
Notes for Math 208 (02) Uwe F. Mayer 25 February 1999

1. Linearity and its consequences

We are interested in solving a linear nth-order differential equation with continuous coefficients
and continuous right-hand side, that is

y(n) + p1(t)y(n−1) + p2(t)y(n−2) + · · ·+ pn−1(t)y′ + pn(t)y = g(t) .(1.1)

If g(t) is not identically zero, then this equation is said to be inhomogeneous; if g(t) is identically
zero, then this equation is called homogeneous. If we have an inhomogeneous equation like (1.1)
then we will associate with the homogeneous equation one obtains if one replaces the right-hand
side with zero, that is

y(n) + p1(t)y(n−1) + p2(t)y(n−2) + · · ·+ pn−1(t)y′ + pn(t)y = 0 .(1.2)

We will now call the left-hand side of (1.1) or (1.2) L[y]. In other words, L is a transformation
into which we plug in a function y and which returns the function L[y] = y(n) + p1(t)y(n−1) +
p2(t)y(n−2) + · · ·+ pn−1(t)y′ + pn(t)y. It can easily be seen that L is a linear transformation, that
is, L satisfies the following two properties:

1. L[y1 + y2] = L[y1] + L[y2] for any pair of functions y1 and y2 ,
2. L[αy] = αL[y] for any function y and any scalar α .

Proof.

L[y1 + y2] = (y1 + y2)(n) + p1(t)(y1 + y2)(n−1) + p2(t)(y1 + y2)(n−2) + · · ·
+pn−1(t)(y1 + y2)′ + pn(t)(y1 + y2)

= (y(n)
1 + y

(n)
2 ) + p1(t)(y(n−1)

1 + y
(n−1)
2 ) + p2(t)(y(n−2)

1 + y
(n−1)
2 ) + · · ·

+pn−1(t)(y′1 + y′2) + pn(t)(y1 + y2)

= y
(n)
1 + p1(t)y(n−1)

1 + p2(t)y(n−2)
1 + · · ·+ pn−1(t)y′1 + pn(t)y1

+y(n)
2 + p1(t)y(n−1)

2 + p2(t)y(n−2)
2 + · · ·+ pn−1(t)y′2 + pn(t)y2

= L[y1] + L[y2]

L[αy] = (αy)(n) + p1(t)(αy)(n−1) + p2(t)(αy)(n−2) + · · ·+ pn−1(t)(αy)′ + pn(t)(αy)

= αy(n) + αp1(t)y(n−1) + αp2(t)y(n−2) + · · ·+ αpn−1(t)y′ + αpn(t)y

= αL[y]

Consequences of this are listed below.

1. If y1 and y2 satisfy the homogeneous equation (1.2) and if α and β are any numbers, then
αy1 + βy2 also satisfies the homogeneous equation (1.2).

Proof. y solving (1.2) is the same as saying L[y] = 0. Thus if y1 and y2 solve (1.2), we have
L[y1] = 0 and L[y2] = 0. The linearity of L now yields L[αy1 + βy2] = αL[y1] + βL[y2] =
α0 + β0 = 0.

2. If y1 and y2 satisfy the inhomogeneous equation (1.1), then y1− y2 satisfies the homogeneous
equation (1.2).
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Proof. y solving (1.1) is the same as saying L[y] = g. Thus if y1 and y2 solve (1.1), we have
L[y1] = g and L[y2] = g. The linearity of L now yields L[y1−y2] = L[y1]−L[y2] = g−g = 0.

3. If y1 satisfies the inhomogeneous equation (1.1) and y2 satisfies the homogeneous equation
(1.2) and if α is any number, then y1 + αy2 also solves the inhomogeneous equation (1.1).

Proof. We have L[y1] = g and L[y2] = 0. The linearity of L now yields L[y1 + αy2] =
L[y1] + αL[y2] = g + α0 = g.

The upshot of this all is, that if we find just one solution of the inhomogeneous equation and all
solutions to the homogeneous equation, then we get all solutions of the inhomogeneous equation
as well by simply adding all solutions of the homogeneous equation to the one solution of the
inhomogeneous equation. This is so, because we have seen that any two solutions to the inhomo-
geneous equation differ by a solution to the homogeneous equation (this is exactly what 2. from
above states), and because adding a solution of the inhomogeneous equation and a solution of the
homogeneous equation produces a solution of the inhomogeneous equation (this is exactly what 3.
from above states).

