Question 1. Suppose \(G \) is a group.

1. Suppose \(N \) is a normal subgroup of \(G \) and \(G \) is finitely generated. Then the quotient group \(G/N \) is also finitely generated.

2. If \(N \) is normal in \(G \) with both \(N \) and \(G/N \) finitely generated. Then \(G \) is finitely generated.

3. If \(H \leq G \) a subgroup of a group \(G \), with \(H \) finite index, then \(H \) finitely generated if and only if \(G \) is. The only if is easier to prove using geometry!

Question 2. Suppose \(G \) is a finitely generated group. Show that for any two finite (may as well assume symmetric) generating sets \(S, T \), that \(C(G, S) \) is QI to \(C(G, T) \).

Question 3. Show that the composition of two QI’s is a QI and that QI is an equivalence relation on metric spaces.

Question 4. Verify what I said about \(T_3 \) and \(T_4 \) being QI and show that \(T_m \) is QI to \(T_n \) for any \(m \neq n \) both greater than or equal to 3.

Question 5. Suppose \(\phi : \Gamma_1 \to \Gamma_2 \) is a homomorphism between finitely generated groups. Show that if \(\phi \) is a quasi-isometric embedding then \(\ker(\phi) \) is finite and that \(\phi \) is a quasi-isometry if and only if \(\ker(\phi) \) and \(\Gamma_2/\im(\phi) \) are both finite.

Question 6. Think about why \(F_2 \) and \(\mathbb{Z}_2 \) cannot be quasi-isometric. I am not asking you to write a proof of this - you need some machinery to write a real proof - but can you ”explain” why they shouldn’t be?