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Motivation



Cryptography sightings
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Cryptography sightings

Secure websites are protected using cryptography

• Encryption – confidentiality of messages

• Digital signature – authentication

• Certificates – verify identity
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Cryptography sightings

Secure websites are protected using cryptography

• Encryption – confidentiality of messages

• Digital signature – authentication

• Certificates – verify identity

Security is quantified by the resources it takes to 
break a cryptosystem

• Best known cryptanalysis

• Cost of implementing the cryptanalysis
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Cryptography at NIST

Cryptographic Standards

• Hash functions

• Encryption schemes

• Digital signatures

• …
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Cryptography at NIST

Cryptographic Standards

• Hash functions

• Encryption schemes

• Digital signatures

• …

Example
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Present threat

Some current NIST standards are vulnerable to quantum threat.

Peter Shor (1994):  polynomial-time quantum algorithm that breaks
• Integer factorization problem (RSA)

• Discrete logarithm problem (Diffie-Hellman Key Exchange, Elliptic Curve DH, …)

• Impact: a full-scale quantum computer can break today’s public key crypto

Options for mitigating the threat

• Stop using public key crypto not practical

• Find quantum-safe public key crypto
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NIST PQC Standardization effort

Call for public key cryptographic schemes believed to be quantum-resistant (2016)

• Received 80+ submissions (2017)

• Only 15 submissions are still under consideration (2022)

• Code-based algorithms

• Round 2: BIKE, Classic McEliece*, HQC, LEDAcrypt**, NTS-KEM*

• Round 3: BIKE, Classic McEliece, HQC

*merged during Round 2 

** broken [APRS2020]
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Background
Error-correcting codes



Noisy channels

Messages are sent over various channels
• Analog

• Compact disks, DVDs
• Radio
• Telephone

• Digital

Environmental noise can distort or alter the message before it is received 
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Error-correcting codes

Noisy channel𝑢 𝑢 + 𝑒

Error-detecting and error-correcting 
codes are designed to locate and 
remove noise from messages 
received over noisy channels
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Error-correcting codes

Noisy channel𝑢 𝑢 + 𝑒

Error-detecting and error-correcting 
codes are designed to locate and 
remove noise from messages 
received over noisy channels

This is accomplished by adding some extra bits to the message before transmission that 
will enable error-detection and error-correction
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Error-correcting codes

Noisy channel

𝑢 𝑢 + 𝑒

Error-detecting and error-correcting 
codes are designed to locate and 
remove noise from messages 
received over noisy channels

This is accomplished by adding some extra bits to the message before transmission that 
will enable error-detection and error-correction

Example: Repetition code.  Consider message 1001001

1001001 1001001 1001001 1001101 1001001 0001001

Noisy channel
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Repetition code

Example: Repetition code.  Consider message 1001001

1. Sender sends 3 copies of the message

2. Receiver decodes by taking most frequent bit for each position

Noisy channel1001001 1001001 1001001 1001101 1001001 0001001
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Repetition code

Example: Repetition code.  Consider message 1001001

1. Sender sends 3 copies of the message

2. Receiver decodes by taking most frequent bit for each position

Noisy channel1001001 1001001 1001001 1001101 1001001 0001001

1001101

1001001

0001001
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Repetition code

Example: Repetition code.  Consider message 1001001

1. Sender sends 3 copies of the message

2. Receiver decodes by taking most frequent bit for each position

3. Receiver recovers 1001001

Disadvantages?

