
COMBINATORIAL ASPECTS OF THE MODULI SPACE OF CURVES

A. GIBNEY

ABSTRACT. The moduli space Mg,n of n-pointed (Deligne-Mumford) stable curves of genus g

provides a natural environment in which we may study smooth curves and their degenerations. These
spaces, for different values of g and n, are related to each other through systems of tautological maps.
Consequently, problems about curves of positive genus can frequently be reduced to the smooth,
projective, rational variety M0,n. I will give three lectures at the BRIDGES1 program. In the first
lecture, I will introduce moduli spaces and the moduli space of curves. In the second lecture I will
give a combinatorial introduction to Mg,n, and emphasize the special nature of the variety in case
g = 0. In the third I will describe two open problems about M0,n, one that has been solved (nearly
at least), and another that remains stubbornly open.

1. LECTURE 1: THE MODULI SPACE OF CURVES

A moduli space is a variety (or a scheme or a stack) that parametrizes some class of objects. One
dimensional algebraic varieties, arguably the simplest objects one studies, can be better understood
as points on moduli spaces of curves. As curves arise in many contexts, moduli of curves are
meeting grounds where a variety of techniques are applied in concert. In algebraic geometry,
moduli of curves are particularly important: they help us understand smooth curves and their
degenerations, and as special varieties, they have been one of the chief concrete, nontrivial settings
where the nuanced theory of the minimal model program has been exhibited and explored [HH09,
HH13, AFSvdW16, AFS16a, AFS16b]. They have also played a principal role as a prototype for
moduli of higher dimensional varieties [KSB88, Ale02, HM06, HKT06, HKT09, CGK09].

It is not uncommon to refer to certain varieties as combinatorial: these include toric varieties:
like projective space, weighted projective spaces, and certain blowups of those, Grassmannian va-
rieties, or even more generally homogeneous varieties. These all come with group actions, and
combinatorial data encoded in convex bodies keeps track of their important geometric features.
Certain varieties like moduli of curves, have combinatorial structures reminiscent of varieties that
are more traditionally considered to be combinatorial. As a result, various analogies have been
made between them and the moduli of curves. Such comparisons have led to questions and con-
jectures, surprising formulas, and even arguments that have been used to detect and to prove some
of the most important and often subtle geometric properties of the moduli space of curves.

Today we will answer the questions: What is the idea of a moduli space, what are moduli of
curves, and what are they good for? As you can see from other more complete surveys [Har84,
Far09, Abr13, Cos10], this is a long studied subject with many points of focus!
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2 A. GIBNEY

1.1. Why moduli? The basic objects of study in algebraic geometry are varieties (or schemes or
stacks). Zero sets of polynomials give algebraic varieties. The simplest are lines, which as can be
seen in the picture below, taken together form varieties:
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FIGURE 1. Imagining projective lines and spaces.

When learning about algebraic geometry, one typically starts with affine varieties, which in their
simplest form are the zero sets of polynomials in some number of variables. Soon we learn that it
is useful to homogenize those polynomials so we can study projective varieties for which there is
more theory available. For instance, zero sets of degree d polynomials define curves in the affine
plane, and homogeneous polynomials of degree d in three variables determine curves in P2, which
we can classify according to their genus

g =
d(d− 1)

2
.

The genus of a curve is an invariant: If two curves have different genera, they can’t be isomorphic.
As some of you will discuss in the problem sessions, there are more geometric ways to define this
number. For instance, the genus of a smooth curve C is

g = dim H0(C, ωC) = dim H1(C,OC),

where ωC is the sheaf of regular 1-forms on C. If defined over the field of complex numbers, we
may consider C as a Riemann surface, and the algebraic definition of genus is the same as the
topological definition. 
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FIGURE 2. Picturing genus.
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The simplest examples of plane curves have genus zero. These can be obtained as zero sets of
conics in two variables:

fα•(x1, x2) =
∑

j,k≥0,j+k≤2

αjkx
j
1x

k
2.

or as homogeneous polynomials of degree 2:

Fa•(x0 : x1 : x2) =
∑

i,j,k≥0

i+j+k=2

aijkx
i
0x

j
1x

k
2.

Note that the element

a• = [a200 : a110 : a101 : a020 : a011 : a002] ∈ P5

determines the zero set Z(Fa•) ⊂ P2. In other words, there is a 5 dimensional family of rational
curves. If we ask for only those curves that pass through a fixed set of points, say

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], and p4 = [1 : 1 : 1],

then since every point imposes a linear condition on the coefficients, we obtain a one dimensional
family of 4-pointed rational curves. 
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FIGURE 3. Families of 4-pointed rational curves.

Plane curves of genus 1 can be obtained as zero sets of cubic polynomials, and we can write
down the general curve of genus 2 using the equation:

x22 = x61 + a5x
5
1 + a4x

4
1 + · · ·+ a1x1 + a0.

