
A TOUR TO STABILITY CONDITIONS ON DERIVED CATEGORIES

AREND BAYER

ABSTRACT. Lecture notes for the Minicourse on derived categories, Utah 2007.
Preliminary version with many gaps, omissions, errors. Corrections welcome.

These lecture notes are a brief tour to Bridgeland’s space ofstability conditions
on derived categories, introduced in [Bri02]. A more complete version will be
made available on the website of the Minicourse and/or my homepage.1

1. STABLE VECTOR BUNDLES AND COHERENT SHEAVES

Stability in algebraic geometry is a very classical concept, in the two different
(but closely related) contexts of geometric invariant theory, and stability of vector
bundles and coherent sheaves. We will say nothing about the former, and take a
very fast tour through the latter.

LetX be a smooth, projective curve overC (a Riemann surface). IfE is a vector
bundle,d(E) its degree andr(E) its rank, we call

µ(E) =
d(E)

r(E)

its slope.
The following lemma is extremely crucial:

1.1. Lemma. Let 0 → A → E → B → 0 be a short exact sequence of vector
bundles. Then

µ(A) < µ(E) ↔ µ(E) < µ(B)

µ(A) > µ(E) ↔ µ(E) > µ(B)

This follows by simple algebra fromr(E) = r(A) + r(B) andd(E) = d(A) +
d(B), but even more convincingly from the picture in figure 1, where we set
Z(X) = r(X) + id(X) for X = A,E,B.

1.2. Remark. What we used in the above “proof by picture” are just two proper-
ties of the functionZ:

(1) Z is additive on short exact sequences; in other words,Z is actually a
group homomorphismZ : K(A) → C.

(2) The image ofZ is contained in some half-plane inC, so that we can mean-
ingfully compare the slopes of objects.

1http://math.utah.edu/∼bayer/
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Z(A)

Z(E)

Z(B)

Figure 1: See-saw property

1.3.Definition. A vector bundle is (semi-)stable if for all subbundlesA →֒ E we
haveµ(A) < µ(E).

Equivalently (by the see-saw property), we could ask that for all quotientsE ։

B we haveµ(E) > µ(B).

1.4. Examples.
(1) Any line bundle is stable.
(2) An extension0 → OX → E → L1 → 0 between the structure sheaf and a

line bundleL1 of degree one is stable if and only if the extension does not
split. (Exercise!)

1.5.Lemma. If E, E′ are semistable andµ(E) > µ(E′), thenHom(E,E′) = 0.

Proof. Factor any non-zero map via its image inE′, and use the definition and
see-saw property. 2

Most interest in stable vector bundles is due to the fact thatstability allows a
meaningful study of moduli of vector bundles (in particular, the moduli space of
stablevector bundles of fixed Chern class is bounded, which is obviously not true
for the moduli of arbitrary vector bundles). However, for our purposes the existence
of Harder-Narasimhan filtration is the most interesting aspect:

1.6.Theorem. For any vector bundleE there is a unique increasing filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E

such that the filtration quotientsEi/Ei−1 are semistable of slopeµi, with µ1 >
µ2 > · · · > µn.

We will only sketch a small part of the proof here: Consider the short exact se-
quence0 → En−1 → En → En/En−1 → 0. If the Harder-Narasimhan filtration
exists, it follows easily from the definitions and lemma 1.5 thatEn/En−1 has the
following property:

1.7.Definition. A maximal destabilizing quotient (mdq) is a quotientE ։ B such
that for every other quotientE ։ B′, we haveµ(B′) ≥ µ(B), and equality only
if the map factors viaE ։ B ։ B′.

The mdq (if it exists) is obviously semistable and unique. Ifwe can show it
always exists, this would proof the theorem:
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If E = B, thenE is semistable and we are done, otherwise letE′ →֒ E ։ B
be the kernel. Sinceµ(E) > µ(B), we have (see-saw!)µ(E′) > µ(E), hence
the rank ofE′ is strictly smaller than the rank ofE, and by induction (*) we can
assume the existence of a HN-filtration forE′.

The HN-filtration ofE′ then extends to a HN filtration ofE.
The complete proof (see e.g. [Bri02, section 2]) works in anycategory and for

any slope functionφ with the see-saw property and the following two properties:

(1) There is no infinite chain of subobjects

. . . →֒ E3 →֒ E2 →֒ E1 →֒ E0

with φ(Ei+1) > φ(Ei) for all i.
(2) There is no infinite chain of quotients

E0 ։ E1 ։ E2 ։ . . .

with φ(Ei) > φ(Ei+1) for all i.