Noisy channel1001001 1001001 1001001 1001101 1001001 0001001

1001101

1001001

0001001
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Error-correcting codes

Noisy channel𝑢 𝑢 + 𝑒

Error-detecting and error-correcting 
codes are designed to locate and 
remove noise from messages 
received over noisy channels

This is accomplished by adding some extra bits to the message before transmission that 
will enable error-detection and error-correction

𝑢

Encode 𝑢

Codeword 𝑐 Noisy channel 𝑐 + 𝑒 Error-correction 𝑐 𝑢

Decode
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Recover 
message



Definitions

Definition:  a vector space over a field 𝔽 consists of a set 𝑉 (of vectors) and a set 𝔽 (of scalars) 

along with operations + and ∙ such that

• If 𝑥, 𝑦 ∈ 𝑉, then 𝑥 + 𝑦 ∈ 𝑉

• If 𝑥 ∈ 𝑉 and 𝛼 ∈ 𝔽, then 𝛼 ∙ 𝑥 ∈ 𝑉
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Definitions

Definition:  a vector space over a field 𝔽 consists of a set 𝑉 (of vectors) and a set 𝔽 (of scalars) 

along with operations + and ∙ such that

• If 𝑥, 𝑦 ∈ 𝑉, then 𝑥 + 𝑦 ∈ 𝑉

• If 𝑥 ∈ 𝑉 and 𝛼 ∈ 𝔽, then 𝛼 ∙ 𝑥 ∈ 𝑉

Definition: Let 𝑉 be a vector space.  A linearly independent spanning set 𝐵 for 𝑉 is called a basis.

Definition: The dimension of a vector space is the cardinality of its bases 

BRIDGES Conference - June 7, 2022 20



Definitions

Definition:  a vector space over a field 𝔽 consists of a set 𝑉 (of vectors) and a set 𝔽 (of scalars) 
along with operations + and ∙ such that

• If 𝑥, 𝑦 ∈ 𝑉, then 𝑥 + 𝑦 ∈ 𝑉

• If 𝑥 ∈ 𝑉 and 𝛼 ∈ 𝔽, then 𝛼 ∙ 𝑥 ∈ 𝑉

Definition: Let 𝑉 be a vector space.  A linearly independent spanning set 𝐵 for 𝑉 is called a basis.

Definition: The dimension of a vector space is the cardinality of its bases 

Example:  ℝ3 is a vector space, 𝐵 = {1 0 0, 0 1 0 , 0 0 1} is the standard basis for ℝ3

dim(ℝ3) = 3.
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Definitions

𝔽2 - finite field of two elements

denote the additive identity by 0

denote the multiplicative identity by 1

𝔽2
𝑛 - vector space over 𝔽2

elements are vectors of length 𝑛 whose components are from 𝔽2

standard basis: ൞

1 0 0 0 …0
0 1 0 0 …0

⋮
0 0 0 0 …1

scalars 0, 1
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Binary linear code

𝑢 Redundancy 

Length 𝑘 Length 𝑛 − 𝑘

Definition:  a binary linear code 𝐶 𝑛, 𝑘 is 
a 𝑘-dimensional subspace of 𝔽2

𝑛 .

The code 𝐶: 𝔽2
𝑘 → 𝔽2

𝑛 maps information 
vectors to codewords 

BRIDGES Conference - June 7, 2022 23



Binary linear code

𝑢 Redundancy 

Length 𝑘 Length 𝑛 − 𝑘

Definition:  a binary linear code 𝐶 𝑛, 𝑘 is 
a 𝑘-dimensional subspace of 𝔽2

𝑛 .

The code 𝐶: 𝔽2
𝑘 → 𝔽2

𝑛 maps information 
vectors to codewords 

How do we describe a code?
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Binary linear code

𝑢 Redundancy 

Length 𝑘 Length 𝑛 − 𝑘

Definition:  a binary linear code 𝐶 𝑛, 𝑘 is 
a 𝑘-dimensional subspace of 𝔽2

𝑛 .

The code 𝐶: 𝔽2
𝑘 → 𝔽2

𝑛 maps information 
vectors to codewords 

How do we describe a code?

