi

+

]

= − 1

α′

1

4

∫

∂Σ
dx
[

α̃∂iW
(

ψi
+ + ψi

−

)]

where we have defined α = α− = α+, α̃ = α̃+ = α̃−, using an identity that exists for both
Dirichlet and Neumann boundary conditions.

In the special case of Dirichlet boundary conditions, ψµ
+ = −ψµ

−, so we see the terms above
cancel out. However, for Neumann boundary conditions, ψµ

+ = +ψµ
−, and so the terms above

do not cancel out.

66



Thus, supersymmetry fails to be a symmetry of Landau-Ginzburg models defined on Rie-
mann surfaces with boundary, with Neumann boundary conditions, unless possibly we add
something else to the boundary to cancel out the undesired variations. This is known as the
Warner problem [49], named after the individual who first discovered it.

4.2.2 Matrix factorization

In order to resolve the Warner problem, we are going to need for the open string to connect
a D-brane/antibrane pair, with a nonvanishing pair of tachyons between them. The super-
symmetry variations of the tachyon terms will cancel out the Warner problem terms above,
so long as the product of the tachyons is the superpotential W .

Previously in section 3.4 we briefly outlined how one would describe a tachyon in terms of
part of a boundary action. Here, we are going to give a more complete answer and describe
other terms in the boundary action. For simplicity, we shall assume that Chan-Paton bundles
are trivial, with vanishing connections. The boundary action is then

− 1

4α′

∫

∂Σ
dx
[

hααhaaη
αadηαa + iψi (∂iFαa) η

αa + iψı
(

∂ıF αa

)

ηαa

+ iψi (∂iG
αa) ηαahααhaa + iψı

(

∂ıG
αa
)

ηαahααhaa

−iFαaF αah
ααhaa − GαaG

αa
hααhaa

]

where ψi = ψi
+ +ψi

−, ψı = ψı
+ +ψı

−, and η, η are fermions that only live along the boundary
∂Σ, known as boundary fermions. If we let E , F denote the two (assumed trivial) holomorphic
vector bundles appearing along the boundary, then hαα, haa, respectively, are their hermitian
fiber metrics (which we have assumed constant in stating that the connections vanish). The
boundary fermions η, η couple to E∨⊗F and E⊗F∨, respectively (which is slightly obscured
by our notation). The fields Fαa, G

αa are holomorphic sections of E∨ ⊗ F and E ⊗ F∨. F
and G are the two tachyons mentioned earlier, connecting the brane to the anti-brane.

Take the supersymmetry variations of φ, ψ along the boundary to be the restriction to the
boundary of the bulk supersymmetry transformations, and take the boundary fermions η, η
to have supersymmetry variations

δηαa = −ihααhaaF αaα − iGαaα̃

δηαa = −ihααhaaFαaα̃ − iG
αa
α

then the supersymmetry variation of the boundary action above is given by

− 1

4α′

∫

∂Σ
dx
[

−αψı∂ı

(

F αaG
αa
)

− α̃ψi∂i (FαaG
αa)
]

(11)
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Comparing to equation (10), it is easy to see that the Warner problem will be solved, the
total boundary term in the supersymmetry variations will vanish, if we choose F , G such
that

FαaG
αa = W

This is the solution to the Warner problem: to introduce two bundles E , F , living on the
submanifold defined by the Dirichlet boundary conditions, together with maps F : E → F
and G : F → E such that F ◦ G = W Id. Since F and G are matrix-valued functions, this
procedure is known as matrix factorization.

Each such matrix factorization defines a D-brane in the Landau-Ginzburg model.

We have only discussed the details for the special case that the bundles E , F have trivial
gauge field, but the results extend to more general cases. The only constraint that emerges
more generally is that the ranks of E and F must match.

4.2.3 Orlov’s theorem

To understand the motivation for some theorems of Orlov, let us first describe something
we will examine more thoroughly later in section 5.3. Specifically, certain nonlinear sigma
models and Landau-Ginzburg models are closely related. For example, a nonlinear sigma
model on a degree d hypersurface {G = 0} in Pn lies on the same Kähler moduli space as
a Zd orbifold of a Landau-Ginzburg model on Cn+1 with superpotential W = G. Hopefully
it should look reasonable to the reader that they are closely related (albeit not precisely the
same); the precise reasons why they are on the same Kähler moduli space, will be described
in section 5.3.

Now, let us consider the B twisted nonlinear sigma model, and assume in the example above
that the degree d = n + 1, so that the hypersurface is Calabi-Yau (and hence the B model
is well-defined). Since the B model is independent of Kähler moduli, one would expect
that the open string sector of the nonlinear sigma model should be the same as that of
the Landau-Ginzburg model. In other words, there should be an isomorphism between the
derived category of the hypersurface, and some sort of Zd-equivariant derived category built
from matrix factorizations in the Landau-Ginzburg model.

Such an equivalence does exist, and was proven by Orlov [50, 51] (and anticipated in [52]).

Without working through all of the ideas of those papers, let us try to briefly outline a
dictionary in some simple cases. Start with a matrix factorization defined by locally-free
sheaves E , F over Cn+1, with maps F : E → F and G : F → E such that FG = GF = WI
for I the identity. The combination G ≡ E ⊕ F defines a single locally-free sheaf, with an
automorphism Q defined by F and G. The automorphism Q is nearly nilpotent, modulo the
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action ofW . We shall assume that the module defining G is integrally graded25 Thanks to the
grading, G defines a sheaf over a projective space, which we can restrict to the hypersurface
{W = 0}. After restriction, the automorphism Q becomes nilpotent, and we can take its
cohomology to get a sheaf on the hypersurface.

If P denotes a matrix factorization defined by (P0, P1, p0, p1) as above, where p0p1 = p1p0 =
WI, and P0, P1 are locally-free sheaves of equal rank, and Q is another matrix factorization
(Q0, Q1, q0, q1) over the same underlying space, then a morphism between the two matrix
factorizations is a pair of maps f0 : P0 → Q0 and f1 : P1 → Q1 making all the obvious
diagrams commute. Such a map is null-homotopic if there exist maps s0 : P0 → Q1, s1 :
P1 → Q0 such that

f0 = s1p0 + q1s0, f1 = q0s1 + s0p1

4.3 Exercises

1. Check that in the special case of a constant target-space metric, the supersymmetry
transformations of the nonlinear sigma model with superpotential W close.

2. Check that for constant target-space metric gi, supersymmetry transformations of
a Landau-Ginzburg model on a Riemann surface Σ with boundary give rise to the
nonzero boundary terms in equation (10).

5 Gauged linear sigma models

Gauged linear sigma models are families of non-conformal quantum field theories. They
define conformal field theories by virtue of renormalization group flow – given any26 quantum
field theory, we can apply the renormalization group to generate a succession of different
quantum field theories whose endpoint is a conformally-invariant theory, a conformal field
theory.

Gauged linear sigma models have been extraordinarily successful in the string theory com-
munity, in giving not only global information about moduli spaces of conformal field theories
that would be difficult to extract otherwise, but also enabling numerous other computations.

In this section we shall briefly describe gauged linear sigma models and some of the insight
they provide.

25Technically, for a closed-string Landau-Ginzburg model over a vector space to renormalization-group-flow
to a nontrivial CFT, a necessary condition is that the superpotential be quasi-homogeneous. The grading
assumption here is the extension of that quasi-homogeneity of the closed string theory to the boundary
theory, combined with a specification of a finite group action.

26Of the form we consider in these notes, at least.
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5.1 The CPn model

The prototype for all gauged linear sigma models is the CPn model, which gives an alter-
native description of the nonlinear sigma model on Pn (in the sense that both the nonlinear
sigma model and the corresponding gauged linear sigma model have the same fixed point
under renormalization group flow).

The attentive reader will recall that since Pn is not Calabi-Yau, the nonlinear
sigma model on it does not define a nontrivial conformal field theory – the beta
function is nonzero, and under the renormalization group, the metric on Pn will
shrink. The fixed point of renormalization group flow is believed to be a trivial
conformal field theory, equivalent to a nonlinear sigma model on χ(Pn) = n + 1
points. Nonetheless, we can still write down a corresponding gauged linear sigma
model, and it is the simplest gauged linear sigma model known.

The gauged linear sigma model for Pn revolves around the fact that Pn has three equivalent
descriptions:

1. It can be described with homogeneous coordinates [z0, · · · , zn], not all simultaneously
zero, obeying the equivalence relation

[z0, · · · , zn] ∼ [λz0, · · · , λzn]

for λ ∈ C×.