In particular, the proof always works in a category of finite length.2

2. T-STRUCTURES

2.1. Digression: Octahedral axioms.There seem to exist two myths about the
octahedral axiom in a triangulated categoryD:

(1) It is not important.
(2) Since it is difficult to draw, it must be scary and difficultto understand and

apply.

While the first one may be true to some extent, it definitely ceases to be true when
dealing with t-structures; however, fortunately the second myth is definitely wrong.

The octahedral axiom answers a simple question: Given a composition

A →f B →g C,

is there any way to relate the three conescone(f), cone(g) and cone(g ◦ f)?
Phrased this way, the axiom is easy to guess: they form an exact triangle. More pre-
cisely, there is the following commutative diagram, where all the (almost) straight
lines are part of an exact triangle:

2An abelian category has finite length if even arbitrary infinite chains of subobjects and quotients
do not exist.
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In the special case whereD = Db(A) is the derived category of an abelian
categoryA, andA,B,C are objects concentrated in degree zero (identified with
objects inA, andf, g are inclusions, then the octahedral axiom specializes to a
very familiar statement:

(C/A)/(B/A) = C/B

More generally, in the same spirit where exact triangles arethe replacement of ex-
act sequences, the use of the octahedral axiom replaces all abelian category proofs
using diagram chasing, referring to the snake lemmma, lemmaof 9 etc.

2.2.Exercise. Translate the lemma of 9 to a triangulated category, and prove it!

2.3. Definition of a t-structure. The notion of a t-structure can be motivated by
the following question: Assuming we have an equivalence of derived categories
Db(A) ∼= Db(B), can we understand the image ofA = A[0] in Db(B)? For
interesting examples (almost all Fourier-Mukai transforms, etc.) A does not get
mapped toB, so we would like to understand what structure the image ofA in
Db(B) satisfies.

2.4.Definition. The heart of a bounded t-structure in a triangulated category D is
a full additive subcategory such that

(1) For k1 > k2, we haveHom(A[k1],A[k2]) = 0.
(2) For every objectE in D there are integersk1 > k2 > · · · > kn and a

sequence of exact triangles

F 0E // F 1E //

}}zzz
zz

F 2E //

{{xxx
xx

· · · Fn−1E // FnE

{{ww
ww

w

A0

aa

A1

cc

An

ee

with Ai ∈ A[ki].

The concept of t-structures was introduced in [BBD82], which is required read-
ing for anyone interested in details about t-structures.
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2.5. Remarks.

(1) A bounded t-structure is uniquely determined by its heart, which allows us
to omit the definition bounded t-structure in this note.

(2) A[0] ⊂ Db(A) is the heart of a t-structure. Property (1) says that there
are no Ext-groups in negative degree,3 and property (2) is the filtration of a
complex by its cohomology objects, induced by successive application of
the truncation functorτ≥n.

(3) The coreA is automatically abelian: A morphismA → B between two
objects inA is defined to be an inclusion if its cone is also inA, and it is
defined to be a surjection if the cone is inA[1].

2.6. Exercise. Use the filtration with respect to the standard t-structure to show
that for a smooth projective curveX, every object inDb(X) is the direct sum of
its cohomology sheaves.

The simplest examples of non-trivial t-structures are given by tilting at a torsion
pair.

2.7. Definition. A torsion pair in an abelian categoryA is a pair (T ,F) of full
additive subcategories with

(1) Hom(T ,F) = 0.
(2) For all E ∈ A there exists a short exact sequence

0 → T → E → F → 0

with T ∈ T , F ∈ FF .

Property (1) implies that that the filtration in (2) is automatically unique and
factorial.

2.8. Examples. The canonical example of a torsion pair isA = Coh X, where
we defineT to be the torsion sheaves andF the torsion-free sheaves.

For a more interesting example, letA = Coh X be the category of coherent
sheaves on a smooth projective curveX, andµ ∈ R a real number. LetA≥µ

be the subcategory generated by torsion sheaves and vector bundles all of whose
HN-filtration quotients have slope≥ µ, andA<µ the category of vector bundles
all of whose filtration quotients have slope< µ. Then(A≥µ,A<µ) is a torsion
pair: property (1) follows from lemma 1.5, and (2) is obtained by collapsing the
HN-filtration into two parts: we letT = Ei for i maximal such thatµi ≥ µ.

