MATH 980 Sample Final Exam

- 1.) Solve the following equations.
 - a.) 3x 4 = -2x + 11
 - $b.) \quad 5+2|2x-1| = 27$
 - c.) $\log_2 x = 3$ d.) $\frac{1}{2}x + 2 = \frac{1}{3}x$
- 2.) Graph 2x + y = 4
- 3.) Graph x = -3
- 4.) Graph the function $f(x) = 2^x$
- 5.) Graph the function $f(x) = \log_2(x)$
- 6.) Write the equation of the line with a slope of -3 that passes through the point (-11, 4). Give your answer in slope-intercept form, y = mx + b.
- 7.) The difference of five times a number and twelve is three. Find the number.
- 8.) Solve the following system using the substitution method. Show clear work and write your answer as an ordered pair.

$$-3x + 2y = -7$$
$$2x + y = 7$$

- 9.) Solve 9pr + n = 3t for r.
- 10.) What number is 2.5% of 96?
- 11.) Solve the following inequalities. Graph the solution on a number line, and give interval notation for the answer.
 - a.) $-8 \le 3x 5 < 13$
 - b.) 5-x > 4 or $2x 4 \ge 2$
- 12.) Find the slope of the line that passes through the points (4, -7) and (-1, 3).
- 13.) A city had a population of 6000 people in 2016 and 8400 people in 2020. Find the rate of change, in people per year, of the city's population change.
- 14.) Graph the inequality $y > \frac{1}{2}x 3$.

- 15.) Andres buys a used car for \$8500. The car depreciates at a rate of 9% per year. What will the value of the car be in 6 years? Round to the nearest cent. Use the formula $V = P(1-r)^t$.
- 16.) Solve the equation $5^{3x+1} = \frac{1}{25}$.
- 17.) Given the function $f(x) = 2x^2 5x 3$, calculate f(-3).
- 18.) The sum of two consecutive odd integers is 464. Find the integers.
- 19.) The admission fee for a concert is \$6 for children, and \$10 for adults. If 162 tickets were sold, and the admission fees collected totaled \$1412, how many children and how many adults were admitted?
- 20.) Simplify the following expressions completely.
 - a.) $x^6 x^7$
 - $b.) (y^3)^6$
 - c.) z^0
- 21.) Rewrite the equation $b^a = c$ in logarithmic form.

Solutions to MATH 980 Sample Final Exam

6.) y = -3x + b. If x = -11 and y = 4, then 4 = 33 + b, so b = -29, and thus, y=-3x-29. 7.) 5x - 12 = 3, so 5x = 15 and x = 3. 8.) $2x+y=7 \Rightarrow y=7-2x$. $-3x+2y = -7 \Rightarrow -3x+2(7-2x) = -7$ $\Rightarrow -3x+14-4x=-7$ ⇒ -7x=-21 ⇒ x=3. $2x+y=7 \Rightarrow 2(3)+y=7 \Rightarrow y=1.$ So (x,y) = (3,1). 9.) 9pr=3t-n, so $r=\frac{3t-n}{90}$. $10.) \frac{25}{1000} \cdot 96 = \frac{25}{4(250)} \cdot 4(24) = \frac{1}{100} 24 = 2.4$

16.)
$$5^{3x+1} = 5^{-2}$$
 so $3x+1 = -2$.
Hence, $3x = -3$, so $x = -1$.
17.) $f(-3) = 2(-3)^2 - 5(-3) - 3$
 $= 2(9) + 15 - 3$
 $= 18 + 12$
 $= 30$
18.) $(x) + (x+2) = 464$. Thus, $2x+2 = 464$
so $2x = 462$ and $x = \frac{462}{2} = 231$.
so $(x) = 231$ and $(x+2) = 233$ are the
consecutive odd integers.
19.) $6c + 10a = 1,412$ and $c+a = 162$.
So $c = 162 - a \Rightarrow 6(162 - a) + 10a = 1,412$.
 $\Rightarrow 972 + 4a = 1,412$
 $\Rightarrow 4a = 440$
 $\Rightarrow a = 110$
 $c+a = 162 \Rightarrow c + 110 = 162 \Rightarrow c = 52$
 110 adults and 52 children.

20.) a.)
$$x^{6}x^{7} = x^{6+7} = x^{13}$$

b.) $(y^{3})^{6} = y^{3\cdot6} = y^{18}$
c.) $z^{0} = 1$