In other words, a point (a0, . . . , a5) ∈ A6 determines a curve of genus 2, and there is a family of
curves parametrized by an open subset of A6 that includes the general smooth curve of genus 2.
As the coefficients change, the curves will sometimes have singularities.
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1.2. Moduli of curves.

Definition 1.1. Mg is the moduli space of smooth curves of genus g, the variety whose points are
in one-to-one correspondence with isomorphism classes of smooth curves of genus g ≥ 2.

As smooth curves degenerate to curves with singularities, even if we just care about families of
smooth curves it is useful to work with a a compactification of Mg – a proper space that contains
Mg as a (dense) open subset. Such a space will necessarily parametrize curves with singularities.

We will consider the compactification Mg whose points correspond to Deligne-Mumford stable
curves of genus g. There are a number of choices of compactifications of Mg, and some of these
receive birational morphisms from Mg while others just receive rational maps from Mg. A few
examples are given in the Appendix.

Definition 1.2. A stable curve C of (arithmetic) genus g is a reduced, connected, one dimensional
scheme such that

(1) C has only ordinary double points as singularities.
(2) C has only a finite number of automorphisms.

Remark 1.1. That C has finitely many automorphisms comes down to two conditions: (1) if Ci is
a nonsingular rational component, then Ci meets the rest of the curve in at least three points, and
(2) if Ci is a component of genus one, then it meets the rest of the curve in at least one point.

Definition 1.3. Mg is the moduli space of stable curves of genus g, the variety whose points are in
one-to-one correspondence with isomorphism classes of stable curves of genus g ≥ 2.

That such a variety Mg exists is nontrivial. This was proved by Deligne and Mumford who
constructed Mg using Geometric Invariant Theory [DM69]. In the second lecture we will see
Keel’s construction of the space M0,n.

This variety Mg has the essential property that given any flat family F → B of curves of genus
g, there is a morphism B → Mg, that takes a point b ∈ B to the isomorphism class [Fb] ∈ Mg

represented the fiber Fb.

1.3. How can studying Mg tell us about curves? Earlier we considered a family of curves
parametrized by an open subset of A6, that included the general smooth curve of genus 2. Gener-
ally, if there is a family of curves parametrized by an open subset of AN+1 that includes the general
curve of genus g, then one would have a dominant rational map from PN to our compactification
Mg. In other words, Mg would be unirational. This would imply that there are no pluricanonical
forms on Mg. Said otherwise still, the canonical divisor of Mg would not be effective.

On the other hand, one of the most important results about the moduli space of curves, proved
almost 40 years ago, is that for g >> 0 the canonical divisor of Mg lives in the interior of the cone
of effective divisors (for g = 22 and g ≥ 24, by [EH87, HM82], and for by g = 23 [Far00]). Once
the hard work was done to write down the classes of the canonical divisor, and an effective divisor
called the Brill-Noether locus, to prove this famous result, a very easy combinatorial argument
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can be made to show that the canonical divisor is equal to an effective linear combination of the
Brill-Noether and boundary divisors when the genus is large enough.

The upshot is that by shifting focus to the geometry of the moduli space of curves, we learn
something basic and valuable about the existence of equations of smooth general curves. Neverthe-
less, basic open questions remain. First, our current understanding of such questions is incomplete
– it can be summarized in the following picture:
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So there is a gap in our understanding of the “nature” of Mg. On the other hand, even for those
g for which we know the answer, there are still problems to solve. For instance if Mg is known to
be of general type, one can consider the canonical ring

R• =
⊕
m≥0

Γ(Mg,mKMg
),

which is now known to be finitely generated by the celebrated work of [BCHM10]. In particular,
the canonical model Proj(R•), is birational to Mg.

It is still an open problem to construct this model, and efforts to achieve this goal have both
furthered our understanding of the birational geometry of the moduli space of curves, as well as
giving a highly nontrivial example where this developing theory can be experimented with and
better understood.

1.4. Moduli in the language of functors. We have described moduli spaces of curves as projec-
tive varieties. But in doing so we gloss over some of what makes them moduli spaces. There is a
functorial way to describe moduli spaces which leads to their study as stacks. Interested readers
should look into this further.
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2. LECTURE 2: COMBINATORIAL INTRODUCTION TO THE MODULI SPACE OF CURVES AND

THE SPECIAL CASE g = 0

As we discussed in Lecture 1, the general moduli/parameter spaces philosophy goes something
like the following:

• Objects X (like varieties with properties in common) can often correspond points in a
moduli spaceM. By studyingM one can learn about X .
• Points [X] ∈M with good properties often form a large (dense) open subset ofM.
• Points [X] ∈M with bad properties occupy closed (proper) subsets ofM.