An Example. We want to find all solutions for the inhomogeneous equation

y′′ + y = t .

The associated homogeneous equation is

y′′ + y = 0 .

It can be shown (see your homework from this week) that the general solution to the homogeneous
equation is given by

yh = C1 sin t+ C2 cos t .

Furthermore, it is easy to guess that y = t is a solution for the inhomogeneous equation. Hence all
solutions for the inhomogeneous are given by

y = t+ C1 sin t+ C2 cos t .

2. Transformation into a system

We introduce new variables to get rewrite the nth order differential equation into a system of n
first order differential equations. We let

u1 = y, u2 = y′, u3 = y′′, . . . , un = y(n−1),

and we rewrite the inhomogeneous equation (1.1) as

u′1 = u2 ,

u′2 = u3 ,

· · ·
u′n−1 = un ,

u′n = −p1(t)un−1 − p2(t)un−2 − · · · − pn−1(t)u2 − pn(t)u1 + g(t) .
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If we now introduce vector notation, that is

x =


u1

u2

:
un−1

un

 , b =


0
0
:
0
g(t)

 , A =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
: : : : · · · :
0 0 0 0 · · · 1
−pn −pn−1 −pn−2 −pn−3 · · · −p1

 .

then this system can very compactly be rewritten as

x′ = Ax + b ,(2.1)

where x and b are vectors depending on time t, and A is a n× n matrix depending on time t. Of
course, if we start with a homogeneous equation (1.2) we have b = 0 and we get a simpler system

x′ = Ax .(2.2)

For further use we note

x =


y

y′

:
y(n−2)

y(n−1)

 .(2.3)

Using this it is fairly straight-forward to see that if we have a solution to the inhomogeneous ODE
(1.1), we can define x as above, and we get a solution to the system (2.1). The converse is also
true, if we have a solution to the system (2.1), then we can define y to be the first component of x,
and we have a solution to (1.1). The same can be reasoned for the equivalence of solutions of the
homogeneous equation (1.2) and the reduced system (2.2).

Now we proceed to solve (2.1). For this we treat it as if it were a scalar first-order linear
differential equation, which we know how to solve. We simply bring all the x’s onto the left-hand
side, multiply through with the correct integrating factor, integrate, and solve for x. That is, we
solve

x′ −Ax = b

by multiply with the integrating factor e−
∫

A(t)dt. Notice that this is the exponential of a matrix,
which is itself a matrix. So we get

e−
∫

A(t)dtx′ −A(t)e−
∫

A(t)dtx = e−
∫

A(t)dtb(t) ,

which is (
e−
∫

A(t)dtx
)′

= e−
∫

A(t)dtb(t) .

We integrate to get

e−
∫

A(t)dtx =
∫
e−
∫

A(t)dtb(t) dt .

Finally we multiply by the inverse of the integrating factor, which of course is e
∫

A(t)dt, to get x
alone,

x = e
∫

A(t)dt

∫
e−
∫

A(t)dtb(t) dt .(2.4)
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Note that the integration gives an integration constant, which is a vector, so that the general
solution has a vector constant in it. That is to say, the general solution has n scalar constants in
it.

With definite integrals we can rewrite the formula as

x = e
∫ t
t0

A(s)ds
(∫ t

t0

e
−
∫ τ
t0

A(s)dsb(τ) dτ + x0

)
,(2.5)

and equation (2.5) gives the unique solution to

x′ = Ax + b , x(t0) = x0 .(2.6)

Here x0 is the initial condition, that is, x0 = (y0, y1, . . . , yn−1) is an arbitrary vector in n-space.
Recalling the relationship (2.3) between the vector x and the function y solving our original
problem (1.1) we see that the initial condition x(t0) = x0 can be read as y(t0) = y0, y

′(t0) =
y1, . . . , y

(n−1)(t0) = yn−1.
Finally, if we are dealing with the homogeneous equation then g(t) = 0, or equivalently b = 0,

and the formula is much easier, namely the general solution to (2.2) is given by

x = e
∫

A(t)dtc ,(2.7)

where c = (C1, C2, . . . , Cn)T is an arbitrary vector constant. Of course, we can also use the formula
with the definite integrals, and we obtain

x = e
∫ t
t0

A(s)dsx0 ,(2.8)

and equation (2.8) gives the unique solution to

x′ = Ax , x(t0) = x0 .(2.9)

We summarize this in the following theorem.