2. It can be described as the GIT quotient Cn+1//C×.

3. It can be described as the symplectic reduction µ−1(r)/U(1) = S2n+1/U(1), where
µ : Cn+1 → R is a moment map.

The gauged linear sigma model for Pn contains n + 1 sets of bosonic fields and fermionic
superpartners, one for each homogeneous coordinate on Pn+1, together with a ‘gauged’ U(1).
A ‘gauged’ group is a group G together with an action on the fields of the quantum field
theory, in which we re-interpret the fields as sections of appropriate bundles associated to
principal G-bundles with connection. For example, to ‘gauge’ the U(1) action on a complex
boson φ given by

φ 7→ exp(iα)φ

we replace the original kinetic term in the action

∂µ∂∂
µφ
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with a new kinetic term in which ordinary derivatives are replaced by ‘covariant’ derivatives:

DµφD
µφ

where
Dµφ = (∂µ + iAµ)φ

where Aµ is a connection on a principal G bundle. In the path integral for the theory, we
now sum over equivalence classes of principal G bundles over spacetime, as well as perform
a functional integral over connections Aµ for any fixed choice of principal G bundle.

The effect of this procedure is that the functional integral over φ fields will end up integrating
only over equivalence classes of φ fields, equivalence classes with respect to the U(1) action,
instead of all possible φ fields. (To completely explain and justify this is beyond the scope of
these notes, but hopefully this description should suffice to enable the reader to understand
the basic idea.)

Now, let us return to the Pn model. The gauged linear sigma model for this space is defined
by n + 1 sets of bosonic fields φi and superpartners ψi

±, together with a gauged27 U(1).

The complete action for this theory is rather complicated. For completeness, we give it here:

1

α′

∫

Σ

[

∑

i

(

−Dµφ
i
Dµφi + iψ

i

−Dzψ
i
− + iψ

i

+Dzψ
i
+

− 2|σ|2|φi|2 −
√

2
(

σψ
i

+ψ
i
− + σψ

i

−ψ
i
+

)

− i
√

2φ
i
(

ψi
−λ+ − ψi

+λ−
)

− i
√

2φi

(

λ−ψ
i

+ − λ+ψ
i

−

))

−
(

∑

i

|φi|2 − r

)2

+
1

2
FµνF

µν + iλ+∂λ+ + iλ−∂λ− − ∂µσ∂
µσ
]

(More general expressions can be found in [53].) This theory is called gauged because we
have gauged a U(1) group action. It is called a linear sigma model, rather than a nonlinear
sigma model, because the metric in the kinetic terms is trivial, i.e. because the kinetic terms
have the form

Dµφ
ıDµφi

rather than
gi(φ)Dµφ

Dµφi

The bosonic fields σ and fermionic fields λ± were introduced to preserve supersymmetry in
the presence of the gauge field A; for this reason, the λ± are sometimes known as gauginos.

27Why not gauge C
× instead of U(1)? The answer is that we only understand how to gauge compact

Lie groups, and in any event, we will see that physics realizes the symplectic reduction description of the
projective space.
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Given our discussion of quantum field theory at the beginning of week 1, this action may
look formidable. In fact, with a bit of experience, it is easy to pick off some basic aspects.
(Though, understanding all quantum effects in general gauged linear sigma models is an
ongoing program to this day.) Because of the length of the action, however, we will usually
avoid writing down the complete action in examples, and instead focus only on pertinent
terms in the action.

One thing we can pick off immediately is the physical realization of the moment map in the
symplectic reduction. The moment map µ : Cn+1 → R is given by

µ(φi) =
∑

i

|φi|2

and so the points in µ−1(r) are the solutions of

∑

i

|φi|2 = r

By comparison, notice that in the action above, we see a potential term

−
(

∑

i

|φi|2 − r

)2

Now, as stated earlier, we are interested in the low-energy behavior of the gauged linear sigma
model: its renormalization-group-endpoints define the theories that we will be interested in.
If we only wish to consider low-energy fluctuations, then we should treat potentials as if they
were constraints, because we should stay close to the bottom of the potential. Thus, from
the action above, we see that low-energy fluctuations obey the constraint

∑

i

|φi|2 = r

which defines an S2n+1 ⊂ Cn+1, of radius
√
r. Furthermore, because we have gauged a U(1)

symmetry, we should only consider U(1)-equivalence classes of φ’s, not φ’s themselves, and
so the low-energy degrees of freedom are really seeing

{

∑

i

|φi|2 = r

}

/U(1) = S2n+1/U(1) = Pn

This is how this particular quantum field theory realizes Pn.

More generally, one can imagine a less symmetric U(1) group action, in which the various φ
fields have different weights. Physically, the weights of the U(1) action are known as charges

in the U(1) gauge theory, and typically denoted Qi. In general, one can write down a gauged
linear sigma model with a variety of gauged U(1)’s each with a variety of different weights
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on the fields of the theory. For each gauged U(1), there is a bosonic potential term of the
form

(

∑

i

Qiα|φi|2 − rα

)2

where Qiα is the charge of the ith field with respect to the αth U(1). Each parameter rα is
known as a Fayet-Iliopoulos parameter. They are real numbers that provides coordinates28

on the Kähler moduli space. As before, the low-energy degrees of freedom are constrainted
to lie at the bottom of each of these potentials; effectively, each such potential term defines
a moment map along which we are performing a symplectic reduction. This potential, and
the corresponding constraint on low-energy degrees of freedom, is known as a D-term, and
there is one for each gauged U(1).

For another easy example, suppose we wish to describe the weighted projective space Pn
w0,···,wn

,
defined by homogeneous coordinates [z0, · · · , zn] obeying the equivalence relation

[z0, · · · , zn] ∼ [λw0z0, · · · , λwnzn]

We could do this with a gauged linear sigma model very similar to the one above for Pn,
except that the field φi would have U(1) charge wi rather than 1. The D-term constraint
would then be

∑

i

wi|φi|2 = r

In this fashion, it is possible to realize more general toric varieties, as we shall discuss later.

Advanced topic: The physical description of stacks. Suppose we start
with the Pn model, but let the gauged U(1) rotate each φi k times rather than
once. This would correspond mathematically to something with homogeneous
coordinates [z0, · · · , zn] obeying the equivalence relation

[z0, · · · , zn] ∼ [λkz0, · · · , λkzn]

As an algebraic variety, this is the same as Pn; however, as a stack, this is a Zk

gerbe over Pn, and not Pn itself. One natural question to then ask is, which
does the corresponding gauged linear sigma model (in which the φi fields all
have charge k rather than charge 1) see, the variety or the stack? To further
confuse matters, the conventional wisdom regarding U(1) gauge theories with
nonminimal charges was, for many years in many quarters, that they should
be identical to U(1) gauge theories with minimal charges – meaning here that
the physical gauged linear sigma model would see the variety Pn, and not the

28Strictly speaking, they only provide coordinates in the case that the GLSM is describing a Calabi-Yau.
As we shall see later, for non-Calabi-Yau cases, such as P

n, they vary as a function of cutoff Λ.
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stack. However, in more recent years, a better understanding of such noneffective
group actions has entered the physics literature, and nowadays we understand
that physics actually sees the stack, not the variety, though the difference is a bit
subtle. (Perturbatively, the two quantum field theories really are identical, the
only difference lies in nonperturbative effects.) Put another way, if we start with
the Pn model and give the fields all charge k rather than charge 1, the resulting
gauged linear sigma model describes a Zk gerbe on Pn, instead of Pn itself. This
is discussed in more detail in [14], for example. More generally, noneffective
group actions are starting to also become important in other parts of physics –
they play an important role in the recent physical understanding of the geometric
Langlands program [54], for example.

We should also say something about how the gauged linear sigma model behaves under the
renormalization group. In particular, the parameter r gets a quantum correction, propor-
tional to the sum of the charges of the fields:

δr ∝
∑

i

Qi

(More generally, when there are multiple U(1)’s, the r associated to the αth U(1) gets a
correction proportional to the sum of the charges of the fields under the αth U(1).) In
particular, that means that for the Pn gauged linear sigma model, r is not a true parameter,
in the sense that it is not renormalization-group invariant, but rather it flows. We should have
expected this – we argued, after all, that nonlinear sigma models get quantum corrections
that change the size of the metric, so that positively-curved spaces shrink. The computation
that r is not a renormalization-group invariant is closely related to the corresponding fact
about nonlinear sigma models.

One other quick note before proceeding: although we have described just the GLSM for
Pn, there also exist twisted versions, non-conformal topological field theories based on the
GLSM. The twisting is done almost exactly as for the nonlinear sigma model, and as we will
not use it, we will not mention it further.

5.2 Hypersurfaces in CPn

So far we have described GLSM’s for Pn and various variants. Next, let us consider how to
describe a hypersurface in Pn.