2.9.Proposition. Given a torsion pair(T ,F) in A, the following defines the heart
of a bounded t-structure:

A♯ :=
{

E ∈ Db(A)
∣

∣

∣
H0(E) ∈ T ,H−1(E) ∈ F ,H i(E) = 0 for i 6= 0,−1

}

3Note that it isnot enough to obvserve that a morphismA[0] → B[−n] for some objectsA, B ∈

A would induce the zero-morphism on cohomology. Any non-trivial element inExtn(A, B) for n >

0 yields a non-zero morphismA → B[n] in Db(A) that induces the zero morphism on cohomology.



6 AREND BAYER

Objects inA can be interpreted as a pair(T, F ), T ∈ T , F ∈ F and an el-
ement inExt1(T, F ). Objects inA♯ are instead a pair(F, T ) and an element in
Ext2(F, T ).

2.10. Exercise. Let X = P
1,A = Coh X, and letA♯ be the tilted heart for

the torsion pair(A≥0,A<0). Let Q be the Kronecker quiver (the directed quiver
with tow vertices and two arrows), and letΦT : Db(P1) → D

b(repC(Q)) be the
equivalence induced by the tilting bundleT = O ⊕ O(1). Show thatA♯ is the
inverse image of the heart of the standard t-structure.

2.11.Exercise.Consider an elliptic curveE, and its auto-equivalenceΦ: Db(E) →
Db(E) given by the Fourier-Mukai transform of the Poincaré line bundle. Deter-
mine the imageΦ(Coh E) of the heart of the standard t-structure.

3. STABILITY CONDITIONS ON A TRIANGULATED CATEGORY

3.1. Definition. A slicing P of a triangulated categoryD is a collection of full
additive subcategoriesP(φ) for eachφ ∈ R satisfying

(1) P(φ + 1) = P(φ)[1]
(2) For all φ1 > φ2 we haveHom(P(φ1),P(φ2)) = 0.
(3) For each0 6= E ∈ D there is a sequenceφ1 > φ2 > · · · > φn of real

numbers and a sequence of exact triangles

(1) F 0E // F 1E //

}}zzz
zz

F 2E //

{{xx
xx

x
· · · Fn−1E // FnE

{{ww
ww

w

A0

aa

A1

cc

An

ee

with Ai ∈ P(φi) (which we call the Harder-Narasimhan filtration ofE).

3.2. Remarks.

(1) We call the objects inP(φ) the semistable objects of phaseφ.
(2) Given the slicingP, the sequence ofφi and the Harder-Narasimhan fil-

tration are automatically unique. We setφ+
P(E) = φ1 andφ−

P(E) = φn

(where we sometimes omit the subscriptP).
(3) If φ−(A) > φ+(B), theHom(A,B) = 0.
(4) If P(φ) 6= 0 only for φ ∈ Z, then the slicing is equivalent to the datum of

a boundedt-structure, with heartA = P(0).
(5) More generally, given a slicingP, letA = P((0, 1]) be the full extension-

closed4 subcategory generated by allP(φ) for φ ∈ (0, 1]; equivalently,A is
the subcategory of objectsE with φ+

P(E) ≤ 1 andφ−
P(E) > 0. ThenA is

the heart of a boundedt-structure. In other words, a slicing is a refinement
of a boundedt-structure.

3.3.Exercise. Prove the claim in (5).

4An extension of two objectsA,B in a triangulated category is any objectE that fits into an exact
triangleA → E → B →

[1].
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While this gives a notion of semistable objects and successfully generalizes
Harder-Narasimhan filtrations, it is rather unsatisfying that we have to specify the
semistable objects explicitly (instead of defining them implicitly by a slope func-
tion as in the case of vector bundles). The remedy for this lies in the following
(somewhat surprising) definition:

3.4.Definition. A stability condition on a triangulated categoryD is a pair (Z,P)
whereZ : K(D) → C is a group homomorphism (called the stability function or
central charge) andP is a slicing, so that for every0 6= E ∈ P(φ) we have
Z(E) = m(E) · eiπφ for somem(E) ∈ R>0.

3.5.Lemma. To give a stability condition onD is equivalent to giving a heartA
of a boundedt-structure and a group homomorphismZA : K(A) → C such that
ZA([A]) ∈ H = {z ∈ C

∗ | 0 < arg(z) ≤ 1} for all objectsA ∈ A, and such that
ZA “has the Harder-Narasimhan property”.