Today we will apply this philosophy to Mg, the moduli space of n-pointed Deligne-Mumford
stable curves of genus g ≥ 2. We saw last time that this space is fundamental, giving insight
into smooth curves and their degenerations. The moduli space Mg parametrizing (isomorphism
classes of) smooth curves of genus g forms a dense open subset of Mg. As we shall see today,
by looking at loci of curves with singularities, we are led to the study of moduli spaces Mg,n,
parametrizing stable n-pointed curves of genus g. We’ll also see that these spaces, for different g
and n, are connected through tautological clutching and projection morphisms, give the system and
these spaces a rich combinatorial structure. Algebraic structures on Mg,n reflect this, and are often
governed by recursions, and amenable to inductive arguments. Consequently, many questions can
be reduced to moduli spaces of curves of smaller genus and fewer marked points. Problems about
curves of positive genus can often be reduced to the smooth, projective, rational variety M0,n,
which can be constructed in a simple manner as a sequence of blowups of projective spaces. Today
we will talk about this.

2.1. A stratefication. As we have seen in the examples above, even if we are only interested in
smooth curves, we are naturally led to curves with singularities, and when considering curves with
nodes, one is naturally led to curves with marked points.

The moduli space Mg is a (3g-3)-dimensional projective variety. The set δk(Mg) = {[C] ∈
Mg| C has at least k nodes} has codimension k in Mg. If k = 1, these loci have codimension one,
and the boundary is a union of components:

(1) The component ∆irr can be described as having generic point with a nonseparating node;
the closure of the locus of curves whose normalization is a curve of genus g − 1 with 2

marked points.
(2) Components ∆g1 = ∆g2 are determined by partitions g = g1 + g2. These loci can be

described as having generic point with a separating node – the closure of the set of curves
whose normalization consists of 1-pointed curves of genus g1 (and g2).

We may picture generic elements in these sets, and their normalizations, as follows:
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FIGURE 4. Clutching maps.

Definition 2.1. A stable n-pointed curve is a complete connected curve C that has only nodes as
singularities, together with an ordered collection p1, p2, . . ., pn ∈ C of distinct smooth points of
C, such that the (n+ 1)-tuple (C; p1, . . . , pn) has only a finite number of automorphisms.

Definition 2.2. Mg,n is the variety whose points are in one-to-one correspondence with isomor-
phism classes of stable n-pointed curves of genus g ≥ 0.

I didn’t formally say this last time, but we should consider the following:

Definition 2.3. Mg,n is the quasi-projective variety whose points are in one-to-one correspondence
with isomorphism classes of smooth n-pointed curves of genus g ≥ 0.

As we saw in the first lecture, as smooth curves degenerate to curves with singularities, it is
useful to compactify Mg,n. While there are a number of different compactifications available,
DM-stable pointed curves work well for this purpose.

Definition 2.4. Mg,n is the variety whose points are in one-to-one correspondence with isomor-
phism classes of stable n-pointed curves of genus g ≥ 0.

To get a sense of the combinatorial structure, we note that the moduli space is stratified by the
topological type of the curves being parametrized. As we did last time in the case n = 0, we may
describe these components of the boundary of Mg,n:

δk(Mg,n) = {[(C,P •)] ∈ Mg,n| C has at least k nodes}

in Mg,n (a space of dimension 3g − 3 + n). The locus δk(Mg,n) has codimension k and is a union
of irreducible components.

For instance, if k = 1, this codimension one locus is a union of components:

(1) ∆irr has generic point a nonseparating node; the closure of the locus of curves whose
normalization is a curve of genus g − 1 with n+ 2 marked points.

(2) ∆g1,N1 = ∆g2,N2 are determined by partitions g = g1 + g2 and {P 1, . . . , P n} = N1 ∪N2,
with generic point a separating node – the closure of the set of curves whose normalization
consists of pointed curves of genus g1 (and g2) with marked points in the set N1 (and N2)
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We can describe the components ∆irr and ∆g1,N1 as the images of attaching maps from moduli
spaces of stable curves with smaller genus (or with fewer marked points):

Mg−1,n+2 −→ ∆irr ⊂ Mg,n, and Mg1,n1+1 ×Mg2,n2+1 −→ ∆g1,N1 = ∆g2,N2 ⊂ Mg,n
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FIGURE 5. Tautological clutching maps.

There are also tautological point dropping maps.

Example 2.5. Using these maps we obtain n + 1 families of stable n-pointed rational curves
parametrized by M0,n

πj : M0,n+1 → M0,n, si : M0,n → M0,n+1, i ∈ {1, . . . , n+ 1} \ {j}

where πj is the map that drops the j-th point, and si is the section that takes an n-pointed curve
(C; ~p) and at the i-th point attaches a copy of P1 labeled with two additional points pi and pn+1.