1. Select a basis of the 𝑘-dim vector space 𝑔0, 𝑔1, … , 𝑔𝑘−1

2. Basis forms a generator matrix 𝑮𝒌×𝒏 of the code 
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𝐺 =

𝑔0,0 ⋯ 𝑔0,𝑛−1
⋮ ⋱ ⋮

𝑔𝑘−1,0 ⋯ 𝑔𝑘−1,𝑛−1



Descriptions of a code 𝐶(𝑛, 𝑘)

Two equivalent descriptions of 𝐶(𝑛, 𝑘)

• Generator matrix

• Encoding: multiply 𝑘-bit information word 𝑢 by 𝐺

• codewords are 𝑥 such that there's a solution 𝑢 to 𝑢𝐺 = 𝑥

𝑢

Encode 𝑢

𝑢𝐺 is codeword 𝑐
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Descriptions of a code 𝐶(𝑛, 𝑘)

Two equivalent descriptions of 𝐶(𝑛, 𝑘)

• Generator matrix

• Encoding: multiply 𝑘-bit information word 𝑢 by 𝐺

• codewords are 𝑥 such that there's a solution 𝑢 to 𝑢𝐺 = 𝑥

• Parity-check matrix 𝐻 (dimension (𝑛 − 𝑘) 𝑥 𝑛)

• 𝐺𝐻𝑇 = 0

• codewords are 𝑥 such that 𝐻𝑥𝑇 = 0

• Product of generic 𝑛-bit vector with 𝐻𝑇 is called a syndrome

𝑢

Encode 𝑢

𝑢𝐺 is codeword 𝑐
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Descriptions of a code 𝐶(𝑛, 𝑘)

Parity-check matrix 𝐻 (dimension (𝑛 − 𝑘) 𝑥 𝑛)

• 𝐺𝐻𝑇 = 0

• codewords are 𝑥 such that 𝐻𝑥𝑇 = 0

• Product of generic 𝑛-bit vector with 𝐻𝑇 is called a syndrome

Example: Let 𝐻, 𝑥1, 𝑥2 be as follows.
𝐻 =

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

𝑥1 = 0 0 1 0 0 1

𝑥2 = 1 0 1 0 1 0
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Descriptions of a code 𝐶(𝑛, 𝑘)

Parity-check matrix 𝐻 (dimension (𝑛 − 𝑘) 𝑥 𝑛)

• 𝐺𝐻𝑇 = 0

• codewords are 𝑥 such that 𝐻𝑥𝑇 = 0

• Product of generic 𝑛-bit vector with 𝐻𝑇 is called a syndrome

Example: Let 𝐻, 𝑥1, 𝑥2 be as follows.
𝐻 =

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

𝑥1 = 0 0 1 0 0 1

𝑥2 = 1 0 1 0 1 0

𝐻𝑥1
𝑇 =

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

0
0
1
0
0
1

= 
0
1
0
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Descriptions of a code 𝐶(𝑛, 𝑘)

Parity-check matrix 𝐻 (dimension (𝑛 − 𝑘) 𝑥 𝑛)

• 𝐺𝐻𝑇 = 0

• codewords are 𝑥 such that 𝐻𝑥𝑇 = 0

• Product of generic 𝑛-bit vector with 𝐻𝑇 is called a syndrome

Example: Let 𝐻, 𝑥1, 𝑥2 be as follows.
𝐻 =

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

𝑥1 = 0 0 1 0 0 1

𝑥2 = 1 0 1 0 1 0

𝐻𝑥1
𝑇 =

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

0
0
1
0
0
1

= 
0
1
0

Syndrome is nonzero, so 𝑥1 is not in 
the code defined by 𝐻.
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Error correction

Definition: A linear 𝑛, 𝑘, 𝑑 -code 𝐶 over a finite field 𝔽 is a 𝑘-dimensional 

subspace of 𝔽𝑛 with minimum distance 𝑑 = 𝑚𝑖𝑛𝑥≠𝑦𝜖𝐶𝑑𝑖𝑠𝑡(𝑥, 𝑦), where 

𝑑𝑖𝑠𝑡 is the Hamming distance. 
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Error correction

Definition: A linear 𝑛, 𝑘, 𝑑 -code 𝐶 over a finite field 𝔽 is a 𝑘-dimensional 

subspace of 𝔽𝑛 with minimum distance 𝑑 = 𝑚𝑖𝑛𝑥≠𝑦𝜖𝐶𝑑𝑖𝑠𝑡(𝑥, 𝑦), where 

𝑑𝑖𝑠𝑡 is the Hamming distance. 