The basic idea will be to add a potential function whose zero locus in Pn will be the desired
hypersurface. To be specific, consider P4 with hypersurface {G(φ) = 0} where G is a degree
5 polynomial. Following our earlier discussion of Landau-Ginzburg models, the reader might
guess that one should add a ‘superpotential’ W = G. That’s a good idea, and it’s close, but
it is not quite correct:
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• Referring back to the discussion of Landau-Ginzburg models, note that the potential
terms (the F-terms) are of the form

∑

i |∂iW |2 not |W |2. Following the procedure that
the quantum field theory we want is defined by the low-energy degrees of freedom of the
GLSM, that would mean in the present case that the low-energy degrees of freedom
must obey the constraint ∂iG = 0 for all i, whereas instead we want them to obey
G = 0.

• Technically, in a gauge theory, the superpotential must be gauge-invariant – but if we
take W = G, then if all the φ’s have charge 1, then W will have charge 5, which is
certainly not gauge-invariant.

To fix these problems, we first add a new set of fields, consisting of a bosonic field p of charge
−5 together with corresponding fermions, to the theory. Then, we take the superpotential
to be W = pG. This fixes the two problems discussed above:

• The F-term constraints on low-energy degrees of freedom are now given by

G = 0

p∂iG = 0

and G = 0 is exactly the condition we were looking for. These two conditions arise
from the two bosonic potential terms

|G|2 +
∑

i

|p∂iG|2

where the first term arises from |∂W/∂p|2 and the other terms arise from |∂W/∂φi|2.

• The superpotential is now gauge-invariant: the product pG has total charge 0, since G
has charge 5 and p has charge −5.

In the next section, we will perform a more detailed analysis to understand precisely why
this choice reproduces the hypersurface {G = 0} in P4.

Advanced topic: Following this procedure, one can build complete inter-
sections of hypersurfaces in arbitrary toric varieties – for homework, you will
work through a few simple examples. It is not too difficult to also describe, for
example, partial flag manifolds, by replacing the U(1) gauge group with some
higher-rank nonabelian Lie group, as well as complete intersections of hypersur-
faces therein, by adding a suitable superpotential. However, for a long time it
was thought that only complete intersections of hypersurfaces in toric varieties
or partial flag manifolds or small variants thereof were possible. Recently, that
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has changed. By taking advantage of some rather subtle physics, it has more
recently been demonstrated that other constructions, distinct from complete in-
tersections, are also possible. The first example appeared in [15][section 12.2] and
was later described in more detail in [17, 18]. This example realized a branched
double cover, via a Z2 gerbe as in [15]. The second example appeared in [19],
and constructed a Pfaffian variety via strong-coupling nonabelian gauge physics.
In both cases, not only were the geometric realizations unusual, but also the var-
ious geometries appearing as Kähler phases were not birational to one another,
another surprise for people thinking about GLSM’s. It has more recently been
conjectured [17, 18] that in these circumstances ‘birational’ should be replaced
by ‘homologically projective dual’ in the sense of Kuznetsov [20, 21, 22].

5.3 The relationship between nonlinear sigma models and Landau-
Ginzburg models

Although many Landau-Ginzburg models appear to be closely related to certain nonlinear
sigma models, they are not precisely the same.

Let us examine a GLSM for a quintic hypersurface {G(φ) = 0} in P4. In addition to a
nonlinear sigma model on the quintic, there is also a Landau-Ginzburg model on C5 with
potential function G(φ), that looks like it ought to be closely related, as well as orbifoldds
thereof. Examining the GLSM will illuminate the precise relationship.

The GLSM contains 5 fields φi each of charge 1 under a gauged U(1), plus another field p
of charge −5. As a result, it has a D-term condition given by

∑

i

|φi|2 − 5|p|2 = r (12)

for a real number r (the Fayet-Iliopoulos parameter).

The GLSM has a superpotential W = pG(φ), from which we get the F-term conditions

G = 0 (13)

p
∂G

∂φi
= 0 for all i (14)

In the limit r � 0, from the D-term condition (12) we see that the φi cannot all vanish. If
the hypersurface is smooth, then the only way the F-term conditions (13,14) can both be
satisfied is if G = 0 and p = 0. (After all, the condition for a singularity in the hypersurface
{G = 0} is to have a simultaneous solution of G = 0 and dG = 0.) So, when r � 0, one of
the fields p has effectively disappeared, and we are left at low energies with the fields of the
CP4 model forced to lie along the hypersurface {G = 0}.
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We conclude that the theory in the limit r � 0 is in the same universality class of renormal-
ization group flow as a nonlinear sigma model on the quintic.

Next, let us examine the opposite limit, r � 0. The D-term condition (12) now implies
that p cannot vanish, though all the fields φi are allowed to vanish. Since p cannot vanish,
and the hypersurface {G = 0} ⊂ P4 is assumed to be smooth, the only way for the F-term
constraints (13,14) to be satisfied is for the fields φi to all have vanishing value.

This theory appears to be very different from the nonlinear sigma model in the r � 0 limit.
We are certainly not describing a nonlinear sigma model; rather, what we are describing is
more nearly a Landau-Ginzburg model over the space C5 (corresponding to the φi) with
superpotential W = G(φi).

In fact, there is one slight complication still. The U(1) gauge symmetry is broken by the
fact that p is nonzero, but it is not completely broken. Since p has charge 5, the U(1) gauge
symmetry is broken to a Z5 subgroup (under which p is neutral, since it has charge 5). A
gauge theory with a discrete gauge group is an orbifold, so we see that the theory at the
r � 0 limit is in the same universality class as a Z5 orbifold of a Landau-Ginzburg model
on C5.

To review: the GLSM for the quintic describes a family of CFT’s, obtained by renormal-
ization group flow for various values of the Fayet-Iliopoulos parameter. When r � 0, those
theories are nonlinear sigma models on the quintic. When r � 0, one obtains an orbifold of
a Landau-Ginzburg model associated to the quintic.

In particular, a nonlinear sigma model on the quintic is not the same as an orbifold of a
Landau-Ginzburg model associated to the quintic – they lie on different points on a moduli
space of CFT’s. There are other ways to see that they are different theories, but hope-
fully this example should help to illustrate their precise connection. (In fact, historically
it was Witten’s paper introducing gauged linear sigma models that first made the precise
relationship between nonlinear sigma models and Landau-Ginzburg models clear.)

5.4 A flop

Let us work through a simple example of a flop, realized with a gauged linear sigma model.
(This example first appeared in [53].) We are going to write down a GLSM that describes
the two small resolutions of the singularity

C[a, b, c, d]/(ab− cd)

Our GLSM will have 4 chiral superfields, call them x, y, u, v, and a single gauged U(1), with
charges
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Figure 6: Cross section of fans for the two sides of the flop.

x y u v
1 1 −1 −1

We will not add a superpotential. The D-term constraint is

|x|2 + |y|2 − |u|2 − |v|2 = r

When r � 0, x and y cannot both vanish. They form homogeneous coordinates on a P1,
and the geometry is the total space of the bundle O(−1) ⊕O(−1) → P1.

When r � 0, u and v cannot both vanish. They form homogeneous coordinates on a P1,
and the geometry is the total space of the bundle O(−1) ⊕O(−1) → P1.

For both r � 0 and r � 0, we have the same geometry on either side of the transition. Note
that the transition is nontrivial – the excluded set changes. Moving in either direction, the
excluded set of one phase is the zero section of the vector bundle in the other phase.

For completeness, we have illustrated cross-sections of the fans of the corresponding toric
varieties in figure 6. Each of the two sides of the flop (r � 0, r � 0) have a fan, as does
the singular point at r = 0. Each fan is a three-dimensional cone, and we have illustrated
cross-sections through the plane x = 1. The corner points in each case, generating the edges
of the fan, are at (1,±1,±1). For the two fans in which |r| � 0, there are two separate
coordinate charts, and so the fan has two maximal-dimension cones. The singular case r = 0
is described by a single coordinate chart.

5.5 Realization of toric varieties

Any toric variety can be described with a gauged linear sigma model, with gauge group
U(1)n for some n. We can do this explicitly as follows. First, to each edge of the toric fan,
we associate a chiral superfield. Next, we need to determine how many U(1)’s there are, and
the charges of each chiral superfield. To do this, construct a matrix A whose rows are the
coordinates of generators of each edge of the toric fan. Then, the number of U(1)’s in the
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corresponding GLSM is the kernel of A (with respect to left-multiplication), and the charges
of the chiral superfields are determined by elements of that kernel.