Theorem 1. The inhomogeneous nth-order linear ODE

y(n) + p1(t)y(n−1) + p2(t)y(n−2) + · · ·+ pn−1(t)y′ + pn(t)y = g(t)

with initial conditions

y(t0) = y0, y
′(t0) = y1, . . . , y

(n−1)(t0) = yn−1

has exactly one solution that exists on the same interval on which the coefficients and the right-hand
side are continuous. The solution can be computed by computing (2.5) (or (2.8) in case g(t) = 0)
and taking the first component of this vector-valued function.

If no initial condition is specified, then the general solution can be computed using (2.4) (or (2.7)
in case g(t) = 0) and again taking the first component of this vector-valued function. This (or any
other) general solution will have n constants in it.

3. An example

In this section we want to use the method from above solve

y′′ − y = 0 , y(0) = 1 , y′(0) = 0 .

That is, in the above notation,

n = 2 , p1(t) = 0 , p2(t) = −1 , g(t) = 0 , t0 = 0 , y0 = 1 , y1 = 0 ,
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so that the matrix and the vectors are given as

A =
(

0 1
1 0

)
, b =

(
0
0

)
, x0 =

(
1
0

)
.

The system corresponding to our ODE is therefore

x′ =
(

0 1
1 0

)
x , x(0) =

(
1
0

)
.

Now we proceed to use formula (2.7) to find the general solution, so we first need to integrate A.
A matrix is integrated by integrating each of its entries separately, so∫

Adt =
∫ (

0 1
1 0

)
dt =

(
c1 t+ c2

t+ c3 c4

)
,

where we will choose all the integration constants to be zero, just as we did when we found an
integrating factor in the scalar case. Next we need to compute e

∫
A(t)dt, that is we need to compute

e

 0 t

t 0


.

For this recall the Taylor series of the natural exponential function, which states that for any real
number x one has

ex =
∞∑
k=0

1
k!
xk = 1 + x+

1
2!
x2 +

1
3!
x3 +

1
4!
x4 + · · · .

This series is used to define the exponential of a matrix as well, that is for any square matrix M
we define

eM =
∞∑
k=0

1
k!

Mk = I + M +
1
2!

M2 +
1
3!

M3 +
1
4!

M4 + · · · .

Here I stands for the identity matrix, which is the matrix that has ones on the diagonal and zeros
elsewhere, so for n = 2,

I =
(

1 0
0 1

)
.

Now we need to compute the powers of the matrix:(
0 t

t 0

)2

=
(

0 t

t 0

)(
0 t

t 0

)
=
(
t2 0
0 t2

)
(

0 t

t 0

)3

=
(

0 t

t 0

)2( 0 t

t 0

)
=
(
t2 0
0 t2

)(
0 t

t 0

)
=
(

0 t3

t3 0

)
(

0 t

t 0

)4

=
(

0 t

t 0

)3( 0 t

t 0

)
=
(

0 t3

t3 0

)(
0 t

t 0

)
=
(
t4 0
0 t4

)
(

0 t

t 0

)5

=
(

0 t

t 0

)4( 0 t

t 0

)
=
(
t4 0
0 t4

)(
0 t

t 0

)
=
(

0 t5

t5 0

)
(

0 t

t 0

)6

=
(

0 t

t 0

)5( 0 t

t 0

)
=
(

0 t5

t5 0

)(
0 t

t 0

)
=
(
t6 0
0 t6

)
(

0 t

t 0

)7

=
(

0 t

t 0

)6( 0 t

t 0

)
=
(
t6 0
0 t6

)(
0 t

t 0

)
=
(

0 t7

t7 0

)
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There is an obvious pattern, and we have

e

 0 t

t 0


=

(
1 0
0 1

)
+
(

0 t

t 0

)
+

1
2!

(
t2 0
0 t2

)
+

1
3!

(
0 t3

t3 0

)
+

1
4!

(
t4 0
0 t4

)
+

1
5!

(
0 t5

t5 0

)
+

1
6!

(
t6 0
0 t6

)
+

1
7!