Theorem.

A linear 𝑛, 𝑘, 𝑑 -code 𝐶 can correct up to 𝑡 =
𝑑−1

2
errors.
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𝑑

𝑡

Please excuse visual imperfections



Visual recap

Generator matrix formed by basis vectors

Code is closed under addition, scalar multiplication

BRIDGES Conference - June 7, 2022 33

𝑔0

𝑔1



Hard problems



Decoding problems

General Decoding Problem

Given 𝑥𝜖𝔽𝑛, find 𝑐𝜖𝐶 such that 𝑑𝑖𝑠𝑡(𝑥, 𝑐) is minimal.  
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Decoding problems

General Decoding Problem: Given an [𝑛, 𝑘, 𝑑] linear code 𝐶, 𝑡 =
𝑑−1

2
, and 

a vector 𝑥𝜖𝔽𝑛, find a codeword 𝑐𝜖𝐶 such that 𝑑𝑖𝑠𝑡(𝑥, 𝑐) ≤ 𝑡.  

Note: If 𝑥 = 𝑐 + 𝑒, and 𝑒 is a vector with |𝑒| ≤ 𝑡, then 𝑥 is uniquely 

determined.

Shown to be NP-complete for general linear codes in 1978 (Berlekamp, McEliece, 

Tilborg) by reducing the three-dimensional matching problem to these problems.
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Decoding problems

General Decoding Problem: Given an [𝑛, 𝑘, 𝑑] linear code 𝐶, 𝑡 =
𝑑−1

2
, and 

a vector 𝑥𝜖𝔽𝑛, find a codeword 𝑐𝜖𝐶 such that 𝑑𝑖𝑠𝑡(𝑥, 𝑐) ≤ 𝑡.  

Note: If 𝑥 = 𝑐 + 𝑒, and 𝑒 is a vector with |𝑒| ≤ 𝑡, then 𝑥 is uniquely 

determined.

Shown to be NP-complete for general linear codes in 1978 (Berlekamp, McEliece, 

Tilborg) by reducing the three-dimensional matching problem to these problems.
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𝑐

𝑒

𝒙 = 𝒄 + 𝒆

Please excuse visual imperfections

Ball of radius 𝑡

Note:  Not all codes have a minimum distance 𝑑.  
Rewrite problems in terms of linear (𝑛, 𝑘) codes.



Decoding problems

Let 𝐶 𝑛, 𝑘 be a linear code over finite field 𝔽.

General decoding problem 

Given a vector x ∈ 𝔽𝑛 , a target weight 𝑡 > 0,

find a codeword c ∈ 𝔽𝑛 such that dist 𝑥, 𝑐 ≤ 𝑡.
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Decoding problems

Let 𝐶 𝑛, 𝑘 be a linear code over finite field 𝔽.

General decoding problem 

Given a vector x ∈ 𝔽𝑛 , a target weight 𝑡 > 0,

find a codeword c ∈ 𝔽𝑛 such that dist 𝑥, 𝑐 ≤ 𝑡.

Syndrome-decoding problem.

Given a parity check matrix H ∈ 𝔽
(𝑛−𝑘)×𝑛

,  a syndrome s ∈ 𝔽𝑛−𝑘, a target weight 𝑡 > 0,

find a vector e ∈ 𝔽𝑛 such that 𝑤𝑡 𝑒 = 𝑡 and 𝐻 ∙ 𝑒𝑇 = 𝑠 .