Let us consider a simple example. The projective space PN can be described by a toric
variety with N + 1 edges in N -dimensional space. N of those edges are the edges of the first
octant in N -dimensional space, and the other points opposite the first octant. Thus, the
matrix A is of the form

A =























1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · 0

0 0 0 · · · 1
−1 −1 −1 · · · −1























Now, construct a vector
v = [a1, a2, · · · , aN ]

and solve for the ai such that vA = 0. We get a sequence of relations:

a1 − aN = 0

a2 − aN = 0

a3 − aN = 0
... = 0

aN−1 − aN = 0

This set of equations has a one-dimensional solution space, given by a1 = a2 = a3 = · · · = aN ,
so the corresponding GLSM has a single gauged U(1), and if we wish to describe the variety
PN , then we make minimal integer choices of the ai, in other words, we take ai = 1 for all i.

As an aside, we can also describe toric stacks similarly [11, 14]. The primary distinction is
that charges need not be minimal. Physically, a GLSM always sees the corresponding toric
stack, so for example specifying a single U(1) and N + 1 chiral superfields each with charge
k is distinct from a single U(1) and N + 1 chiral superfields each with charge 1 – the latter
describes the variety PN , whereas the former describes a Zk gerbe over PN . (The physics
reason for the distinction is subtle, and wholly nonperturbative in nature. See for example
[14] for details.)

5.6 Exercises

1. Describe GLSM’s for the toric varieties Fn, the Hirzebruch surfaces. Also explain (both
in toric language and GLSM language) why Hirzebruch surfaces are P1 bundles over
P1. A fan for Fn is shown in figure 7.
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� � � � �

Figure 7: Fan for Fn.

2. Check that the fans shown in figure 6 are described by the GLSM indicated in sec-
tion 5.4.

3. Show that the one-loop renormalization of the ‘parameter’ r in the gauged linear sigma
model for Pn is nonzero.

4. Describe the GLSM for a complete intersection of hypersurfaces in Pn. How does the
Calabi-Yau condition compare to the condition for the Fayet-Iliopoulos parameter r to
not be renormalized?

5. Describe the GLSM for a hypersurface in a product of projective spaces. How does
the Calabi-Yau condition compare to the condition for the Fayet-Iliopoulos parameter
r to not be renormalized?

6 Mirror symmetry

6.1 Generalities

Mirror symmetry is a duality that exchanges pairs29 of (possibly distinct) Calabi-Yau’s man-
ifolds of the same dimension. It can sometimes also be extended to more general spaces,
exchanging projective spaces with certain Landau-Ginzburg models for example. In Calabi-
Yau cases, two spaces X, Y are said to be mirror to one another if they are described by the
same two-dimensional conformal field theory. This implies, for reasons we shall not attempt
to explain here, that Dolbeault cohomology groups of the pair X, Y will be exchanged:

Hp,q(X) = Hq,p(Y )

In particular, Kähler moduli (H1,1) are exchanged with complex moduli (H2,1). Mirror sym-
metry also has the property of exchanging classical and quantum effects: sums over world-

29In low-dimensional cases, namely elliptic curves and K3’s, there is a richer structure, but we shall not
attempt to describe that here.
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sheet instantons become classical computations in the dual theory. In terms of topological
field theories, the mirror to the A model on X is the B model on Y , and the mirror to the A
model on Y is the B model on X. (That last statement is true even for non-Calabi-Yau’s.)

We shall not attempt to give a thorough history of mirror symmetry here, as the subject has
a long history. We should note that one of the most useful constructions of mirrors involved
exchanging polytopes derived from toric varieties, and is due to Batyrev [55]. However,
computationally working out how to exchange polytopes can often be very cumbersome.
The work we shall describe next has the virtue of being much easier to perform.

6.2 Hori-Vafa procedure

The papers30 [8, 9, 10] describe an ansatz for constructing a Landau-Ginzburg model from
any given gauged linear sigma model. As such, because it maps an entire gauged linear sigma
model to a Landau-Ginzburg model, it should be noted at the beginning that they are not
precisely constructing mirrors. For example, mirrors of typical nonlinear sigma models are
other nonlinear sigma models, and not Landau-Ginzburg models, which are distinct theories.
However, given a Landau-Ginzburg model, one can often construct a gauged linear sigma
model containing that Landau-Ginzburg model at some special point in the moduli space, and
so their construction serves as an existence argument for mirror symmetry. Furthermore, if
instead of computing mirrors of full physical theories, if one is only interested in computing
the mirror of the topological subsector of an A model topological field theory, then their
construction will often determine the corresponding topological subsector of the B model of
the mirror, basically because the B model is independent of Kähler moduli and so does not
see the degrees of freedom that their construction discards.

The ansatz in question is relatively simple to describe. Suppose we have a gauged linear
sigma model with some chiral superfields φi, obeying a collection of D-term relations of the
form

∑

i

qαi|φi|2 = rα

for some integers qαi and a real number rα. For each field φi, the dual theory will contain
a coordinate Yi. If there are N chiral superfields φi, then the Landau-Ginzburg model in
question is over a base X which is a compactification of (C×)N , with superpotential

W = exp(−Y1) + · · · + exp(−YN )

30Strictly speaking, the reference [8] attempted to construct dual gauged linear sigma models, rather than
dualize a GLSM into a Landau-Ginzburg model. Their construction was not a complete success, however;
the later work [9, 10] used the same technology to achieve very slightly different ends, namely a dualization
of GLSM’s into a Landau-Ginzburg model.
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and a collection of relations (one for each D-term relation) each of the form

∑

i

qαiYi = rα

Determining which compactification X to take of (C×)N is important to get the physics
right, but is much more subtle. In these lectures, we shall simply state the answer in various
examples, we shall not try to give a systematic description of the compactification procedure.

Let us first work through the example of Pn. This is described as a GLSM by n + 1 chiral
superfields φi, each of charge 1, so that the D-term constraint is

∑

i

|φi|2 = r

Following the ansatz described above, the dual Landau-Ginzburg model will be defined over
some (n + 1)-dimensional space X, with superpotential

W = exp(−Y1) + · · · + exp(−Yn+1)

and relations
∑

i

Yi = q

Let us use the relation to solve for Yn+1:

Yn+1 = r − Y1 − · · · − Yn

so we see the theory is effectively described by n variables Y1, · · · , Yn, and a superpotential

W = exp(−Y1) + · · · + exp(−Yn) + exp(−r) exp(Y1 + · · · + Yn)

The attentive reader will note that this is the same Landau-Ginzburg model as that we
discussed in section 4.1 defined with yi = −Yi and q = exp(−r). In that section, we computed
the (B model) correlation functions in this Landau-Ginzburg model, and discovered that they
matched those of the A model on Pn. Now we see why – the A model on Pn is mirror to
the Landau-Ginzburg model above, and so their correlation functions must match.

Let us work through another example, namely the quintic hypersurface in P4. Here, the
gauged linear sigma model has five fields φi of charge 1 and one field p of charge −5. The
dual Landau-Ginzburg model has fields Yi (corresponding to φi and Yp (corresponding to p),
with superpotential

W = exp(−Y1) + · · · + exp(= Y5) + exp(−Yp)

and constraint
∑

i

Yi − 5Yp = r
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Let us solve for Yp and remove it from the superpotential:

Yp =
1

5

∑

i

Yi − r

so the superpotential becomes

W =
∑

i

exp(−Yi) + exp(r) exp

(

−(1/5)
∑

i

Yi

)

Now, for reasons we shall not try to explain, the correct thing to do at this point is to pick
a particular compactification of the base. Define xi = exp(−Yi/5), then the superpotential
becomes

W = x5
1 + · · · + x5

5 + ψx1x2x3x4x5

where ψ = exp(r). Furthermore, we also need to perform a set of Z5 orbifolds (essentially
because we defined xi to be a fifth root of exp(−Yi) – the ambiguity in fifth roots of unity
is the origin of the Z5 orbifolds). The final result is that the ‘mirror’ to the quintic is a
Z⊕4

5 orbifold of a Landau-Ginzburg model on C5 with superpotential given by a quintic
polynomial. It turns out that this is precisely the Landau-Ginzburg point of the GLSM that
is mirror to that of the original quintic, so the result is of the desired form.

6.3 Generalizations

One generalization of mirror symmetry that has been attempted is known as “(0,2) mirror
symmetry.” The “(0,2)” refers to the fact that it involves nonlinear sigma models that are
generalizations of those discussed in these notes, with (0,2) supersymmetry instead of (2,2)
supersymmetry. The reduced supersymmetry implies that the CFT is specified by a space
X together with some holomorphic vector bundle E over X, obeying the constraint ch2(E) =
ch2(TX). Here, (0,2) mirror symmetry is believed to exchange pairs (X, E), (Y,F), such
that each pair defines the same conformal field theory. Rather than exchanging Dolbeault
cohomology, instead sheaf cohomology is exchanged. Very little is known about (0,2) mirror
symmetry at this point in time.