2.2. Comparing M0,n with moduli spaces of higher genus curves. The space M0,n has some
advantages over Mg,n for g > 0, for several reasons, three of which are easy to state. First M0,n is
a fine moduli space (it parametrizes pointed curves with no nontrivial isomorphisms), unlike Mg,n

for g > 0, which parametrizes curves with non-trivial automorphism (a genus 3 example is given
in the notes from Lecture 1). Second, M0,n is smooth, whereas Mg,n for g > 0 has singularities. So
there are tools like intersection theory that are easier to carry out. Third, M0,n is rational (unlike
Mg,n for g >> 0) and this makes some arguments easier (as I will illustrate in the lecture).

2.3. Other useful properties of M0,n. There are a number of constructions of M0,n, giving one
different perspectives about the space, and tools to work with it. For instance, Kapranov showed
M0,n is a Hilbert (or Chow quotient) of Veronese curves and can be seen as a quotient of a
Grassmannian. There are at least four ways to construct the space as a sequence of blowups.
Finn Knudsen was first, showing that M0,n+2 could be constructed as a sequence of blowups of
M0,n+1 ×M0,n

M0,n+1 (this product is not smooth), along non-regularly embedded subschemes.
Keel improved this, giving an alternative construction of M0,n as a sequence of blowups of smooth
varieties along smooth co-dimension 2 sub-varieties. The first case where we see anything interest-
ing is for the 2-dimensional space M0,5 which is the blow-up of P1×P1 ∼= P1×ptP1. As a result of
his construction, Keel showed that Chow groups and homology groups are canonical isomorphic,
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he gave recursive formulas for the Betti numbers, and an inductive recipe for the basis of Chow
rings, which he shows are quotients of polynomial rings (he gives the generators and the relations).

As an example, we know from Keel that there are 2n−1 −
(
n
2

)
− 1 numerical (or linear, or

algebraic) equivalence classes of codimension 1 classes (divisors) on M0,n.

2.4. Combinatorics. In one of the worksheets, I have posed a number of exercises to emphasize
the combinatorics of the boundary components. I will do some examples in lecture as well.

As an example, it is possible to use the projection maps and facts about M0,4, which is isomor-
phic to P1 to deduce numerical equivalences of divisors on M0,n for all n. For instance, since
Pic(P1) ∼= Z, one has that on M0,4, all boundary divisor classes are equivalent. So in particular,

δij ≡ δik ≡ δi`, for {i, j, k, `} = {1, 2, 3, 4}.

One can show, using the point dropping maps, that for n ≥ 4, on M0,n,∑
I⊂{ijk`}c

δij∪I ≡
∑

I⊂{ijk`}c
δik∪I ≡

∑
I⊂{ijk`}c

δi`∪I , for any four indices {i, j, k, `} ⊂ {1, . . . , n}.
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3. LECTURE 3: OPEN PROBLEMS

Today we consider two questions about the moduli space of curves. I will describe them non-
technically, to convey a general idea about what is being asked. Nevertheless (and unfortunately),
some words used may mean very little at this early stage2. My true purpose is to use these problems
to illustrate two lessons I’ve learned on my path as a mathematician. The are roughly that:

(1) analogies can be powerful; and

(2) whatever you study, it is useful to consider it in relative terms.

In particular, one should ask:

• What does this object remind me of?
• How does this object degenerate?
• To what other objects does it map?
• What objects map to it?

The relationships between the objects you study and others like it can tell you a lot.

I will tell you (a very little bit) about the F-Conjecture and the Mori Dream Space conjecture.
Each comes from the general observation thatMg,n resembles other very well understood spaces.
For instance, as we have seen as a moduli space,Mg,n can be compared to a Grassmann variety
(and Mumford did this when he defined the tautological ring), and as Kapranov proved, M0,n is
a quotient of a Grassmannian. As Fulton pointed out by, the action of the symmetric group Sn
onMg,n by permuting the marked points, can be compared with the action of an algebraic torus
G ∼= (C∗)n on a toric variety, or the transitive action of an algebraic group G a homogeneous
variety. In fact Sn is the automorporphism group ofM0,n, as Fulton predicted it was.

Group actions are useful. For instance those sub-loci of a toric or homogeneous variety that are
preserved by the group action play an important role in understanding their cycle structure.

As will be said more precisely later in the lecture, an effective cycle E of dimension k on a
variety X of dimension d is a formal sum of numerical equivalence classes of k-dimensional sub-
loci on X . Two effective cycles E1 and E2 are numerically equivalent, written E1 ≡ E2, if the
number of points (counted with multiplicity) of the intersections E1 ∩Z and E2 ∩Z are equal, for
all complementary sub-loci Z ⊂ X of dimension d−k. As mentioned in Lecture 2, there are other
(related) types of equivalence including algebraic and linear.