Codeword-finding problem

Given a parity check matrix H ∈ 𝔽
𝑛−𝑘 ×𝑛

and a target weight w > 0

find a vector e ∈ 𝐺𝐹2
𝑛 such that 𝑤𝑡 𝑒 = 𝑤 and 𝐻 ∙ 𝑒𝑇 = 0.
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Relevance

In general, code-based cryptosystems rely upon this property:

• Encryption (some sort of matrix-vector product) is easy to compute

• Decryption is difficult without the trapdoor (the secret key which 

enables efficient decoding)
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McEliece Cryptosystem



McEliece cryptosystem

First code-based cryptosystem.

Designed by Robert McEliece, presented in 1978.
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McEliece cryptosystem

First code-based cryptosystem.

Designed by Robert McEliece, presented in 1978.

Idea: “hide” a message by converting it into a codeword, then add as many errors 
as the code is capable of correcting

Let 𝐶[𝑛, 𝑘, 𝑑] be a linear code with a fast decoding algorithm that can correct 𝑡 or 
fewer errors

• Let 𝐺’ be a generator matrix for 𝐶

• Let 𝑆 be a 𝑘 × 𝑘 invertible matrix

• Let 𝑃 be an 𝑛 × 𝑛 permutation matrix
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McEliece cryptosystem

Let 𝐶[𝑛, 𝑘, 𝑑] be a linear code with a fast decoding algorithm that can 
correct 𝑡 or fewer errors

• Let 𝐺’ be a generator matrix for 𝐶

• Let 𝑆 be a 𝑘 × 𝑘 invertible matrix

• Let 𝑃 be an 𝑛 × 𝑛 permutation matrix

Define public key 𝐺 = 𝑆𝐺’𝑃 with private key 𝑆, 𝐺’, 𝑃
• Encrypt: 𝑚 → 𝑚𝐺 + 𝑒, 𝑤𝑡 𝑒 ≤ 𝑡

• Decrypt: 

1. Multiply 𝑚𝐺 + 𝑒 𝑃−1 = 𝑚𝑆𝐺′ + 𝑒′

𝑤𝑡 𝑒 = 𝑤𝑡(𝑒′)
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McEliece cryptosystem

Let 𝐶[𝑛, 𝑘, 𝑑] be a linear code with a fast decoding algorithm that can correct 𝑡 or fewer errors
• Let 𝐺’ be a generator matrix for 𝐶

• Let 𝑆 be a 𝑘 × 𝑘 invertible matrix

• Let 𝑃 be an 𝑛 × 𝑛 permutation matrix

Define public key 𝐺 = 𝑆𝐺’𝑃 with private key 𝑆, 𝐺’, 𝑃

Encrypt: 𝑚 → 𝑚𝐺 + 𝑒, 𝑤𝑡 𝑒 ≤ 𝑡

Decrypt: 

1. Multiply 𝑚𝐺 + 𝑒 𝑃−1 = 𝑚𝑆𝐺′ + 𝑒′

2. 𝑚𝑆𝐺′ + 𝑒′ 𝑚𝑆𝐺′

3. Multiply on the right by 𝐺′−1, then by 𝑆−1to recover 𝑚

Fast decoding algorithm

𝑤𝑡 𝑒 = 𝑤𝑡(𝑒′)
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Example
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McEliece using (7,4) Hamming Code

𝐺 =

1 0 0
0 1 0

0 1 1 0
0 1 0 1

0 0 1
0 0 0

0 0 1 1
1 1 1 1

http://www-math.ucdenver.edu/~wcherowi/courses/m5410/ctcmcel.html
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Illustrate McEliece cryptosystem using (7,4) Hamming Code

𝐺 =

1 0 0
0 1 0

0 1 1 0
0 1 0 1

0 0 1
0 0 0

0 0 1 1
1 1 1 1

Secret scrambler and permutation matrices 𝑆, 𝑃 chosen as

𝑆 =

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

and 𝑃 =

0 1 0
0 0 0
0 0 0

0 0 0 0
1 0 0 0
0 0 0 1

1 0 0
0 0 1
0
0

0
0

0
0

0 0 0 0
0 0 0 0
0
0

0
1

1
0

0
0

http://www-math.ucdenver.edu/~wcherowi/courses/m5410/ctcmcel.html
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Illustrate McEliece cryptosystem using (7,4) Hamming Code