If A is the heart of a boundedt-structure onD, thenK(D) = K(A) (even
thoughD might not be equivalent toDb(A)), so it is clear how to go fromZ to ZA

and vice versa. Given the stability condition, we setA = P((0, 1]) as before; by
definition of a stability condition, anyP-semistable object is sent toH by Z; since
any object inA is an extension of semistable ones, this is true for all objects inA.
Then one can show that theZ-semistable objects inA are exactly the semistable
objects with respect toP.

Conversely, givenA andZA, we can defineP(φ) for 0 < φ ≤ 1 to be the
subcategory ofZA-semistable objects inA of phaseφ.

3.6. Example. If X is a smooth projective curve andD = Db(X), let A =
CohX be the heart of the standardt-structure, andZ(E) = − deg(E)+ i · rk(E).
ThenZ is a stability function with the Harder-Narasimhan property, and thus in-
duces a stability condition onDb(X).

The same construction does not work for higher-dimensionalvarieties.

3.7. Example. Let Q be a quiver with relationsR, such that its path algebra is
finite-dimensional. LetA = Mod(Q,R) be its category of representations. Then
K(A) = K(Db(A)) =

⊕

Q0
Z, so a stability function forA is just given by

a complex numberzq ∈ H for every vertexq ∈ Q0 of the quiver. (Given an
object inA, its class in theK-group is anon-negativelinear combination of the
classes of the one-dimensional simple representations associated to the vertices, so
its image underZ will also lie in the upper half plane.) SinceA has finite length,
Z automatically has the Harder-Narasimhan property.

3.8. Remark. The condition thatZ sends objects ofA to the upper half plane is
highly non-trivial. Already for a projective surfaceS, there is no central charge
K(Db(S)) → C that would map objects inCoh S to the upper half plane.
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4. SPACE OF STABILITY CONDITIONS

Given a stability conditionσ = (Z,P) on D and an objectE ∈ D with
semistable Harder-Narasimhan filtration quotientsAi we define itsmasswith re-
spect toσ to bemσ(E) =

∑

i|Z(Ai)|.
We can define a generalized metric on the set of stability conditions onE:

d(σ1, σ2) = sup06=E∈D

{

|φ−
σ2(E) − φ−

σ1(E)|, |φ+
σ2 (E) − φ+

σ1(E)|, |log
mσ1 (E)

mσ2 (E) |
}

∈ [0,+∞]

From now on, we assume for simplicity either that
(1) K(D) is finite-dimensional, or
(2) assume that the numerical Grothendieck groupN (D)5 is finite-dimensional,

and restrict our attention to stability conditions for which the central charge
Z : K(D) factors viaN (D).

So in either case,Z is just a linear map from a finite-dimensional vector space to
C.

For technical reason, we need to exclude some degenerate stability conditions:

4.1. Definition. A stability conditionsσ = (Z,P) is called locally finite if there
existsǫ > 0 such thatP((φ− ǫ, φ + ǫ)) is a category of finite length for allφ ∈ R.

Let Stab(D) be the space of locally finite stability conditions onD with the
topology generated by the generalized metricd above. SetK = K(D) of K =
N (D) accordingly.

4.2.Theorem. The spaceStab(D) of (numerical) stability conditions is a smooth
finite-dimensional manifold such that the map

Z : Stab(D) → K∨, σ = (Z,P) → Z

is a local chart at every point ofStab(D).6

In other words, we can deform a stability condition(Z,P) (uniquely) by de-
formingZ.

Given(Z,P) andZ ′ “nearby”Z, we will explain how to determineP ′ “nearby”
P such that(Z ′,P ′) is again a stability condition. Givenφ ∈ R, consider the
categoryAǫ = P((φ − ǫ, φ + ǫ)). The central chargeZ maps objects inAǫ to the
small sectorR>0 · e

iπ·(φ−ǫ,φ+ǫ). We assumeZ ′ is nearbyZ, henceZ ′ mapsAǫ to
some slightly bigger sector inC; it will still be small enough that we can define the
phasesφZ′(A) of objectsA ∈ Aǫ with respect toZ ′.

However, sinceAǫ is usually not abelian, we need to be a little more careful to
define stability with respect toZ ′: we sayi : A → E ∈ Aǫ is a strict inclusion if

5The numerical Grothendieck group is the quotient ofK(D) by the null-space of the bilinear
form χ(E,F ) = χ(RHom(E, F )).

6The precise statement is that there is a subspaceUΣ of K∨, only depending on the connected
componentΣ of Stab(D), such thatZ : Stab(D) → UΣ is a local homeomorphism. However,
when the image of the integral lattice inK underZ is a discrete subset ofC for any Z in the
connected component, thenUΣ = K∨.
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the cone is also inAǫ. We sayE is Z ′-stable if there is no strict inclusionA → E
with φZ′(A) > φZ′(E).

