## MATH 1010 Sample Final Exam

- 1.) Solve the following equations.
  - a.)  $1 + \sqrt{3x + 1} = 5$
  - b.)  $x^2 + 15 = 8x$
  - c.)  $21 = 7 \cdot 4^x$
  - $d.) \quad \log_5(3x) = 2$

2.) Solve the following system of equations. Write the answer as an ordered pair.

$$y = -4 - 2x$$
$$x + 3y = 3$$

- 3.) Let  $f(x) = 2^x 8$ . Give the *y*-intercept as an ordered pair, and graph f.
- 4.) Graph the equation 2y + 5x = 10.
- 5.) Simplify the following expression so that each variable occurs at most once and all exponents are positive. (Assume that all variables are positive.)

$$\frac{\left(x^{\frac{2}{5}}\right)^4 w^0}{x^{-\frac{7}{5}} y^6 y^2}$$

- 6.) Rewrite  $x^2 + 6x + 10$  in completed square form.
- 7.) Let  $f(x) = x^2 4x + 3$ . Find the *x*-intercepts of *f*. What is the vertex of *f*? Write your answers as ordered pairs. Sketch the graph of *f*.
- 8.) Simplify  $\sqrt{81x^8y^9}$  by removing all square factors from the square root. (Assume that all variables are positive.)
- 9.) Two functions are given: f(x) = 3x 1 and  $g(x) = x^2 + 4$ .
  - a.) Find  $(g \circ f)(x)$ .
  - b.) Find  $f^{-1}(x)$ .
- 10.) The population of Ogden was 87,000 people in 2020. It is increasing by 1000 people every **two** years.
  - a.) Let P(x) be the population of Ogden x years after 2020. Write the algebraic rule for P(x).
  - b.) In which year will the population reach 90,000 people?

- 11.) A bicycle currently costs \$300. Due to inflation, its price is increasing by 8% per year. Let f(x) be the price of bicycle x years from now. Select the type of function we can use to best model this situation.
  - $\bigcirc f(x) = mx + b$
  - $\bigcirc f(x) = ax^2 + bx + c$
  - $\bigcirc f(x) = \sqrt{x}$
  - $\bigcirc f(x) = a \cdot b^x$
  - $\bigcirc f(x) = \log_b(x)$
- 12.) A dog jumps into the air. Let H(x) = -16x(x-2), where H(x) represents the dog's height in feet and x represent the time in seconds after the dog jumps. Assume that the dog begins all jumps at the point (0, 0).
  - a.) After the dog starts to jump, how many seconds does it take the dog to fall back to the ground? Give your answer in seconds.
  - $b.) \quad \mbox{According to our model, what is the highest the dog jumps? Give your answer in )$ feet.
- 13.) Given the graph of the function f below, find the following.



- a.) What is the domain of f? Write in interval notation.
- b.) What is f(0)?
- c.) Find the value(s) of x such that f(x) = 5.

Solutions to MATH 1010 Sample Final Exam

1.) a.) 
$$\sqrt{3x+1} = 4$$
, so  $3x+1=16$ , and  $3x=15$ .  
Hence,  $x = 5$ .  
b.)  $x^2 - 8x + 15 = 0$ , so  
 $x = \frac{8 \pm \sqrt{8^2 - 4(15)}}{2} = \frac{8 \pm \sqrt{4}}{2} = 4 \pm 1$   
Hence,  $x = 5$  or  $x = 3$ .  
c.)  $3 = 4^x$ , so  $\log_4(3) = x$ .  
d.)  $\log_5(3x) = 2$ , so  $3x = 5^2 = 25$ ,  
and  $x = \frac{25}{3}$ .  
2.)  $y = -4 - 2x$   
 $x + 3y = 3$   $\Rightarrow x + 3(-4 - 2x) = 3$   
 $\Rightarrow x - 12 - 6x = 3$   
 $\Rightarrow -5x = 15$   
 $\Rightarrow x = -3$   
 $y = -4 - 2x$   $\Rightarrow y = -4 - 2(-3) = 2$ .  
Thus,  $(x,y) = (-3,2)$ .

- 3.) y-intercept is where x=0, so  $f(o) = 2^{\circ} - 8 = 1 - 8 = -7$ . As an ordered pair, (x,y) = (0,-7).  $2^{\times} - 8$  -7 -7-8
- 4.) 2y = 10 5x, so  $y = 5 \frac{5}{2}x$ . Straight line, slope  $-\frac{5}{2}$ , y-intercept 5. 5.)  $\frac{x^{85} \cdot 1}{x^{-75} \cdot y^{8}} = \frac{x^{15/5}}{y^{8}} = \frac{x^{3}}{y^{8}}$

6.) 
$$x^{2} + 6x + 10 = (x + \frac{1}{2} 6)^{2} + 10 - \frac{6^{2}}{4}$$
  
=  $(x + 3)^{2} + 10 - \frac{36}{4}$   
=  $(x + 3)^{2} + 1$ 

7.) Quadratic formula gives the roots of  $x^2 - 4x + 3$  as

$$x = \frac{4 \pm \sqrt{4^2 - 4(3)}}{2} = \frac{4 \pm \sqrt{4}}{2} = 2 \pm 1$$

so x = 3 and x = 1 are the roots and x-intercepts: as ordered pairs, (3,0) and (1,0). The vertex is half-way between the roots, so at x=2. There,  $y=2^2-4(2)+3=-1$ , so (2,-1) is the vertex.

$$(1,0) = (3,0) = (2,-1)$$

8.)  $\sqrt{81 x^8 y^8} \sqrt{y^7} = 9x^4 y^4 \sqrt{y^7}$ 9.) a.)  $gof(x) = (3x-1)^2 + 4 = 9x^2 - 6x + 5$ b.)  $x = 3f^{-1}(x) - 1$  so  $x + 1 = 3f^{-1}(x)$  and  $f^{-1}(x) = \frac{x+1}{3}$ .

10.) Population increases by 500 each year.  
a.) 
$$P(x) = 87,000 + 500x$$
  
b.)  $90,000 = 87,000 + 500x$ , so  
 $3,000 = 500x$  and  $x = \frac{3,000}{500} = 6$   
Year is  $2020 + 6 = 2026$ .

11.) 
$$f(x) = a \cdot b^x$$
 is exponential growth.  
For this problem,  $f(x) = 300 \cdot (1.08)^x$ .

b.) vertex is at 
$$x=1$$
, where  
H(1) = -16(1-2) = 16 feet.

13.) a.) Domain is  $[-8, 2) \cup (2, 6]$ . b.) f(0) = 7c.) x = -4 only. (x=2 is not in the domain.)