Another generalization is known as “homological mirror symmetry” [28]. Homological mirror
symmetry was originally proposed by Kontsevich as a duality between derived categories
of coherent sheaves on X and Fukaya categories on the (ordinary) mirror Y . The modern
understanding of homological mirror symmetry is as the duality between D-branes implied by
ordinary mirror symmetry, where derived categories arise from the open string B model and
Fukaya categories from the open string A model. It is a tribute to Kontsevich’s insight that
he made this proposal before D-branes became widely known or accepted among physicists,
and indeed, understanding the physical meaning of Kontsevich’s proposal was one of the
motivations behind the original papers on D-branes and derived categories [34].
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6.4 Exercises

1. (Research problem) To what extent is the Hori-Vafa mirror ansatz independent of
presentation? For example, P1 = P2[2] and P3[2] = P1 × P1; in those cases, how are
the dual Landau-Ginzburg models one obtains by Hori-Vafa related?

A Asymptotic series

Asymptotic series play a crucial role in understanding quantum field theory, as Feynman
diagram expansions are typically asymptotic series expansions. As I will occasionally refer
to asymptotic series, I have included in this appendix some basic information on the subject.

See [57] sections 5.9, 5.10, 7.3 (7.4 in 5th edition), 8.3 (10.3 in 5th edition) for some of the
material below.

A.1 Definition

By now as graduate students you have seen infinite series appear many times. However, in
most of those appearances, you have probably made the assumption that the series converged,
or that the series is only useful when convergent.

Asymptotic series are non-convergent series, that nevertheless can be made useful, and play
an important role in physics. The infinite series one gets in quantum field theory by summing
Feynman diagrams, for example, are asymptotic series.

To be precise, consider a function f(z) with an expansion as

f(z) = A0 +
A1

z
+

A2

z2
+ · · ·

where the Ai are numbers. We can think of the series
∑

Ai/z
i as approximating f(z)/ϕ(z)

for large values of z.

We say that the series
∑

Ai/z
i represents f(z) asymptotically if, for a given n, the first n

terms of the series may be made as close as desired to f(z) by making z large enough, i.e.

lim
z→∞

zn



f(z) −
n
∑

p=0

Ap

zp



 = 0

Such series need not converge for large z; in fact, in typical cases of interest, an asymptotic
series will never converge.
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It is important to note that asymptotic series are distinct from convergent series: a convergent
series need not be asymptotic. For example, consider the Taylor series for exp(z). This is a
convergent power series, but the same power series does not define an asymptotic series for
exp(z). After all,

lim
z→∞

zn



exp(z) −
n
∑

p=0

zp

n!



 → ∞

and so the series is not asymptotic to exp(z), though it does converge to exp(z).

Not all functions have an asymptotic expansion; exp(z) is one such function. If a function
does have an asymptotic expansion, then that asymptotic expansion is unique. However,
several different functions can have the same asymptotic expansion; the map from functions
to asymptotic expansions is many-to-one, when it is well-defined.

Example: Consider the function

−Ei(−x) = E1(x) =
∫ ∞

x

exp(−t)
t

dt

We can generate a series approximating this function by a series of integrations by parts:

E1(x) =
exp(−x)

x
−
∫ ∞

x

exp(−t)
t2

dt

=
exp(−x)

x

[

1 − 1

x
+

2!

x2
− 3!

x3
+ · · · (−)nn!

xn

]

+ (−)n+1(n+ 1)!
∫ ∞

x

exp(−t)
tn+2

dt

The series
∞
∑

n=0

(−)n n!

xn

is not convergent, in any standard sense. For example, when x = 1, this is the series

1 − 2! + 3! − 4! + · · ·
More generally, for any fixed x the magnitude of the terms increases as n grows, so this
alternating series necessarily diverges.

However, although the series diverges, it is asymptotic to E1(x)x exp(x). To show this, we
must prove that for fixed n,

lim
x→∞

xn



E1(x) − exp(−x)
x

n
∑

p=0

(−)nn!

xn



 = 0

Using our expansion from successive integrations by parts, we have that the limit is given
by

lim
x→∞

xn

[

(−)n+1(n + 1)!
∫ ∞

x

exp(−t)
tn+2

dt

]
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We can evaluate this limit using the fact that

∫ ∞

x

exp(−t)
tn+2

dt <
1

xn+2

∫ ∞

x
exp(−t)dt =

exp(−x)
xn+2

Since

lim
x→∞

xn(n+ 1)! exp(−x)
xn+2

= 0

we see that the series is asymptotic.

Example: Consider the ordinary differential equation

y′ + y =
1

x

The solutions of this ODE have an asymptotic expansion, as we shall now verify.

To begin, assume that the solutions have a power series expansion of the form

y(x) =
∞
∑

n=0

an

xn

for some constants an. Plugging this ansatz into the differential equation above and solving
for the coefficients, we find

a0 = 0

a1 = 1

a2 = a1 = 1

a3 = 2a2 = 2

a4 = 3a3 = 3!

a5 = 4a4 = 4!

and so forth, leading to the expression

y(x) =
∞
∑

n=1

(n− 1)!

xn

First, let us check convergence of this series. Apply the ratio test to find

lim
n→∞

n!/xn+1

(n− 1)!/xn
= lim

n→∞

n

x
−→ ∞

In particular, by the ratio test, this series diverges for all x (strictly speaking, all x for which
it is well-defined, i.e. all x 6= 0).
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We can derive this asymptotic series in an alternate fashion, which will explain its close
resemblance to the previous example. Recall the method of variation of parameters for
solving inhomogeneous equations: first find the solutions of the associated homogeneous
equations, then make an ansatz that the solution to the inhomogeneous equation is given
by multiplying the solutions to the homogeneous solutions by functions of x. In the present
case, the associated homogeneous equation is given by

y′ + y = 0

which has solution y(x) ∝ exp(−x). Following the method of variation of parameters, we
make the ansatz

y(x) = A(x) exp(−x)
for some function A(x), and plug back into the (inhomogeneous) differential equation to
solve for A(x). In the present case, that yields

A′ exp(−x) =
1

x

which we can solve as

A(x) =
∫ x

−∞

exp(t)

t
dt

(Note that I am implicitly setting a value of the integration constant by setting a lower limit
of integration. Also note that the integral above is ill-defined if x is positive, a matter I
will gloss over for the purposes of this discussion.) Thus, the solution to the inhomogeneous
equation is given by

y(x) = exp(−x)
∫ x

−∞

exp(t)

t
dt

whose resemblance to the previous example should now be obvious.

A.2 The gamma function and the Stirling series

An important example of an asymptotic series is the asymptotic series for the gamma func-
tion, known as the Stirling series. The gamma function is a meromorphic function on the
complex plane that generalizes the factorial function. Denoted Γ(z), it has the properties

Γ(z + 1) = zΓ(z)

Γ(1/2) =
√
π

Γ(1) = 1

Γ(n+ 1) = n! for n a positive integer
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Because of that last property, because the gamma function generalizes the factorial function,
people sometimes define z! ≡ Γ(z + 1) for any complex number z. The gamma function has
simple poles at z = 0,−1,−2,−3, · · ·. It also obeys numerous curious identities, including

Γ(z)Γ(1 − z) =
π

sin πz

and “Legendre’s duplication formula”

Γ(1 + z)Γ(z + 1/2) = 2−2z
√
πΓ(2z + 1)

The gamma function has several equivalent definitions. It can be expressed as an integral,
using an expression due to Euler:

Γ(z) =
∫ ∞

0
exp(−t)tz−1dt, <z > 0

It can also be expressed as a limit, using another expression also due to Euler:

Γ(z) = lim
n→∞

1 · 2 · 3 · · ·n
z(z + 1)(z + 2) · · · (z + n)

nz, n 6= 0,−1,−2,−3, · · ·

It can also be expressed as an infinite product, using an expression due to Weierstrass:

1

Γ(z)
= z exp(γz)

∞
∏

n=1

(

1 +
z

n

)

exp(−z/n)

where γ is the Euler-Mascheroni constant

γ ≡ lim
n→∞

(

n
∑

m=1

1

m
− logn

)

≈ 0.577215661901 · · ·

where we use log to denote the natural logarithm. (The regions of validity of each definition
are slightly different; analytic continuation defines the function globally.)