(
0 t7

t7 0

)
+ · · ·

=

(
1 + 1

2! t
2 + 1

4! t
4 + 1

6! t
6 + · · · t+ 1

3! t
3 + 1

5! t
5 + 1

7! t
7 + · · ·

t+ 1
3! t

3 + 1
5! t

5 + 1
7! t

7 + · · · 1 + 1
2! t

2 + 1
4! t

4 + 1
6! t

6 + · · ·

)

=
(

cosh t sinh t
sinh t cosh t

)
,

where for the last equality we use the Taylor series for cosh and sinh, which are

coshx = 1 +
1
2!
x2 +

1
4!
x4 +

1
6!
x6 + · · · ,

sinhx = x+
1
3!
x3 +

1
5!
x5 +

1
7!
x7 + · · · .

Finally we get the general solution for the system using (2.7),

x(t) =
(

cosh t sinh t
sinh t cosh t

)(
C1

C2

)
=
(
C1 cosh t+ C2 sinh t
C1 sinh t+ C2 cosh t

)
.

Remember that the first component of x gives use the general solution y for the ODE, and that’s
after all what we really want, so

y(t) = C1 cosh t+ C2 sinh t .

Now we find the constants by plugging in the initial conditions,

y(0) = 1 = C1 cosh 0 + C2 sinh 0 = C1 ,

y′(0) = 0 = C1 sinh 0 + C2 cosh 0 = C2 .

We are lucky here, we don’t need to solve a linear system, but the values C1 = 1 and C2 = 0 pop
right out without any further work. So the solution to the original differential equation with the
specified initial conditions is

y(t) = cosh t .

This is the end of the example.
However, we could have also used (2.8) to find the desired solution right away, instead of using

(2.7) to first find the general solution and then finding the constants. If we do this, then we use∫ t

0
A(s)ds =

∫ t

0

(
0 1
1 0

)
ds =

(
c1 s+ c2

s+ c3 c4

)∣∣∣∣s=t
s=0

=
(

0 t

t 0

)
,

and we need to compute

e
∫ t
0 Ads = e

 0 t

t 0


.

This is by chance exactly the matrix we had above. This is pure coincidence, choosing all constants
in the indefinite integral equal to zero does not always result exactly in the definite integral one
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needs. So, lucky as we are, we already know

e
∫ t
0 A(s)ds =

(
cosh t sinh t
sinh t cosh t

)
,

and hence the solution to the system is given according to formula (2.8) as being

x(t) = e
∫ t
0 A(s)dsx0 =

(
cosh t sinh t
sinh t cosh t

)(
1
0

)
=
(

cosh t
sinh t

)
.

Taking the first component of x we obtain y, and so we get, as before,

y(t) = cosh t .

4. Linear dependence and independence

Definition 2. A collection of vectors v1, . . .vk is called linear dependent, if there are scalars
c1, . . . , ck not all zero such that c1v1 + c2v2 + · · · ckvk = 0. If there are no such numbers then the
collection of vectors is called linearly independent.

This definition implies the following statement: A collection of vectors v1, . . .vk is linear in-
dependent, if whenever c1v1 + c2v2 + · · · ckvk = 0 for some scalars c1, . . . , ck, then necessarily
c1 = 0, . . . , ck = 0.

Examples. The vectors
(

1
0

)
,
(

1
1

)
, and

(
0
1

)
are linearly dependent, since

(1)
(

1
0

)
+ (−1)

(
1
1

)
+ (1)

(
0
1

)
=
(

0
0

)
.

The vectors

 1
0
0

,

 1
0
1

, and

 0
1
0

 are linearly independent, since

c1

 1
0
0

+ c2

 1
0
1

+ c3

 0
1
0

 =

 0
0
0


can only be true if c1 = 0, c2 = 0, c3 = 0. Just solve the linear system

c1 + c2 = 0
c3 = 0

c2 = 0

to see that.
In the vector space of functions, the functions ex, e−x, and coshx are linearly dependent, because

we know that coshx = 1
2(ex + e−x), so that

1 coshx− 1
2
ex − 1

2
e−x = 0

for all x.
In the vector space of functions, the functions ex, e−x, and x are linearly independent. To see

this, start out with

c1e
x + c2e

−x + c3x = 0
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for all x. Now simply plug in some numbers for x, for example plug in x = 0, x = 1, x = 2, and
you get the linear system

c1 + c2 = 0
ec1 + 1

ec2 + c3 = 0
e2c1 + 1

e2
c2 + 2c3 = 0

Now solve this linear system, and you will get c1 = 0, c2 = 0, c3 = 0.