Since sums and positive multiples of effective cycles remain effective, these form cones which
for proper varieties live in finite dimensional vector spaces. These cones (and their closures) are
combinatorial devices that encode geometric data about proper varieties. On (complete) toric vari-
eties and on homogeneous varieties, on which a group G acts, the G-invariant loci determine such
cones. Boundary cycles (equivalence classes of boundary loci) are analogous to G-invariant loci
on a homogeneous or toric variety. It is natural therefore to ask, by analogy, whether the boundary
loci onMg,n play the same important role.

2In case you are reading ahead, there is considerably more detail here in the notes than will be said in the lecture.
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We next consider a few basic definitions.

3.1. Cones of divisors. Let X be a projective, not necessarily smooth variety defined over an
algebraically closed field. Good references for the concepts below are [Laz04a, Laz04b].

Definition 3.1. A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier. We
assume today that X is a Q-factorial normal, projective variety over the complex numbers. The
moduli spaces Mg,n have these properties.

Definition 3.2. Two divisors D1 and D2 are numerically equivalent, written D1 ≡ D2, if they
intersect all irreducible curves in the same degree. We say two curves C1 and C2 are numerically
equivalent, written C1 ≡ C2 if C1 ·D = C2 ·D for every irreducible subvariety D of codimension
one in X .

Definition 3.3. We set N1(X)Z equal to the vector space of curves up to numerical equivalence,
and N1(X)Z equal to the vector space of divisors up to numerical equivalence, and set

N1(X)Q = N1(X)Z ⊗Z Q, N1(X) = N1(X)R = N1(X)Z ⊗Z R,

and
N1(X)Q = N1(X)Z ⊗Z Q, N1(X) = N1(X)R = N1(X)Z ⊗Z R.

The nef and pseudo-effective cones on X are subcones of vector spaces Nk(X), and Nk(X),
which can be define analogously, and which I define for arbitrary proper varieties in Section 4.5.
This perspective involves thinking about cycles as being naturally dual to Chern classes of vector
bundles.

Definition 3.4. The pseudo effective cone Effk(X) ⊂ Nk(Mg,n) is defined to be the closure of the
cone generated by k-cycles with nonnegative coefficients. Similarly Eff

k
(X) ⊂ Nk(X) is defined

to be the closure of the cone generated by cycles of codimension k with nonnegative coefficients.

The cones Effk(X), and Eff
k
(X) are full dimensional, spanning the vector spaces Nk(X), and

Nk(X). They are pointed (containing no lines), closed, and convex.

Definition 3.5. The Nef Cone Nefk(X) ⊂ Nk(X) is the cone dual to Effk(X).

As the dual of Effk(X), the nef cone has all of the nice properties that Effk(X) does.
The nef cone can also be defined as the closure of the cone generated by semi-ample divisors –

divisors that correspond to morphisms, and

f : X → Y is a regular map, then f ∗(Nef(Y )) ⊂ Nef1(X).

Given a projective variety Y , and a morphism f : X −→ Y ↪→ PN , then for any ample divisor
A = O(1)|Y on Y , one has the pullback divisor D = f ∗A on X is base point free. In fact, this
divisor D is not only base point free, it has the much weaker property that it is nef. For if C is a
curve on our projective variety X , then by the projection formula

D · C = f∗(D · C) = A · f∗C,
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which is zero if the map f contracts C, and otherwise, as A is ample, it is positive.
It is not true that every nef divisor on an arbitrary proper variety X has an associated morphism;

To have such a property would be very special (a dream situation). But as we saw above, the
divisors that give rise to maps do live in the nef cone, and for that reason the nef cone can be used
a tool to understand the birational geometry of the space.

The following is an even more refined concept that won’t be mentioned in the lecture.

Definition 3.6. For a Q-Cartier divisor D on a proper variety X , we define:

• the stable base locus of D to be the union (with reduced structure) of all points in X which
are in the base locus of the linear series |nmD|, for all n, where m is the smallest integer
≥ 1 such that mD is Cartier;
• A moving Q-Cartier divisor to be a divisor whose stable base locus has codimension 2 or

more; and
• the moving cone Mov(X) of X , is the closure of the cone of moving divisors.

Sufficiently high and divisible multiples of any effective divisor D on X will define a rational
map (although not necessarily a morphism) from X to a projective variety Y . The stable base
locus of D is the locus where the associated rational map will not be defined. The pseudo-effective
cone may be divided into chambers having to do with the stable base loci [ELM+06, ELM+09].
Moreover, if

f : X 99K Y is a rational map, then f ∗(Nef(Y )) ⊂ Mov(X),

and we have
Nef1(X) ⊆ Mov(X) ⊆ Eff

1
(X).