We can also define the digamma and polygamma functions, which are various derivatives of
the gamma function. The digamma function, denoted either ψ or F , is defined by

ψ(z + 1) ≡ F (z) ≡ d

dz
log Γ(z + 1)

It can be shown that

ψ(z + 1) = −γ +
∞
∑

n=1

z

n(n + z)

The polygamma function ψ(n) is defined to be a higher-order derivative:

ψ(n)(z + 1) ≡ F (n)(z) ≡ dn+1

dzn+1
log Γ(z + 1)
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The Stirling series for the gamma function is derived using the Euler-Maclaurin integration
formula, which we shall digress briefly to explain. (See section 5.9 of [57] for this background,
and section 8.3 on the resulting asymptotic series, known as the Stirling series.)

First, recall the Bernoulli numbers Bn are defined by the generating function

x

exp(x) − 1
=

∞
∑

n=0

Bn
xn

n!

It is straightforward to compute that B0 = 1, B1 = −1/2, and B2 = 1/6.

Next, the Bernoulli functions Bn(s) are defined by the generating function

x exp(xs)

exp(x) − 1
=

∞
∑

n=0

Bn(s)
xn

n!

so that, for example, B0(s) = 1, B1(s) = s− 1/2, and B2(s) = x2 − x+ 1/6. It is trivial to
see that the Bernoulli numbers and functions are related by Bn(0) = Bn. It is also easy to
check that

d

ds
Bn(s) = nBn−1(s)

and that
Bn(1) = (−)nBn(0)

Now, we can derive the Euler-Maclaurin integration formula, which we will use to derive an
asymptotic series for the gamma function. Consider the integral

∫ 1

0
f(x)dx =

∫ 1

0
f(x)B0(x)dx

The idea is to use the relation B′
n(x) = nBn−1(x) and successive integrations by parts to

generate an infinite series. At the first step, use B′
1(x) = B0(x) and integrate by parts to get

∫ 1

0
f(x)dx =

∫ 1

0
f(x)B′

1(x)dx

= f(x)B1(x)]
1
0 −

∫ 1

0
f ′(x)B1(x)dx

=
1

2
(f(1) + f(0)) − 1

2

∫ 1

0
f ′(x)B′

2(x)dx

=
1

2
(f(1) + f(0)) − 1

2
[f ′(x)B2(x)]

1
0 +

1

2

∫ 1

0
f ′′(x)B2(x)dx

and so forth. Continuing this process, we find

∫ 1

0
f(x)dx =

1

2
[f(1) + f(0)] −

q
∑

p=1

B2p

(2p)!

(

f (2p−1)(1) − f (2p−1)(0)
)

+
1

(2q)!

∫ 1

0
f (2q)(x)B2q(x)dx
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where the B2p in the sum above are the Bernoulli numbers, not the functions, and where we
have used the relations

B2n(1) = B2n(0) = B2n

B2n+1(1) = B2n+1(0) = 0

(Compare equation (5.168a) in [57].)

By replacing f(x) with f(x+ 1) we can shift the integration region from [0, 1] to [1, 2], and
by adding up results for different regions, we finally get the Euler-Maclaurin integration
formula:

∫ n

0
f(x)dx =

1

2
f(0) + f(1) + f(2) + · · · + f(n− 1) +

1

2
f(n)

−
q
∑

p=1

B2p

(2p)!

(

f (2p−1)(n) − f (2p−1)(0)
)

+
1

(2q)!

∫ n

0
B2q(x)

n−1
∑

s=0

f (2q)(x+ s)dx

(Compare equation (5.168b) in [57].)

Apply the Euler-Maclaurin integration formula above to the right-hand side of the equation

1

z
=
∫ ∞

0

1

(z + x)2
dx

to get the series

1

z
=

1

2
f(0) +

∞
∑

n=1

f(n)

−
∞
∑

n=1

B2n

(2n)!

(

lim
x→∞

f (2n−1)(x) − f (2n−1)(0)
)

for f(x) = (z + x)−2. Thus,

1

z
=

1

2z2
+

∞
∑

n=1

1

(z + n)2
−

∞
∑

n=1

B2n

(2n)!

(

(2n)!

z2n+1

)

From equation (10.41) in [57],

∞
∑

n=1

1

(z + n)2
= F (1)(z)

so we can write

F (1)(z) =
d

dz
F (z) =

1

z
− 1

2z2
+

∞
∑

n=1

B2n

z2n+1
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(Compare equation (10.50) in [57].) Integrating once we get

F (z) = C1 + log z +
1

2z
−

∞
∑

n=1

B2n

2nz2n

It can be shown (see [57]) that C1 = 0. Since

F (z) =
d

dz
log Γ(z + 1)

we can integrate again to get

log Γ(z + 1) = C2 +
(

z +
1

2

)

log z − z +
∞
∑

n=1

B2n

(2n)(2n− 1)z2n−1

for some constant C2, where we have used the fact that

d

dz
z (log z − 1) = log z.

We can solve for C2 by substituting the expression above into the Legendre duplication
formula

Γ(z + 1)Γ(z +
1

2
) = 2−2zπ1/2Γ(2z + 1)

(this corrects a minor typo in equation (10.53)) from which one can derive that C2 =
(1/2) log(2π). Thus,

log Γ(z + 1) =
log 2π

2
+
(

z +
1

2

)

log z − z +
∞
∑

n=1

B2n

(2n)(2n− 1)z2n−1

which is Stirling’s series, an asymptotic series for the natural logarithm of the gamma func-
tion.

We can also derive a more commonly used expression for Stirling’s series by exponentiating
the series above. We get

Γ(z + 1) =
√

2πzz+1/2 exp(−z) exp

(

∞
∑

n=1

B2n

(2n)(2n− 1)z2n−1

)

We can simplify the last factor as follows. Recall the Taylor expansion

log (1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · ·

If we find an x such that

∞
∑

n=1

(−)n+1x
n

n
=

∞
∑

n=1

B2n

(2n)(2n− 1)z2n−1
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then we can write

exp

(

∞
∑

n=1

B2n

(2n)(2n− 1)z2n−1

)

= 1 + x

Although finding a closed-form expression is impossible, we can find a series in z for x. From
the first terms, clearly

x =
B2

2z
+ O(z−2)

and if we work out the expansion more systematically, we discover

x =
B2

2z
+

B2
2

8z2
+ O(z−3)

=
1

12z
+

1

288z2
+ O(z−3)

Thus, we have that

Γ(z + 1) =
√

2πzz+1/2 exp(−z)
(

1 +
1

12z
+

1

288z2
+ O(z−3)

)

another form of Stirling’s asymptotic series.

A.3 Method of steepest descent

Consider a contour integral of the form

G(z) =
∫

C
exp(zf(t))dt

The method of steepest descent is a systematic procedure for generating an asymptotic series
that approximates integrals of this form.

One application will be to the gamma function. Recall the definite integral description of
the gamma function:

Γ(z + 1) =
∫ ∞

0
exp(−t)tzdt

Change integration variables to t = τz:

Γ(z + 1) = zz+1
∫ ∞

0
exp(−zτz)τ zdτ

and write
exp(−τ/z)τ z = exp(−zτ + z log τ)

giving an integral of the form
∫

C
exp(zf(t))dt
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with f(t) = −t+ log t.

Another application of the method of steepest descent is to the Feynman path integral
description of quantum mechanics and quantum field theory, where it is used to recover the
classical limit.

Now that we have described the setup, just what exactly is the method of steepest descent?
The general idea is that in an integral over a complex exponential of the form exp(zf(t)),
for large z, the part of the integration contour that mostly just changes the phase will not
significantly contribute to the integral, but rather will tend to cancel out. A little more
systematically, if the integral involves integrating over all phases of the complex exponential,
then the different contributions should sum to zero, on the grounds that

∫ 2π

0
cos θdθ =

∫ 2π

0
sin θdθ = 0

At this same, level of approximation, the leading contribution to the integral should come
from parts of the contour where the phase does not change significantly.

A little more mechanically, if the contour contains or passes near a spot where ∂f(t)∂t = 0
(known as a ‘saddle point’), and that is at t = t0, then for large z the leading contribution
to the contour integral

∫

C
exp(zf(t))dt

from that section of the contour should be proportional to exp(zf(t0))

The description we have given is very far from being a thorough argument, but it turns out
to be essentially correct.

Let us describe how to derive this leading contribution in the case of the gamma function,
then we shall describe how to more systematically use these general ideas to create an
asymptotic expansion for such contour integrals.