Linear independence of solutions to x′ = Ax. Let x1(t), . . . ,xk(t) be vector functions with
n components each, and assume each of them solves x′ = Ax. Let x1 = x1(t0), . . . ,xk = xk(t0) be
the initial values. Using formula (2.8) we know that

x1(t) = e
∫ t
t0

A(s)dsx1 , . . . , xk(t) = e
∫ t
t0

A(s)dsxk .(4.1)

Theorem 3. The vectors x1(t), . . . ,xk(t) are linearly independent for all t if and only if the vectors
x1, . . . ,xk are linearly independent.

Proof. One direction of this “if and only if” proof is easy. Namely, if x1(t), . . . ,xk(t) are linearly
independent for all t then they are in particular linearly independent for t0, which gives exactly
that the vectors x1, . . . ,xk are linearly independent.

For the other direction we assume that the vectors x1, . . . ,xk are linearly independent. We start
out with c1x1(t) + · · ·+ ckxk(t) = 0 and we need to show that c1 = 0, . . . , ck = 0. Using (4.1) we
get

c1e
∫ t
t0

A(s)dsx1 + · · ·+ cke
∫ t
t0

A(s)dsxk = e
∫ t
t0

A(s)ds
(
c1x1 + · · ·+ ckxk

)
= 0 ,

where we can multiply with with the inverse of e
∫ t
t0

A(s)ds (which is e−
∫ t
t0

A(s)ds), and we get c1x1 +
· · ·+ ckxk = 0. By the assumptions this implies c1 = 0, . . . , ck = 0.

It is important to notice that the proof shows in fact more: If c1x1 + · · · + ckxk = 0 for some
c1, . . . , ck, then with the same constants c1, . . . , ck one has for all times t the equality c1x1(t)+ · · ·+
ckxk(t) = 0. That is, if solutions to a homogeneous linear system of first order differential equations
satisfy a linear relationship at the starting time, then they satisfy the same linear relationship for
all times.

Another way of stating the theorem is the following.

Theorem 4. If the solutions x1(t), . . . ,xk(t) for x′ = Ax are linearly independent for one t, then
they are linearly independent for all t.

If the solutions x1(t), . . . ,xk(t) for x′ = Ax are linearly dependent for one t, then they are
linearly dependent for all t, and there are constants c1, . . . , ck not all zero such that for all times t
we have c1x1(t) + · · ·+ ckxk(t) = 0.

As any maximal set of independent vectors in Rn contains exactly n vectors, we can at most
choose n linear independent starting vectors x1, . . . ,xn. This tells us, that we can find exactly
n linearly independent solutions to our linear system. In particular, if we have such a collection
x1(t), . . . ,xn(t) of solutions belonging to our chosen collection of initial conditions, then any other
solution x(t) to the same system must be expressible as a linear combination of the solutions
x1(t), . . . ,xn(t) we already have, that is, there are constants c1, . . . , cn such that

x(t) = c1x1(t) + · · ·+ cnxn(t)



Math 208 Spring 1999 9

for all t. The constants can be found by expressing the starting value x of x(t) as a linear combi-
nation of the starting values of our maximal collection of linear independent solutions, that is,

x = c1x1 + · · ·+ cnxn .

This is so important that we restate it as a theorem.

Theorem 5. If x1(t), . . . ,xn(t) are a collection of n linearly independent solution for x′ = Ax,
then any other solution x(t) is a linear combination of those n solutions. That is, there are constants
c1, . . . , cn such that for all t we have

x(t) = c1x1(t) + · · ·+ cnxn(t) .

What does this have to do with the linear differential equation of order n that we
started out with? As we have seen before, any solution x to x′ = Ax gives us a solution y to
(1.2) by just taking the first component of x. Conversely, if we have a solution y of (1.2), then
x = (y, y′, . . . , y(n−1))T is a solution to x′ = Ax.

Theorem 6. Assume x1(t), . . . ,xk(t) are solutions to x′ = Ax, and let y1, . . . , yk be the corre-
sponding solutions to (1.2). Then x1(t), . . . ,xk(t) are linearly independent vectors for one (and
hence for all) t if and only if y1, . . . , yk are linearly independent as functions.

Proof. We will actually prove the equivalent statement “x1(t), . . . ,xk(t) are linearly dependent for
one (and hence for all) t if and only if y1, . . . , yk are linearly dependent as functions”.