3.2. Examples. Next we consider a simple example to illustrate how even very crude information
about the location of the cone of nef divisors with respect to the effective cone tells us valuable
information about the geometry of the variety X , as we see for Mg.

 as

I

do
h

FIGURE 6. Nef1(M3) ⊂ Eff
1
(M3) with generators λ, 12λ− δ0, and 10λ− δ0 − 2δ1.

In general we can say the following:

Theorem 3.7. Every nef divisor on Mg is big. In particular, there are no morphisms, with con-
nected fibers from Mg to any lower dimensional projective varieties other than a point.
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Theorem 3.7 says that the nef cone of Mg sits properly inside of the cone of effective divisors–
and their extremal faces only touch at the origin of the Nerón Severi space.

The statement for pointed curves is a little bit more complicated, but still very simple in the
grand scheme of things:

Theorem 3.8. For g ≥ 2, any nef divisor is either big or is numerically equivalent to the pullback
of a big divisor by composition of projection morphisms. In particular, for g ≥ 2, the only mor-
phisms with connected fibers from Mg,n to lower dimensional projective varieties are compositions
of projections given by dropping points, followed by birational maps.

3.3. The F-Conjecture. Recall from the first lecture that in Mg,n, the locus

δk(Mg,n) = {(C, ~p) ∈ Mg,n : C has at least k nodes }

has codimension k. For each k, the set δk(Mg,n) decomposes into irreducible component indexed
by dual graphs Γ with k edges. Moreover, the closure of the component corresponding to Γ con-
tains components consisting of curves whose corresponding dual graph Γ′ contracts to Γ. The
resulting stratification of the space is both reminiscent and analogous to the combinatorial struc-
ture determined by the torus invariant loci of a toric variety.

On a complete toric variety, every effective cycle of dimension k can be expressed as a linear
combination of torus invariant cycles of dimension k. Fulton compared the action of the symmetric
group Sn on M0,n with the action of an algebraic torus a toric variety. Following this analogy, he
asked whether a variety of dimension k could be expressed as an effective combination of boundary
cycles of that dimension. As M0,n is rational, of dimension n− 3, this is true for points and cycles
of codimension n − 3. For the statement to be true for divisors, it would say that every effective
divisor would be in the cone spanned by the boundary divisors. This was proved false by Keel
[GKM02, page 4] and Vermeire [Ver02], who found effective divisors not in the convex hull of
the boundary divisors. For the statement to be true for curves, it would say that the Mori cone
of curves is spanned by irreducible components of δn−4(M0,n): whose dual graph is distinctive:
the only vertex that isn’t trivalent has valency four. In particular, these are all curves that can be
described as images of attaching or clutching maps from M0,4.

Of course this question could just as well be asked for higher genus, and Faber did this, proving
the statement for M3 and M4 (see eg. [Fab90a, Intermezzo]).

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible components
of δ3g−4+n(Mg,n) are called F-Curves. One can ask the following question:

Question 3.9. (The F-Conjecture [GKM02]) Is every effective curve numerically equivalent to an
effective combination of F-Curves? Otherwise said, can one say that a divisor is nef, if and only if
it nonnegatively intersects all the F-Curves?

In [GKM02], we showed that in fact a positive solution to this question for Sg-invariant nef
divisors on M0,g+n would give a positive answer for divisors on Mg,n. In particular, the birational
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geometry of M0,g controls aspects of the birational geometry of Mg. We know now that the answer
to this question is true on M0,n for n ≤ 7 [KM13], and on Mg for g ≤ 24 [Gib09].

3.4. The question of whether M0,n is a MDS. Another analogy between M0,n and toric varieties
prompted Hu and Keel to ask whether M0,n is a so-called Mori Dream Space. We now know, due
to the very recent work of Castravet and Tevelev, that this is not true in general. I’ll define a Mori
Dream Space and state the results of Castravet and Tevelev. To do so, we need first the definition
of a so-called small Q-factorial modification of X , defined as follows:

Definition 3.10. Let X be a normal projective variety. A small Q-factorial modification of X is a
birational map3 f : X → Y that is an isomorphism in codimension one (ie. is small) to a normal
Q-factorial projective variety Y . We refer to f as an SQM for short.

Definition 3.11. A normal projective variety X is called an MDS if:

(1) X is Q-factorial and Pic(X)Q ∼= N1(X)Q;
(2) Nef(X) is generated by finitely many semi-ample line bundles;
(3) there is a finite collection of SQMs fi : X → Xi such that each Xi satisfies (1) and (2)

and Mov(X) is the union of f ∗i (Nef(Xi)).