In the case of the gamma function, recall

Γ(z + 1) = zz+1
∫ ∞

0
exp(zf(t))dt

for f(t) = log t− t. Solving ∂f/∂t = 0, we find that the only possible saddle point is at

1

t
− 1 = 0

i.e. t0 = 1. Let us expand f(t) about this saddle point. Write t = 1 + x, then

f(t) = log(1 + x) − (1 + x)

=

(

x − x2

2
+

x3

3
− x4

4
+ · · ·

)

− (1 + x)

= −1 − x2

2
+

x3

3
− · · ·
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from which we see the leading order approximation to the integral should be proportional
to exp(−z). We can now approximate the gamma function by

Γ(z + 1) = zz+1 exp(zf(1))
∫ ∞

−1
exp(zf ′′(1)x2/2!)dx

= zz+1 exp(−z)
∫ ∞

−1
exp(−zx2/2)dx

∼= zz+1 exp(−z)
∫ ∞

−∞
exp(−zx2/2)dx

= zz+1 exp(−z)
√

2π

z

=
√

2πzzz exp(−z)
which is the leading term in Stirling’s expansion of the factorial function.

Reference [57], in section 7.4, discusses how to treat a contour integral in which the contour
does not lie along the real line. An important part of the treatment, which I will omit here
but which is discussed in [57], involves replacing the contour integral with an integral along
an infinite line that is tangent to a particular direction at the saddle point.

Let us instead outline how to more systematically derive an asymptotic series, not just the
leading term, using these methods. In terms of our original function G(z), if our contour
crosses a single saddle point t0, and the contour line is along a “path of steepest descent”
along which the imaginary part of zf(t) is constant. Write

f(t) = f(t0) − w2

for some variable w, which is real Im f(t) = Im f(t0) everywhere along the contour. Then,

G(z) = exp(zf(t0))
∫

C
exp(−zw2)

(

dt

dw

)

dw

Assume that the contour C is such that the w integral can be taken to run over the real
numbers from −∞ to ∞. Next, we need to write dt/dw as a function of w, rather than t.
In general, we can accomplish such an inversion at the power-series level, so write

dt

dw
=

∞
∑

n=0

anw
n

for some constants an. (Note that from the definition of w above, one only expects even
powers of w to appear in this power series.) Substituting in one has

G(z) = exp(zf(t0))
∫ ∞

−∞
exp(−zw2)

∞
∑

n=0

anw
ndw

= exp(zf(t0))
∞
∑

n=0

anz
−(n+1)/2Γ

(

n+ 1

2

)

=
exp(zf(t0))√

z

∞
∑

m=0

a2mΓ
(

m+
1

2

)(

1

z

)m
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where in the last line we have used the fact that only even powers of w appear in dt/dw.

Let us outline how to derive the Stirling series using this method. Recall there that

Γ(z + 1) = zz+1
∫ ∞

0
exp(zf(t))dt

for f(t) = log t − t, with only saddle point at t0 = 1. Expand in a Taylor series about
f(t0) = −1 to get

f(t) = −1 − (t− 1)2

2!
+ 2

(t− 1)3

3!
− (3!)

(t− 1)4

4!
+ · · ·

so in the notation above,

w2 =
(t− 1)2

2
− (t− 1)3

3
+ · · ·

It can be shown (see [58][section 4.6] for details, but note their a0 at the bottom of p. 442
is
√

2 not 1/
√

2) that
dt

dw
=

√
2

(

1 +
w2

6
+

w4

216
+ · · ·

)

and plugging these values into the general expression for the asymptotic series we find

Γ(z + 1) = zz+1 exp(−z)√
z

√
2
[

Γ(1/2) +
1

6
Γ(3/2)

1

z
+

1

216
Γ(5/2)

1

z2
+ · · ·

]

=
√

2πzz+1/2 exp(−z)
[

1 +
1

12z
+

1

288z2
+ · · ·

]

and so we recover Stirling’s series.

For more information, see [57], section 7.4, or [58][section 4.6].

A.4 Uniqueness (or lack thereof)

One very important property of asymptotic series is that they do not uniquely determine a
function. It is easy to check, for example, that if Re(z) > 0, then the same series can be
simultaneously asymptotic to both f(z)/ϕ(z) and f(z)/ϕ(z) + exp(−z).

This fact is very important in quantum field theory, and is a reflection of nonperturbative
effects in the theory. Summing over Feynman diagrams yields a series in which the cou-
pling constant of the theory plays the part of 1/z. Now, a typical quantum field theory
has ‘nonperturbative effects,’ which cannot be seen in a (perturbative) Feynman diagram
expansion. Nonperturbative effects, which are not uniquely determined by the perturba-
tive theory, are exponentially small in the coupling constant, i.e. multiplied by factors of
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exp(−1/g) = exp(−z). Since the Feynman diagram expansion is only an asymptotic series,
and the nonperturbative effects are exponentially small, adding nonperturbative effects does
not change the asymptotic expansion, i.e. does not change the Feynman diagram expansion.

Properties of asymptotic series:

Asymptotic series can be added, multiplied, and integrated term-by-term. However, asymp-
totic series can only be differentiated term-by-term to obtain an asymptotic expansion for
the derivative only if it is known that the derivative possesses an asymptotic expansion.

A.5 Summation of asymptotic series

How can we sum, in any sense, a divergent series?

One approach is as follows. Given a divergent series

F (z) =
∞
∑

n=0

Anz
n

for some constants An, consider the related series

B(z) =
∞
∑

n=0

An
zn

n!

Depending upon how badly divergent the original series F (z) was, one might hope that the
new series B(z) might actually converge in some region. Assuming that B(z) converges and
can be resummed, how might one recover F (z)? Well, use the formula

∫ ∞

0
exp(−t/z)tndt = zn+1n!

to show that, formally,

zF (z) =
∫ ∞

0
exp(−t/z)B(t)dt

To calculate F (z) using the formal trick above, we need B(t) for real positive values of t
less than or of order z. So long as any singularities in B(t) on the complex t plane are
at distances greater than |z| from the origin, this should be OK. (In quantum field theory,
singularities in B(t) are typically associated with nonperturbative effects – instantons – so
again we see that nonperturbative effects limit the usefulness of resummation methods for
the (asymptotic) Feynman series. See [59] for more information.)

This particular resummation technique is more or less known as Borel summation. There are
other techniques one can apply to try to resum asymptotic series (modulo the fundamental
nonuniqueness issue), see [61] for more information.
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A.6 Stokes’ phenomenon

Stokes’ phenomenon is the observation that the operations of analytic continuation and
asymptotic series expansion do not commute with one another.

Let us work through a simple example, following [58][section 5.3]. Consider the confluent
hypergeometric function defined by

M(a, c; z) =
∞
∑

n=0

(a)n

(c)n

zn

n!

where (a)n is the Pochhammer symbol:

(a)n = a(a+ 1)(a+ 2) · · · (a + n− 1)

=
(a+ n− 1)!

(a− 1)!
=

Γ(a+ n)

Γ(a)

(a)0 = 1

First, let us derive the leading term in an asymptotic expansion as z → +∞ along the real
axis. The n term of the series above is given by

(a)n

(c)n

zn

n!
=

(a + n− 1)!

(a− 1)!

(c− 1)!

(c+ n− 1)!

zn

n!

It can be shown [57][problem 8.3.8] that

lim
x→∞

xb−a (x+ a)!

(x+ b)!
= 1

so we see that for large n, the n term becomes

→ (c− 1)!

(a− 1)!

n(a−1)−(c−1)

n!
zn

→ (c− 1)!

(a− 1)!

zn

(n− a + c)!

At large positive z, the terms with large n dominate, so that

M(a, c; z) ≈
∞
∑

n=1

(c− 1)!

(a− 1)!

zn

(n− a+ c)!

Assume a − c ∈ Z, and ignoring the first few terms (small compared to the rest), we have
that

M(a, c; z) ≈ (c− 1)!

(a− 1)!

∞
∑

m=0

zm

m!
za−c (m = n− a+ c)

=
Γ(c)

Γ(a)
za−c exp(z)
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We have been sloppy, but a more careful analysis reveals this result is correct; the leading
term in an asymptotic series expansion of M(a, c; z) for z → +∞ along the real axis is given
by the expression above.

Next, let us find the leading term in an asymptotic expansion of M(a, c; z) for z → −∞
along the real axis. The fast way to do this is to use the identity

M(a, c; z) = exp(z)M(c− a, c;−z)

Using this and our previous result, we see that as z → −∞ along the real axis,

M(a, c; z) → Γ(c)

Γ(c− a)
(−z)−a

This is the leading term in an asymptotic series expansion of M(a, c; z) for z → −∞.

But if we compare our results for the two different limits, we see that this is not what we
would have gotten by analytically continuing either separately.