𝐺 =

1 0 0
0 1 0

0 1 1 0
0 1 0 1

0 0 1
0 0 0

0 0 1 1
1 1 1 1

Secret scrambler and permutation matrices 𝑆, 𝑃 chosen as

𝑆 =

1 1
1 0

0 1
0 1

0 1
1 1

1 1
0 0

and 𝑃 =

0 1 0
0 0 0
0 0 0

0 0 0 0
1 0 0 0
0 0 0 1

1 0 0
0 0 1
0
0

0
0

0
0

0 0 0 0
0 0 0 0
0
0

0
1

1
0

0
0

Then the public generator matrix 𝐺′ = 𝑆𝐺𝑃 =

1 1 1
1 1 0

1 0 0 0
0 1 0 0

1 0 0
0 1 0

1 1 0 1
1 1 1 0http://www-math.ucdenver.edu/~wcherowi/courses/m5410/ctcmcel.html



Encrypt

Suppose Alice wishes to send message 𝑢 = 1 1 0 1 to Bob

1. Alice constructs a weight 1 error vector, say 𝑒 = 0 0 0 0 1 0 0

2. Alice computes 𝑢𝐺′ + 𝑒 = 0 1 1 0 0 1 0 + 0 0 0 0 1 0 0

= 0 1 1 0 1 1 0

Alice sends ciphertext 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟎 to Bob
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Decrypt

1. Bob multiplies the ciphertext on the right by 𝑃−1: 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟎

0 0 0
1 0 0
0 0 0

1 0 0 0
0 0 0 0
0 1 0 0

0 1 0
0 0 0
0
0

0
0

0
1

0 0 0 0
0 0 0 1
0
0

0
0

1
0

0
0

2. Bob takes the result 1 0 0 0 1 1 1 and uses fast decoding algorithm to remove the single bit 

of error

3. Bob takes the resulting codeword 1 0 0 0 1 1 0

• Knows that there is some 𝑥 that satisfies x𝐺 = 𝑥

1 0 0
0 1 0

0 1 1 0
0 1 0 1

0 0 1
0 0 0

0 0 1 1
1 1 1 1

= 1 0 0 0 1 1 0

• Equivalently knows that x𝑆 = 1 0 0 0, so multiplying on the right by 𝑆−1 yields 1 1 0 1
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McEliece cryptosystem

Idea: “hide” a message by converting it into a codeword, then adding 

as many errors as the code is capable of correcting

Underlying code: McEliece used Goppa codes 

• Efficient decoding

• Scrambled public key 𝐺 = 𝑆𝐺’𝑃 is indistinguishable from random codes

• Public key ≈ a few megabits
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McEliece cryptosystem

Idea: “hide” a message by converting it into a codeword, then adding 
as many errors as the code is capable of correcting

Underlying code: McEliece used Goppa codes 
• Efficient decoding

• Scrambled public key 𝐺 = 𝑆𝐺’𝑃 is indistinguishable from random codes

• Public key ≈ a few megabits (219)
• Typical RSA key sizes are 1,024 or 2,048 or 4,096 bits

• ECDH key sizes are roughly 256 or 512 bits 
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Trapdoor

NP-completeness of decoding problem does not indicate cryptographic 

security for concrete instances

Private key 𝑆, 𝐺’, 𝑃 turn out to be trapdoors (𝐺 = 𝑆𝐺’𝑃 )

Encryption: 𝑚𝐺 + 𝑒 easy to compute

Decryption difficult without 𝑆, 𝐺’, 𝑃

Best known algorithm to solve decoding problems: Information Set 

Decoding (Prange, 1962)
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