Extremely well behaved schemes, like toric and log Fano varieties, where the minimal model
program can be carried out without issue, were deemed “Mori Dream Spaces” by Hu and Keel
(MDS for short). The moduli space of stable n-pointed genus zero curves M0,n is Fano for n ≤ 6,
and so is a MDS in that range. While not Fano for n ≥ 7, a comparison between the stratification
of M0,n, given by curves according to topological type, to the stratification of a toric variety given
by its torus invariant sub-loci, prompted Hu and Keel to ask whether M0,n is a MDS for all n. This
question has resulted in a great deal of work in the literature both about M0,n and related spaces. As
Castravet and Tevelev point out in their paper, for about 15 years now, many researchers have tried
to understand this particular problem. Other related questions go back to the work of Mumford.

Castravet and Tevelev in [CT15], prove that M0,n is not a MDS as long as n is at least 134. The
authors assert that rather than compare M0,n to a toric variety, one should rather think of it as the
blow up of a toric variety – namely, the blow up of the Losev Manin space LMn at the identity
of the torus. Using their work, in [GK16], González and Karu showed M0,n is not an MDS as
long as n is at least 13. A very recent preprint of Hausen, Keicher, and Laface [HKL16] studies
the blow-up of a weighted projective plane at a general point, giving criteria and algorithms for
testing if the result is a Mori dream space. As an application, using the framework of Castravet
and Tevelev, they show that M0,n is not an MDS as long as n ≥ 10. The three cases 7, 8, and 9

therefore seem to remain open, as far as I know.

3.5. What comes out of these questions? In Castravet and Tevelev’s proof that M0,n is not a
MDS, they ultimately show that the third criterion of the definition for a MDS (see Definition

3In particular, this map f need not be regular.



COMBINATORIAL ASPECTS OF THE MODULI SPACE OF CURVES 15

3.11) fails. If the second condition in the definition for a MDS, the prediction is that the Nef cone
of M0,n should have a finite number of extremal rays, and that every nef divisor should be semi-
ample. Moreover, if in the increasingly unlikely event that the F-Conjecture were to hold for M0,n,
then the Nef cone would have finitely many extremal rays. Therefore, it makes sense to ask:

Question 3.12. (1) Is Nef1(M0,n) polyhedral?
(2) Is every element of Nef1(M0,n) semi-ample?

It would be interesting to see that the answer to part (b) is yes, but that there are so many nef
divisors that the answer to part (a) is no. This has led me to my current work about sheaves on
Mg,n defined by representations of vertex operator algebras.

4. APPENDIX: MORE RESULTS ABOUT CONES OF DIVISORS

4.1. A chamber decomposition for Nef(M3) ⊂ Eff
1
(M3). The first work on these cones was

done by Mumford in [Mum83], where everything was worked out for M2, and where it was
checked that the intersection theory could be done on Mg in general. By [Fab90a], we know
that NE

1
(M3) is spanned by the classes δ0 = [∆0], δ1 = [∆1] and the class h of the hyperelliptic

locusH3. The hyperelliptic locusHg on Mg is isomorphic to M̃0,2g+2 under the map

h : M̃0,2g+2

∼=−→ Hg ⊆ Mg,

given by taking a double cover branched at the marked points. For g = 2, the map is an isomor-
phism, for g = 3 the image has codimension one, and for g ≥ 4 the image has higher codimension
and isn’t a divisor.

FIGURE 7. A partial chamber decomposition of

Nef1(M3) ⊂ Mov(M3) ⊂ Eff
1
(M3)

seen in a cross section.

There is a partial chamber decomposition of Nef(M3) ⊂ Mov(M3) ⊂ NE
1
(M3), pictured above.

Two chambers have to do with different compactifications of the moduli space Ag of principally
polarized abelian varieties: The classical Torelli map

Mg
t−→ Ag,

which takes a smooth curve X of genus g to its Jacobian, doesn’t extend to a morphism on Mg.
But there are extensions to various compactifications of Ag.
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4.1.1. The Satake Chamber. LetASatg be the Satake compactification of the moduli spaceAg. The
classical Torelli map extends to a regular map

tSat : Mg −→ A
Sat

g .

This morphism is given by the divisor λ. In other words, λ = (tSat)∗(A), where A is an ample
divisor ASatg .

4.2. The 2nd Voronoi Chamber. We let AV org : be the toroidal compactification of Ag for the
2nd Voronoi fan. The Torelli map is known to extend to the regular map

tg : Mg
tSat

−→ AV or(2)g .

This morphism is given by a divisor which lies on the (interior of the) face of the nef cone spanned
by λ and 12λ− δ0.

4.2.1. The Shepherd-Barron Unknown (SBU) Chamber. There is a morphism

f : Mg −→ X,

given by the base point free extremal nef divisor 12λ− δ0. As far as I know, there isn’t a modular
interpretation for X .