For example, if we started with the z → +∞ limit, and analytically continued, we would
have found

Γ(c)

Γ(a)
(−z)a−c exp(−z) 6= Γ(c)

Γ(c− a)
(−z)−a

Thus, analytic continuation does not commute with asymptotic series expansions. This is
known as Stokes’ phenomenon. This is very unlike convergent Taylor series, for example,
where analytic continuation does commute with series expansion.

Let us also understand this more systematically by taking asymptotic series expansions at
all arg(z), not just along the real axis. To do this, we shall use the integral representation
[57][problem 13.5.10a]

M(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
exp(zt)ta−1(1 − t)c−a−1dt

Deform the integration path to go from first, t = 0 to t = −∞ exp(−iφ), then, from t =
−∞ exp(−iφ) to t = 1, where z = |z| exp(iφ). Then we find that

M(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

{

∫ −∞ exp(−iφ)

0
exp(zt)ta−1(1 − t)c−a−1dt

+
∫ 1

−∞ exp(−iφ)
exp(zt)ta−1(1 − t)c−a−1dt

}

When 0 < φ < π, make the following changes of variables. In the first integral, define w by

t = −w exp(−iφ)

|z| = −w
z
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and in the second integral, define

t = 1 − u exp(−iφ)

|z| = 1 − u

z

Plugging these in, we find

M(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

{

∫ ∞

0
exp(−w)

(−w
z

)a−1 (

1 +
w

z

)c−a−1
(

−dw
z

)

+
∫ 0

∞
exp(z(1 − u/z))

(

1 − u

z

)a−1 (u

z

)c−a−1
(

−du
z

)}

=
Γ(c)

Γ(a)Γ(c− a)

{

exp(iaπ)

za

∫ ∞

0
exp(−w)wa−1

(

1 +
w

z

)c−a−1

dw

+
exp(z)

zc−a

∫ ∞

0
exp(−u)

(

1 − u

z

)a−1

uc−a−1du

}

→ Γ(c)

Γ(c− a)

exp(iaπ)

za
+

Γ(c)

Γ(a)
exp(z)za−c

The first term dominates when φ = π, at which the second term is negligible. When φ = 0,
the opposite is true: the second term dominates, the other term is negligible. For φ = π/2,
the two terms are comparable.

The analysis can be repeated for −π < φ < 0; but as it is very similar, for brevity we shall
not repeat it here.

So, what we have found in general is that for general φ, the leading term is a combination
of the two terms, but in the two limits, one dominates and the other is much less than the
corrections, so that the leading term in the asymptotic series expansion is defined by only
term, not both. Which term dominates, varies as φ changes. Thus, analytic continuation
does not commute with asymptotic series expansion.

B A∞ algebras

A strict, or strong A∞ algebra is defined by a Z-graded vector space A together with a
collection of multiplications mn : A⊗n → A, for n ≥ 1, which are homogeneous of degree
2 − n and are subject to the constraint

∑

k+l=n+1j=0···k−1

(−)smk (u1, · · · , uj, ml(uj+1, · · · , uj+l), uj+l+1, · · · , un) = 0

for n ≥ 1, where
s = l (|u1| + · · ·+ |uj|) + j(l − 1) + (k − 1)l
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and | · | denotes the degree of a homogeneous element in A.

The first six constraints can be written as follows. For n = 1,

m1 ◦m1 = 0

If we think of m1 as a differential d, then this is just the condition d2 = 0. For n = 2,

m1 (m2(u1, u2)) − m2 (m1(u1), u2) + (−)|u1|+1m2 (u1, m1(u2)) = 0

Note that this amounts to the product rule on the product defined by m2, with differential
m1. For n = 3,

m1 (m3(u1, u2, u3)) + m2 (m2(u1, u2), u3) − m2 (u1, m2(u2, u3))

+m3 (m1(u1), u2, u3) + (−)|u1|m3 (u1, m1(u2), u3) + (−)|u1|+|u2|m3 (u1, u2, m1(u3)) = 0

Let us take a moment to interpret this. This condition is just the statement that the product
defined by m2 is associative up to the multiplication m3. In particular, an A∞ algebra is not
associative in general. For n = 4,

m1 (m4(u1, u2, u3, u4)) − m2 (m3(u1, u2, u3), u4) + (−)|u1|+1m2 (u1, m3(u1, u2, u3))

+m3 (m2(u1, u2), u3, u4) − m3 (u1, m2(u2, u3), u4) + m3 (u1, u2, m2(u3, u4))

−m4 (m1(u1), u2, u3, u4) + (−)|u1|+1m4 (u1, m1(u2), u3, u4)

+ (−)|u1|+|u2|+1m4 (u1, u2, m1(u3), u4) + (−)|u1|+|u2|+|u3|+1m4 (u1, u2, u3, m1(u4)) = 0

For n = 5,

m1 (m5(u1, u2, u3, u4, u5)) + m2 (m4(u1, u2, u3, u4), u5) − m2 (u1, m4(u2, u3, u4, u5))

+m3 (m3(u1, u2, u3), u4, u5) + (−)|u1|m3 (u1, m3(u2, u3, u4), u5)

+ (−)|u1|+|u2|m3 (u1, u2, m3(u3, u4, u5)) + m4 (m2(u1, u2), u3, u4, u5) − m4 (u1, m2(u2, u3), u4, u5)

+m4 (u1, u2, m2(u3, u4), u5) − m4 (u1, u2, u3, m2(u4, u5)) + m5 (m1(u1), u2, u3, u4, u5)

+ (−)|u1)m5 (u1, m1(u2), u3, u4, u5) + (−)|u1|+|u2|m5 (u1, u2, m1(u3), u4, u5)

+ (−)|u1|+|u2|+|u3|m5 (u1, u2, u3, m1(u4), u5)

+ (−)|u1|+|u2|+|u3|+|u4|m5 (u1, u2, u3, u4, m1(u5)) = 0

For n = 6,

m1 (m6(u1, u2, u3, u4, u5, u6)) − m2 (m5(u1, u2, u3, u4, u5), u6) + (−)|u1|+1m2 (u1, m5(u2, u3, u4, u5, u6))

+m3 (m4(u1, u2, u3, u4), u5, u6) − m3 (u1, m4(u2, u3, u4, u5), u6) + m3 (u1, u2, m4(u3, u4, u5, u6))

−m4 (m3(u1, u2, u3), u4, u5, u6) + (−)|u1|+1m4 (u1, m3(u2, u3, u4), u5, u6)

+ (−)|u1|+|u2|+1m4 (u1, u2, m3(u3, u4, u5), u6) + : (−)|u1|+|u2|+|u3|+1m4 (u1, u2, u3, m3(u4, u5, u6))

+m5 (m2(u1, u2), u3, u4, u5, y6) − m5 (u1, m2(u2, u3), u4, u5, u6)
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+m5 (u1, u2, m2(u3, u4), u5, u6) − m5 (u1, u2, u3, m2(u4, u5), u6)

+m5 (u1, u2, u3, u4, m2(u5, u6)) − m6 (m1(u1), u2, u3, u4, u5, u6)

+ (−)|u1|+1m6 (u1, m1(u2), u3, u4, u5, u6) + (−)|u1|+|u2|+1m6 (u1, u2, m1(u3), u4, u5, u6)

+ (−)|u1|+|u2|+|u3|+1m6 (u1, u2, u3, m1(u4), u5, u6)

+ (−)|u1|+|u2|+|u3|+|u4|+1m6 (u1, u2, u3, u4, m1(u5), u6)

+ (−)|u1|+|u2|+|u3|+|u4|+|u5|+1m6 (u1, u2, u3, u4, u5, m1(u6)) = 0

In the special case that m1 = 0, we say the A∞ algebra is a minimal A∞ algebra or minimal

model. Another interesting special case is when mk = 0 for k ≥ 3. In this special case, the
A∞ algebra is known as a differential graded algebra, or dga for short.

An A∞ morphism is a set of maps fk : A⊗k → B such that (up to signs)
∑

r+s+t=n

fu(1
⊗r ⊗ms ⊗ 1⊗t) =

∑

1≤r≤n,i1+···+ir=n

mr(fi1 ⊗ fi2 ⊗ · · · ⊗ fir)

for any n > 0 and u = n + 1 − s.

Given a dga, one may construct a minimal model H∗(A), by taking the cohomology with
respect to m1. It is possible to define [56] an A∞ structure on H∗(A) such that there is an
A∞ morphism f : H∗(A) → A with f1 equal to an embedding i : H∗(A) ↪→ A. The A∞

structure on H∗(A) is unique up to A∞ isomorphisms.

The notion of an A∞ algebra can be extended to an A∞ category. The difference between
an ordinary category and an A∞ category is that the morphisms in the latter have an A∞

structure. In particular, an A∞ category is not a category in the usual sense, as composition
of morphisms need not be associative.
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