Then we defineP ′(φ′) (for φ′ ≈ φ) to be the subcategory ofZ ′-semistable
objects of phaseφ′ with respect toZ ′.

4.3. Example. Assume that inAǫ there is an exact triangleA → E → B, such
thatA,B have no strict subobjects inAǫ, andA is the only strict subobject ofE. In
particular,A,B are stable forσ = (Z,P), and will also be stable forσ′ = (Z ′,P ′).

(1) If the parallelogram0, Z([A]), Z(E), Z(B) has positive orientation, then
E is stable.

(2) If the parallelogram has negative orientation, thenE is unstable, and0 →
A → E is the HN filtration ofE.

So if the orientation of the parallelogram changes betweenZ and Z ′, then E
changes from being stable to unstable, or vice versa.

Z(A)

Z(E)

Z(B)

(a)E is stable

Z(E)

Z(B)

Z(A)

(b) E is unstable

Figure 2: A simple wall-crossing

4.4. Example: Db(P1). Consider the heartA♯ obtained by tilting at the torsion
pair (A≥0,A<0). It is generated byO(0) andO(−1)[1] and extensions. The short
exact sequencesO(k) → O(k + 1) → Ox for k ∈ Z give, after appropriate rota-
tion, extensions inA♯ showing thatOx for x ∈ P

1 (and thus all torsion sheaves),
O(n) for n ≥ 0 andO(n)[1] for n < 0 are all objects inA♯. All other objects inA♯

are decomposable. By example 3.7 and exercise 2.10, any choice of(z0, z−1) ∈ H
2

gives a stability condition withZ(O) = z0 andZ(O(−1)[1]) = z−1.

(1) If arg(z0) < arg(z−1), then all the (shifts of) line bundles listed above
are stable. Up to reparametrization ofC by an element inGL2(R) (and
accordingly adjusting the phases of stable objects), this stability condition
is equivalent to the standard one given in example 3.6. See fig. 3, which
shows the images of the stable objects, with arrows denotinginclusions.

(2) If arg(z0) > arg(z−1), thenO,O(−1)[1] are the only stable objects inA♯.

This describes a chamber of the space of stability conditions, and the natural
question is what happens when we deformZ so that one ofz0, z−1 leaves the
upper half-plane.

If we are in case (2) and, say,z−1 passes the positive real line, then the stable
objects don’t change; however, the new heartA′ = P((0, 1]) is generated by the
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O

O(2)

O(3)

O(4)

O(1)
O(−1)[1]

O(−1)[1]

O(−1)[1]

Figure 3: Stable objects in case (1)

stable objectsO andO(−1)[2]. There are no extensions or morphisms between
these two objects, soA′ is isomorphic to the category of pairs of vector spaces
(representations of the algebraC⊕C). This is the easiest example of a heartA′ of
a bounded t-structure whose bounded derived categoryDb(A′) is not isomorphic
to the original derived category.

The most interesting case is whenz−1 lies on the negative real line, andz0

passes the positive real axis. Also let us assume thatℜ(z−1) > −ℜ(z0). We have
to consider the categoryAǫ = P((−ǫ, ǫ)), whereǫ is small but big compared to
the phase ofz0. The stable objects in this interval are

(1) The skyscraper sheavesOx,
(2) all O(k) such thatkℜ(z0) + (k − 1)ℜ(z−1) > 0, i.e. all k ≥ k0 :=

⌈ ℜz−1

ℜ(z0+z−1)⌉, and
(3) all O(k)[1] for k < k0.

Whenz−1 passes through the real axis, then the strict inclusionsO(k0) →֒ O(k0 +
1) →֒ . . . will destabilize all butO(k0) (see also fig. 4); similarly the strict in-
clusionsOx →֒ O(k)[1] →֒ O(k + 1)[1] for k ≤ k0 − 2 will destabilize all but
O(k0−1)[1]; finally O(k0) →֒ Ox ։ O(k0−1)[1] will destabilize the skyscraper
sheaves.

O(−1)

O(2)O(1)O

Figure 4: Inclusions inP((−ǫ, ǫ)).

Hence the only “surviving” stable objects areO(k0),O(k0 − 1)[1], and we get
a stability condition of case (2) for the heart generated by these two objects.

For a much more detailed study of the space of stability conditions onDb(P1),
see [Oka06].
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