4.3. The Pseudo-Stable Chamber. Let M
ps

g be the moduli stack of pseudo stable curves. Replac-
ing elliptic tails with cusps gives the divisorial contraction

T : Mg −→ M
ps

g .

T is given by a divisor that lies on the face of the nef cone spanned by 12λ−δ0 and 10λ−δ0−2δ1.

4.3.1. The C-Stable Chamber. Let M
cs

g be the moduli space of c-stable curves. Contracting elliptic
bridges to tacnodes defines the small modification ψ : M

ps

g −→ M
cs

g , and composing with T defines
a regular map

Mg
T−→ M

ps

g

ψ−→ M
cs

g ,

given by the extremal divisor 10λ− δ0 − 2δ1.

4.4. The First Flip: H-Semistable Curves in the Moving Cone. We can also see the first flip:
Let M

hs

g be the moduli space of h-semistable curves. There is a morphism ψ+ : M
hs

g −→ M
cs

g

which is a flip of ψ:
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Mg

T

}}

��

M
ps

g

ψ   

(M
ps

g )+ = M
hs

g

ψ+
yy

M
cs

g .

We can see the chamber of the effective cone of M3 corresponding to M
hs

g . It doesn’t touch the

Nef cone of M3 because there isn’t a morphism from M3 to M
hs

g . Instead, there is a rational map,
which for g = 3 is given by the moving divisors pictured.

There is another chamber of the moving cone, as we can see in the picture. This corresponds to
the pullback of the nef cone of the second flip.

4.5. Chow rings for general proper varieties using Chern classes of vector bundles.

Definition 4.1. Let Ak(X) be the group of algebraic cycles of dimension k on X .

In his book on Intersection theory, Fulton defines a Chern class as a linear operator:

Definition 4.2. Let X be a proper variety, and E a vector bundle on X . The r-th Chern class of E
is a linear operator

cr(E) : Ak(X)→ Ak−r(X).

Definition 4.3. Two cycles Z1 and Z2 on X are numerically equivalent if for every weight k
monomial p in Chern classes of vector bundles, one has

deg(P · Z1) = deg(P · Z2).

This defines a pairing between weight k-Chern classes and cycles of dimension k.

Definition 4.4. Nk(X)Z = Ak(X)/ numerical equivalence .

Definition 4.5. The finitely generated Abelian group Nk(X)Z is a lattice in the vector space
Nk(X) = Nk(X)Z ⊗ R.

Definition 4.6. The pseudo effective cone Effk(X) ⊂ Nk(X) is defined to be the closure of the
cone generated by cycles with nonnegative coefficients.

The cone Effk(X) is full dimensional, spanning the vector space Nk(X). It is pointed (contain-
ing no lines), closed, and convex.

Definition 4.7. Its dual of the vector space Nk(X) is:

Nk(X) = {R polynomials in weight k-Chern classes }/ ≡,

where equivalence ≡ is given by intersection with cycles.
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Definition 4.8. The Nef Cone Nefk(X) ⊂ Nk(X) is the cone dual to Effk(X).

As the dual of Effk(X), the nef cone has all of the nice properties that Effk(X) does.

Example 4.9. By the definition given above, N1(X) = { first Chern classes }/ ≡, where ≡ is
defined by intersection with 1-cycles. This is the same as what you are used to seeing because if E
is any vector bundle, then c1(E) = c1(det(E)), and det(E) is a line bundle.

4.6. Cones of cycles of higher codimension. The pseudo-effective cone Effm(X) is the closure
of the cone generated by classes of m-dimensional subvarieties on a projective variety X. If X

is smooth, then one can define higher codimension analogues of cones of nef divisors by taking
Nefm(X) to be dual to Effm(X). Many properties held by these cones when m = 1 fail more
generally [Pet09, Voi10, DELV10, FL14]. To more accurately capture the properties of cones of
nef divisors, Fulger and Lehmann have introduced three sub-cones: the Pliant cone, the base-
point free cone, and the universally pseudoeffective cone. The smallest of these; the Pliant cone
Plm(X) ⊂ Nefm(X) is the closure of the cone generated by monomials in Schur classes of globally
generated vector bundles on X.

One can define sub-cones of Plm(M0,n) using Chern classes of vector bundles of coinvariants
defined from representations of vertex operator algebras satisfying certain properties. For instance,
there is a spanning set for Am(M0,n), given by such Chern classes of the simple affine VOA given
by sl2. In particular, all classes lie in the pliant cone.
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[MT15] Matilde Marcolli and Gonçalo Tabuada, From exceptional collections to motivic decompositions via
noncommutative motives, J. Reine Angew. Math. 701 (2015), 153–167. ↑

[MM14] Yuri I. Manin and Matilde Marcolli, Big Bang, blowup, and modular curves: algebraic geometry in
cosmology, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 073, 20. ↑

[Mum83] David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and
geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. ↑15
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