Assume first that the vectors x1(t), . . . ,xk(t) are linearly dependent for some t, then there are
constants c1, . . . , ck not all zero such that for all t (by Theorem 4) we have c1x1(t)+· · ·+ckxk(t) = 0.
Looking only at the first coordinates of the vectors x1(t), . . . ,xk(t), this clearly implies c1y1(t) +
· · ·+ ckyk(t) = 0 for all t.

Now assume that y1, . . . , yk are linearly dependent as functions, that is, there are constants
c1, . . . , ck not all zero such that for all t we have c1y1(t) + · · · + ckyk(t) = 0. Differentiate this
equation n− 1 times, this results in

c1y1(t) + · · · + ckyk(t) = 0 ,

c1y
′
1(t) + · · · + cky

′
k(t) = 0 ,

c1y
′′
1(t) + · · · + cky

′′
k(t) = 0 ,

· · ·
c1y

(n−1)
1 (t) + · · · + cky

(n−1)
k (t) = 0 .

Recalling that x1 = (y1, y
′
1, . . . , y

(n−1)
1 )T , . . . ,xk = (yk, y′k, . . . , y

(n−1)
k )T we obtain c1x1(t) + · · · +

ckxk(t) = 0.

Corollary 7. There are exactly n linearly independent solutions of (1.2).

This corollary follows, because we know that we can have exactly n linearly independent solutions
to the system x′ = Ax. We can now just restate Theorem 5 for y’s instead of x’s.

Theorem 8. If y1(t), . . . , yn(t) are a collection of n linearly independent solutions for the homo-
geneous equation (1.2), then any other solution y(t) is a linear combination of those n solutions.
That is, there are constants c1, . . . , cn such that for all t we have

y(t) = c1y1(t) + · · ·+ cnyn(t) .
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5. The Wronskian

Definition 9. The Wronskian of a collection y1, . . . , yn of n solutions to the homogeneous ODE
(1.2) is defined as the function

W (y1, y2, . . . , yn)(t) = det


y1(t) y2(t) y3(t) · · · yn(t)
y′1(t) y′2(t) y′3(t) · · · y′n(t)
y′′1(t) y′′2(t) y′′3(t) · · · y′′n(t)

: : : · · · :
y

(n−1)
1 (t) y

(n−1)
2 (t) y

(n−1)
3 (t) · · · y

(n−1)
n (t)

 .

Here is the theorem that shows why this determinant is important.

Theorem 10. The Wronskian W (y1, y2, . . . , yn)(t) is either zero for all t or for no value of t. If
the Wronskian is zero, then the solutions y1, . . . , yn are linearly dependent. If the Wronskian is not
zero, then the solutions y1, . . . , yn are linearly independent.

Proof. Once again we will go over to the vector solutions x1, . . . ,xn associated to the solutions
y1, . . . , yn. In fact, by the very definition of the Wronskian we have

W (y1, y2, . . . , yn)(t) = det(x1(t)|x2(t)| · · · |xn(t))

where this last determinant simply denotes the determinant of the matrix one obtains if one writes
all the column vectors x1(t), . . . ,xn(t) into a single n × n-matrix. From linear algebra we know
that this determinant is zero if and only if the vectors are linearly dependent. From Theorem 4
we know that the vectors x1(t), . . . ,xn(t) are either linearly dependent for all t, in which case the
determinant is zero for all t, or the vectors are linearly independent for all t, in which case the
determinant is nonzero for all t. Theorem 6 now tells us that linear dependence of the vectors
x1(t), . . . ,xn(t) is exactly the same as linear dependence of the functions y1, . . . , yn, and we have
the desired result.

An example. We have seen before that y1(t) = cosh t and y2(t) = sinh t are solutions for the
homogeneous second order linear ODE y′′ − y = 0. The associated Wronskian is

W (cosh t, sinh t)(t) = det
(

cosh t sinh t
sinh t cosh t

)
= cosh2 t− sinh2 t = 1 .

(To get this to be equal to 1 we have used an identity from calculus.) So Theorem 10 tells us that
y1(t) = cosh t and y2(t) = sinh t are linearly independent, and as the ODE is second order, we know
by Corollary 7 that there there are exactly two linearly independent solutions. Hence y1(t) = cosh t
and y2(t) = sinh t form a maximal system of linearly independent solutions. By Theorem 8 any
other solution must be a linear combination of the two, that is, any other solution is of the form

y(t) = C1 cosh t+ C2 sinh t .

Of course, this is exactly what we found before.
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